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Abstract—This paper presents a control strategy for moni-
toring a dynamically changing flood zone by using a group
of unmanned aerial vehicles (UAVs) and an unmanned surface
vehicle (USV). The strategy requires to allocate UAVs in the
flood zone, achieving an optimal coverage efficiency. As the flight
duration of UAVs is limited, they need to be called back to the
USYV for recharging or for battery swapping. Therefore, the UAVs
are required to be allocated near the USV while covering the
flood area. A robust adaptive control controller is proposed to
implement the aforementioned strategy, the validity of which is
tested under simulations.

Index Terms—Coverage control, multi-agent system, robust
adaptive control.

I. INTRODUCTION

Disaster robotics has drawn an increasing attention in the
recent decade [1], [2]. This paper deals with an important
problem in the field of disaster robotics: utilizing UAVs to
monitor a dynamic flood area [3]. Assume that a group of
UAVs and a USV are involved in the flood monitoring mission.
As the flight duration of UAVs is limited, they need to be
called back to the USV for recharging or for battery swapping.
Therefore, the UAVs are required to be allocated near the USV
while covering the flood area, the shape of which are assumed
to the known.

The allocation of UAVs in the flood area formulates a
coverage problem [4]. It is concerned with planning an optimal
configuration of the agent network for the coverage of an
area of interest, and with driving each agent to the desired
position to realize the planned configuration. To tackle the
coverage problem, several Voronoi-based approaches [4]-[8]
have been proposed. In these approaches, a centroidal Voronoi
configuration has been generated over the coverage region,
which maximizes the coverage efficiency by driving agents to
the centroids in corresponding Voronoi cells.

Regarding these approaches, in [5], arbitrary target patterns
were represented with an optimal agent deployment. However,
the focus of this work has largely been on static environments.
The distributed coverage controller proposed in [6] can react
to the dynamic environment, tracking moving targets using
the Centroidal Voronoi Tessellation (CVT). Although it has
been verified under simulations and experiments that the CVT
can be achieved by using this controller, a formal proof of
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convergence was not presented. In [7], [8], the stability of
multi-agent systems under the proposed controllers has been
established, but uncertainties in the control process have not
been taken into consideration. The research conducted in [9]—
[11] addressed the adaptive coverage control problems for
network systems with uncertainties. However, they were either
based on the model predictive control [9] or machine learning
algorithms [10], [11] for which the asymptotic stability of the
control system is difficult to prove.

To address both adaptiveness and stability, in this paper, we
propose an FATII based coverage controller, the asymptotic
stability of which is established, and the adaptiveness is
shown by simulations in the presence of rather large time-
varying uncertainties. In addition, as one consider the scenario
of battery swapping for UAVs, unlike the aforementioned
research which only concerned about fixed number of UAVs,
in this paper, a control strategy is proposed to achieve optimal
configuration, while the number of UAVs varies during the
monitoring process.

The rest of the paper is organized as follows. In Section II
the flood monitoring problem by heterogenous robotic systems
is stated. In Section III, a robust adaptive control algorithm
is proposed, and its validity is tested under simulations in
Section IV. Finally, conclusions are drawn in Section V.

II. CONTROL PROBLEM STATEMENT

This paper aims to design a control strategy for monitoring
a flood area by using a USV and multiple UAVs. As the flight
duration of UAVs is limited, they need to be called back to
the USV for recharging or for battery swapping. Therefore, the
UAVs are required to be allocated near the USV while covering
the flood area. The deployment, charging, and redeployment
process of UAVs is illustrated by Fig. 1.

For the design of control strategy, a kinematic model for
the UAVs is adopted in this paper. It is described by

pi=u; +&, i€ {l,2,..,n}, (1)

where n is the number of UAVs, p;, € R2 represents the
state (horizontal displacements) of a single UAV, u; € R?
denotes the velocity controller, and &; € R? is the time-varying
uncertainties.

The allocation of UAVs in the flood area formulates a
coverage problem [4]. It is concerned with planning an optimal
configuration of the agent network for the coverage of an area
of interest, and with driving each agent to the desired position
to realize the planned configuration. To achieve an optimal
coverage configuration, a control method based on the CVT
is proposed in this paper.
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Fig. 1.

