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Abstract—Let P,Q be projections on a Hilbert space. We prove the equivalence of the following
conditions: (i) PQ+QP ≤ 2(QPQ)p for some number 0 < p ≤ 1; (ii) PQ is paranormal; (iii) PQ
is M∗-paranormal; (iv) PQ = QP . This allows us to obtain the commutativity criterion for a von
Neumann algebra. For a positive normal functional ϕ on von Neumann algebra M it is proved
the equivalence of the following conditions: (i) ϕ is tracial; (ii) ϕ(PQ +QP ) ≤ 2ϕ((QPQ)p) for
all projections P,Q ∈ M and for some p = p(P,Q) ∈ (0, 1]; (iii) ϕ(PQP ) ≤ ϕ(P )1/pϕ(Q)1/q for
all projections P,Q ∈ M and some positive numbers p = p(P,Q), q = q(P,Q) with 1/p+ 1/q = 1,
p �= 2. Corollary: for a positive normal functional ϕ on M the following conditions are equivalent: (i)
ϕ is tracial; (ii) ϕ(A+A∗) ≤ 2ϕ(|A∗|) for all A ∈ M.
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1. INTRODUCTION

This work continues the research of the authors [1–4], which contain new conditions for the
commutativity of projections and various characterizations of the trace among all positive normal
functionals on von Neumann algebras.

Let P , Q be projections on a Hilbert space. In Theorem 3.2 we prove the equivalence of the
following conditions: (i) PQ+QP ≤ 2(QPQ)p for some number 0 < p ≤ 1; (ii) PQ is paranormal;
(iii) PQ is M∗-paranormal; (iv) PQ = QP . This allows us to obtain the commutativity criterion for
a von Neumann algebra (Corollary 3.3). In Theorem 4.1 for a positive normal functional ϕ on von
Neumann algebra M we prove the equivalence of the following conditions: (i) ϕ is tracial; (ii) ϕ(PQ+
QP ) ≤ 2ϕ((QPQ)p) for all projections P,Q ∈ M and for some p = p(P,Q) ∈ (0, 1]; (iii) ϕ(PQP ) ≤
ϕ(P )1/pϕ(Q)1/q for all projections P,Q ∈ M and some positive numbers p = p(P,Q), q = q(P,Q) with
1/p + 1/q = 1, p �= 2. Corollary 4.2: for a positive normal functional ϕ on M the following conditions
are equivalent: (i) ϕ is tracial; (ii) ϕ(A+A∗) ≤ 2ϕ(|A∗|) for all A ∈ M.

2. NOTATION, DEFINITIONS AND PRELIMINARIES

Let H be a Hilbert space over field C, and B(H) be the ∗-algebra of all linear bounded operators
on H. An operator X ∈ B(H) is said to be paranormal (respectively, M∗-paranormal for some number
M > 0), if ||X2ξ|| ≥ ||Xξ||2 (respectively, M ||X2ξ|| ≥ ||X∗ξ||2) for all ξ ∈ H with ||ξ|| = 1. An operator
X ∈ B(H) is a projection, if X = X2 = X∗. By the commutant of a set X ⊂ B(H) we mean the set

X ′ = {Y ∈ B(H) : XY = Y X for all X ∈ X}.
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A ∗-subalgebra M of the algebra B(H) is called a von Neumann algebra acting on the Hilbert space
H if M = M′′. If X ⊂ B(H) then X ′ is a von Neumann algebra, and X ′′ is the smallest von Neumann
algebra that containes X . For a von Neumann algebra M let Msa, M+, Mu, Mid and Mpr denote its
Hermitian, positive, unitary parts, the set of idempotents and the set of projections, respectively. For
every operator A ∈ M its modulus |A| =

√
A∗A lies in M+. Let I and Z(M) = M∩M′ denote the

unit and the center of the algebra M, respectively. For Q ∈ Mid we have Q⊥ = I −Q ∈ Mid. For
P,Q ∈ Mpr we write P ∼ Q (the Murray–von Neumann equivalence) if P = U∗U and Q = UU∗ for
some U ∈ M. A positive functional ϕ on a von Neumann algebra M is said to be a state, if ϕ(I) = 1;
tracial, if ϕ(Z∗Z) = ϕ(ZZ∗) for all Z ∈ M; normal, if Ai ↗ A (Ai, A ∈ M+) ⇒ ϕ(A) = sup

i
ϕ(Ai).

By M+
∗ we denote the set of all positive normal functionals on M.

Lemma 2.1 [5, Theorem 2.3.3]. Let N be a von Neumann algebra of type In (n is a cardinal
number). Then N is ∗-isomorphic to the tensor product Z(N )⊗B(K), where K is a Hilbert space
with dimK = n.