1) CVT: Let D C R? be a 2-D dynamic region to be
covered, represented by the blue polygon in Fig. 1, and ¢
be the associated density function, which is assumed to be
positive, bounded, and continuously differentiable. It captures
the relative importance of a point © € D at time ¢ [6].

Let p; € D represented by the black dots in Fig. 1,
be the position of the i-th UAV and p = {p;} where {.}
denotes a collection of functions. The coverage problem is
concerned with placing n UAVs in D, dividing D into regions
of dominance of the i-th UAV. Thus, a Voronoi tessellation is
formulated, denoted by

Vitp)={zeD| |z —pil| <z —-psll,i #j}, (@

such that the i-th UAV is in charge of each subregion V.

To measure the performance of the coverage for the multi-
agent system (how well a given point & € D is covered by the
i-th UAV at position p; € D), one can define the locational
cost H (p,t) = > |I? ¢ (z,t) dp, where

Z Hz+— 3)

=1

By assuming the cost function ‘H varies rather slowly with
respect to time, one has = 0 [4]. In [6], it was shown that

oH T
op; 2m;(p; — ¢;)

“)

Fig. 2. Illustration of the coverage problem. Here, the red and black dots
respectively denote the desired and actual positions of the UAVs. The star
marks the position of the USV, and the surrounding yellow crosses represent
the density function.

Sketch of the deployment, charging, and redeployment process of UAVs.

where the mass m; and center of mass ¢; of the i-th Voronoi
cell V;, represented by the red blocks in Fig. 1, are defined as

fv (z,t) zdx

my;

m; /¢:vtd:c ¢ (p,t) =

Note that ¢ strictly positive implies m; > 0.

At a given time ¢, an optimal coverage for the domain D
requires a configuration of UAVs p to minimize H. From (4),
one can see that a critical point is

pi (t) = ci (p,t). (5

Remark 1: When (5) is satisfied, an agent network is said
to be in a locally optimal coverage configuration [12]. The
corresponding p defines the CVT.

Remark 2: The density function ¢ is visualized by the
yellow crosses in Fig. 2. The center of the density function
denotes the position of the USV. The UAVs require to stay
close to the yellow region for the purpose of battery charging.

By defining the state error e; = p; — ¢;, (1) becomes

é =u;+d; —¢;. (6)

The control problem can then be stated as constructing an
asymptotically stabilizing law wu,; for the multi-agent system
to achieve a CVT (lim;_, o, €;(t) = 0), in the presence of the
time-varying uncertainty d;.

III. CONTROLLER DESIGN

To deal with time-varying uncertainties in the multi-agent
system, we propose an FATII based coverage control tech-
nique, in which the uncertainty d; in (6) is approximated as

N
t) = Z d;j;(t), @)
=1

where d;; denotes unknown constant vectors, 1, (t) is the basis
function, selected as the Fourier series [13], [14] in this paper.
Substituting (7) into (6) yields

N
éi=wi+ Y di;(t) — ¢ ®)

j=1
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Remark 3: In the FATII controller design [15], to remove
the unknown term d;; fromAthe expression of p;, one defines
in the extended space (p;, d;;) the manifold

M; = {(piadij) €

where d;; ;€ R (the estimation of d;;) and 3;;(p;,t) €
R™*! are functions to be specified. By defining the off-the-
manifold variable z;; = d;; — d — B where z;; € R™*1,
(8) is transformed to

RQ | dij — Q5 — /81']' = O}a &)

N
éi=wi+ Y (i +dij +Bij)v; — é,

j=1

(10)

Here, z;; = O implies that for each agent i, the system
dynamics stays on the manifold M.
The FATII based coverage controller is then designed as

N
u; = —k;e; — Z(dij + Bij) vy,
=1
dij = —ei; + (kie; + &),
Bij = ey, (1)

where k; = k + % and k is a positive constant.

Theorem 1: The closed loop system, formulated by (10) and
(11), is asymptotically stable.

Proof 1: Substituting (11) into (10) yields

N
é; = —ke; + Z Ziﬂﬂj — ;. (12)

j=1
The derivative of z; is computed as

. Lo 0B . 0By
fig = —dy = Goreim Ty
= e;th; — kiej; — ¢t

N
—; ( —kie; + Z Zikr — éz’> — et
N k=1
—1; (Z Zik¢k>~
k=1

To prove the stability of the closed-loop system, the Lya-
punov candidate function is chosen as

1 n N
5 2.2 ZiFi

13)

(14)
i=1 j=1
the derivative of which is calculated as
V= Z pﬁZZ%zZa
=1 =1 5=1
=D _mie] (i +¢) +ZZ%ZU (15)
i=1 =1 j=1

Substituting (12) and (13) into (15) yields

n N
V:Z mieT —kie; + Z ZijY;
i=1 =1
n N ’ T N
2 (x=m) (2 zz-jwj)
i=1 \j=1 j=

n

L
:; (mﬁj( kzez + ZZU@Z)]) + — 4
—imfefei - (ZZij¢j> <Zz11j7//j)>
j=1 Jj=1
n s N 2
== (mi (ks = ) e + | e = Sz, )
. j=1

=1
By selecting k; = k + “3* where k > 0, V is negative semi-
definite. According to the Barbalat’s lemma [16, Lemma 4.3],
both the state and the estimation error converge to zero.

IV. CASE STUDY

The simulation results are presented in Fig. 3, where the
blue polygon represents a dynamically changing flood region
D C R, The speeds of vertices of the polygon vary randomly
between Om/s and 1.5m/s along = and y directions (samples
are uniformly drawn from [0, 1.5)). The star marks the position
of the USV, which also denotes the center of the density
distribution. At the beginning, there are 8 UAVs in the flood
area, where the red and black dots respectively denote the
desired and actual positions of the UAVs. The initial positions
of the dots are set as shown in Fig. 3(a). After 30s, two UAVs
leave for charging and the desired positions for the rest 6 UAVs
are reconfigured, represented by the green dots. Finally, after
charging for 30s, the 2 UAVs return to the multi-agent network
and the new configuration of the network is denoted by the
red dots again. An optimal coverage of the flood region is
achieved if the distances between the red (green) and black
dots converge to zero (see Remark 1).

The gain value for the feedback controller adopted in the
simulation is k; = 40, and the number of the basis functions
is selected as IV = 5. The disturbance &; to the control system
is chosen as

& = [20cos(nt) 20sin(nt)] ", (16)

which is sufficiently large. .
Given x € D where x = [z y| , the time-varying density
function ¢(x,t) is defined by a bivariate normal distribution,

as
1 exp(l((xux)2+(yaé‘y)2>>. (17)

2
2 (o Y

The coefficients of (17) are chosen as o, = oy = 30, p, =
100 + 2t, p, = 150 + 2¢. It implies that the center of the
density distribution moves along straight lines while its radius
remains constant.

The density function (17) is visualized in Fig. 3. The UAVs
are expected to adaptively allocated around the center of the
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density function (the position of the USV) while covering the
flood region. In the simulation results, the multi-agent system
converges to an optimal configuration (distances between the
red (green) and black dots converge to zero (see Remark 1))
in the presence of the disturbance (16).

V. CONCLUSIONS

In this paper, a control strategy of multiple UAVs has been
proposed for covering a dynamic flood regions with time-
varying density functions in the presence of time-varying
uncertainties. An optimal coverage configuration is generated
though a Voronoi-based algorithm, during which process the
change of UAVS’ number are taken into consideration when
some UAVs leave the network for charging. The UAVs are
adaptively driven to the generated configuration by the pro-
posed FATII based controller. The stability of the proposed
controller has been established and its validity has been tested
under simulations.
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Fig. 3. Coverage of a dynamic flood area with a time-varying density function in the presence of time-varying disturbances: (a) t=0s, (b) t=30s, (c) t=31s,
(d) t=060s, (e) t=01s, (f) t=100s. The number of UAVs changes from 8 to 6 when t=31s, and from 6 to 8 when t=61s.
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