Lemma 2.2 [6, Corollary 3.3]. For every X ∈ Mn(C(Ω))sa the algebra Mn(C(Ω)) contains a
unitary operator U such that U∗XU(ω) is diagonal for each ω ∈ Ω.

Lemma 2.3 [7, Chap. 5, item (ii) of Theorem 1.41]. If a von Neumann algebra N is generated
by two projections P , R ∈ B(H)pr, then there exists a unique projection Z ∈ Z(N ) such that the
algebra NZ is of type I2 and the algebra NZ⊥ is Abelian, moreover, dimCNZ⊥ ≤ 4.

Let g(t) =
√

t(1− t) for 0 ≤ t ≤ 1 and δ ∈ C,А |δ| = 1. By R(δ,t) we denote the projection

R(δ,t) =

⎛

⎝ t δg(t)

deltag(t) 1− t

⎞

⎠ , (1)

which lies in M2(C)
pr.

3. THE NEW COMMUTATIVITY CRITERIONS OF PROJECTIONS

The search of the new commutativity criterions of projections was motivated by the following
definition: Two (possibly unbounded) self-adjoint operators A and B are said to be commuting, if
all projections of the its corresponding projection-valued measures commute [8, Chap. VIII, § 5,
Definition].

Proposition 3.1. If X ∈ B(H)sa, Q ∈ B(H)id and XQ is an M∗-paranormal operator then
XQ = Q∗X .

Proof. It is well known [9] that an operator T ∈ B(H) is M∗-paranormal if and only if

M2T ∗2T 2 − 2λTT ∗ + λ2I ≥ 0 for all λ ∈ R.

For T = XQ this inequality takes the form

M2Q∗XQ∗X2QXQ− 2λXQQ∗X + λ2I ≥ 0 for all λ ∈ R.

We multiply both sides of this inequality from the left by the operator Q∗⊥ = Q⊥∗ and from the right by
the operator Q⊥, and obtain

−2λQ⊥∗XQQ∗XQ⊥ + λ2Q⊥∗Q⊥ ≥ 0 for all λ ∈ R.

Then division by λ > 0 yields −2Q⊥∗XQQ∗XQ⊥ + λQ⊥∗Q⊥ ≥ 0 for all λ > 0. Passing to the limit
as λ → 0, we obtain −2Q⊥∗XQQ∗XQ⊥ = −2|Q∗XQ⊥|2 ≥ 0. Hence, Q∗XQ⊥ = 0 and Q∗X =
Q∗XQ = (Q∗XQ)∗ = (Q∗X)∗ = XQ. The assertion is proved. �

Theorem 3.2. For P,Q ∈ B(H)pr the following conditions are equivalent:

(i)
PQ+QP

2
≤ (QPQ)p for some number 0 < p ≤ 1;

(ii) PQ is paranormal;
(iii) PQ is M∗-paranormal;
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(iv) PQ = QP .
Proof. (iv) ⇒ (i). For 0 < p ≤ 1 we have

PQ+QP

2
= QPQ ≤ (QPQ)p

by the inequality QPQ ≤ QIQ = Q ≤ I and the Spectral Theorem.
(i) ⇒ (iv). With P and Q we associate the von Neumann algebra N = {P,Q}′′ generated by them.

By Lemma 2.3 there exists a unique projection Z ∈ Z(N ) such that the algebra NZ is of type I2 and the
algebra NZ⊥ is Abelian. Obviously, the projections PZ⊥ and QZ⊥ commute. Gelfand’s theorem on the
representation of an Abelian unital C∗-algebra (see, for example, [7, Chap. 3, Theorem 1.18]) implies
that the algebra Z(NZ) is *-isomorphic to the C∗-algebra C(Ω) of all complex-valued continuous
functions on the Stone space Ω of all characters of the algebra Z(NZ). Now from Lemma 2.1 it follows
that the algebra NZ is *-isomorphic to the matrix algebra M2(C(Ω)).

We define the domains of the rank constancy (or, equivalently, the domains of the canonical trace tr)
for R̃ ∈ M2(C(Ω))pr as follows:

Ωj(R̃) = {ω ∈ Ω : r̃11(ω) + r̃22(ω) = j}, j ∈ {0, 1, 2}.

The sets Ωj(R̃) are closed (being the preimages of the closed sets {j} ⊂ C under a continuous mapping)
and constitute a covering of the space Ω by disjoint sets.

The projections PZ and QZ are identified with P̃ , Q̃ ∈ M2(C(Ω))pr, respectively. Let

Ωij = Ωi(P̃ ) ∩Ωj(Q̃), i, j ∈ {0, 1, 2}.
All the nine sets Ωij are open-closed and constitute a covering of the space Ω by disjoint sets. If
ω ∈ Ω \ Ω11, then P̃ Q̃(ω) = Q̃P̃ (ω).

Lemma 2.2 implies that there exist a unitary U ∈ M2(C(Ω))u and a closed subset Ω′
1(P̃ ) ⊂ Ω1(P̃ ),

such that U∗(ω)P̃ (ω)U(ω) = diag(1, 0) for all ω ∈ Ω′
1(P̃ ) and U∗(ω)P̃ (ω)U(ω) = diag(0, 1) for all

ω ∈ Ω1(P̃ ) \ Ω′
1(P̃ ). Therefore, it is sufficient to consider the case

P = diag(1, 0), Q = R(δ,t), δ ∈ C, |δ| = 1, 0 ≤ t ≤ 1;

see (1). Since QPQ = tQ, we have (QPQ)t = tpQ. Since

PQ+QP

2
=

⎛

⎝t ∗

∗ ∗

⎞

⎠ , tpQ− PQ+QP

2
=

⎛

⎝tp+1 − t ∗

∗ ∗

⎞

⎠

(here and elsewhere, the symbol “∗” denotes matrix entries whose values will not be needed), we have
tp+1 − t ≥ 0 and t ∈ {0, 1}.

(ii) ⇒ (iv). It is well known [10, Problem 9.5], that an operator T ∈ B(H) is paranormal if and only if

|T |2 ≤ 1

2
(λ−1|T 2|2 + λI) for all λ > 0.

For T = PQ this inequality takes the form

2QPQ ≤ λ−1(QPQ)3 + λI for all λ > 0. (2)

If PQ �= QP , then an operator QPQ is not a projection and its spectrum σ(QPQ) contains some
number x ∈ (0, 1). By (2) and the Spectral Theorem the number x satisfies the inequality

2x ≤ λ−1x3 + λ for all λ > 0.

However, for λ = x3/2 it does not hold.
The implication (iii) ⇒ (iv) follows from Proposition 3.1. �

Corollary 3.3. For a von Neumann algebra M the following conditions are equivalent:

(i)
PQ+QP

2
≤ (QPQ)p for all P,Q ∈ Mpr and some p = p(P,Q) ∈ (0, 1];
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(ii) PQ is paranormal for all P,Q ∈ Mpr;
(iii) PQ is M∗-paranormal for all P,Q ∈ Mpr and some number M = M(P,Q) > 0;
(iv) M is Abelian.
Proof. (i) ⇒ (iv). By assumption, all projections from M commute. Then by the Spectral Theorem all

the Hermitian operators from M also commute. Recall that every operator A from M can be represented
as the sum A = T + iS with Hermitian operators T = (A+A∗)/2, S = (A−A∗)/(2i) from M.

(iv) ⇒ (i). An Abelian von Neumann algebra M is ∗-isomorphic to the algebra L∞(Ω,A, μ) on a
localized measure space (Ω,A, μ). For all P,Q ∈ Mpr there exist A,B ∈ A such that P = χA, Q = χB

and inequality (i) for the indicators turns into equality. The assertion is proved. �

4. TRACE CHARACTERIZATION ON VON NEUMANN ALGEBRAS

Theorem 4.1. For ϕ ∈ M+
∗ the following conditions are equivalent:

(i) ϕ is tracial;

(ii) ϕ
(
PQ+QP

2

)
≤ ϕ((QPQ)p) for all P,Q ∈ Mpr and for some number p = p(P,Q) ∈ (0, 1];

(iii) ϕ(PQP ) ≤ ϕ(P )1/pϕ(Q)1/q for all P,Q ∈ Mpr and for some positive numbers p = p(P,Q),
q = q(P,Q) with 1/p + 1/q = 1, p �= 2.

Proof. (i) ⇒ (ii). For all P,Q ∈ Mpr and 0 < p ≤ 1 by the inequality QPQ ≤ (QPQ)p and
monotonocity of ϕ on Msa we have

ϕ

(
PQ+QP

2

)
= ϕ(QPQ) ≤ ϕ((QPQ)p).

The implication (i) ⇒ (iii) follows from the inequalities PQP ≤ PIP = P , QPQ ≤ QIQ = Q and
monotonocity of ϕ on M+.

Let us show that for an arbitrary von Neumann algebra, the proof of the inverse implications can
be reduced to the case of the algebra M2(C) just as this was done in a number of other similar cases
(see [11] or [12]).

It is well known [11] that ϕ ∈ M+
∗ is tracial if and only if ϕ(P ) = ϕ(Q) for all P,Q ∈ Mpr with

PQ = 0 and P ∼ Q (also see [12, Lemma 2]). Assume that a *-algebra N in the reduced algebra
(P +Q)M(P +Q) is generated by a partial isometry V ∈ M realizing the equivalence of P and Q.
Then N is ∗-isomorphic to M2(C), while inequalities (ii) and (iii) remain valid for operators from N and
the restriction of the functional ϕ|N . We shall show that such a restriction is a tracial functional on N ;
therefore, ϕ(P ) = ϕ(Q).

As it is well known, every linear functional ϕ on M2(C) can be represented in the form ϕ(·) = tr(Sϕ·).
The two-by-two matrix Sϕ is called the density matrix ofϕ. It is easily seen that without loss of generality
we can assume that

Sϕ = diag
(
1

2
− s,

1

2
+ s

)
, 0 ≤ s ≤ 1

2
.

Thus ϕ(X) equals (1/2− s)x11 + (1/2 + s)x22 for X = [xij]
2
i,j=1 in M2(C).

Let 0 < ε ≤ 1/2, h(ε) = 1/4 − ε2(= g(1/2 − ε)2). Consider two one-dimensional projections P =

R(1,1/2−ε) and Q = R(1,1/2+ε), see (1). We have

QP =

⎛

⎝ 2h(ε) (1 + 2ε)
√

h(ε)

(1− 2ε)
√

h(ε) 2h(ε)

⎞

⎠ , QPQ = 4h(ε)Q.

Hence (QPQ)p = (1− 4ε2)pQ and inequality in (ii) takes the form

1

2
− 2ε2 ≤ (1− 4ε2)p

(
1

2
− 2εs

)
, 0 < ε ≤ 1

2
. (3)
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By the Taylor’s formula with the remainder in the Peano form we obtain

(1− 4ε2)p = 1− 4pε2 + o(ε2) as ε → 0

and from (3) we obtain

1

2
− 2ε2 ≤ 1

2
− 2εs − 2pε2 + o(ε2) as ε → 0.

By assumption s ≥ 0, hence inequality (3) holds for all ε ∈ (0, 1/2] only in the case s = 0.
(iii) ⇒ (i). Let, for certainty, p > q. In our notation we have PQP = 4h(ε)P , ϕ(P ) = 1/2 + 2sε,

ϕ(Q) = 1/2− 2sε and ϕ(PQP ) = 1/2+ 2sε− 2ε2 − 8sε3. The inequality ϕ(PQP ) ≤ ϕ(P )1/pϕ(Q)1/q

takes the form

1

2
+ 2sε− 2ε2 − 8sε3 ≤

(
1

2
+ 2sε

)1/p(1

2
− 2sε

)1/q

.

Multiplying both sides of this inequality by 2 = 21/p21/q , we obtain

1 + 4sε− 4ε2 − 16sε3 ≤ (1 + 4sε)1/p(1− 4sε)1/q. (4)

Taylor’s formula implies the asymptotic equalities

(1 + 4sε)1/p = 1 +
4s

p
ε+ o(ε), (1− 4sε)1/q = 1− 4s

q
ε+ o(ε)

as ε → 0+, and the right-hand side of inequality (4) is equal to

1 +
4(q − p)s

pq
ε+ o(ε) (ε → 0+).

Since s ≥ 0, inequality (4) for all 0 < ε ≤ 1/2 holds only in the case of s = 0. �

Corollary 4.2. For ϕ ∈ M+
∗ the following conditions are equivalent:

(i) ϕ is tracial;

(ii) ϕ
(
A+A∗

2

)
≤ ϕ(|A∗|) for all A ∈ M.

Proof. (i) ⇒ (ii). Recall [13], that for all X,Y ∈ M there exist partial isometries U, V ∈ M such that

|X + Y | ≤ U |X|U∗ + V |Y |V ∗.

If Z = W |Z| is the polar decomposition of an operator Z ∈ M then W ∈ M and |Z∗| = W |Z|W ∗. Also
|ϕ(T )| ≤ ϕ(|T |) for all T ∈ M, see [7, p. 320]. By virtue of this and the monotonicity of the tracial
functional ϕ for all A ∈ M we have

ϕ

(
A+A∗

2

)
≤

∣∣
∣∣ϕ

(
A+A∗

2

)∣∣
∣∣ ≤ ϕ

(∣∣
∣∣
A+A∗

2

∣∣
∣∣

)
=

1

2
ϕ(|A +A∗|) ≤ 1

2
ϕ(U |A|U∗ + V |A∗|V ∗)

=
1

2
(ϕ(U |A|U∗) + ϕ(V |A∗|V ∗)) =

1

2
(ϕ(UW |A∗|W ∗U∗) + ϕ(V |A∗|V ∗)) ≤ ϕ(|A∗|).

(ii) ⇒ (i). For A = PQ with P,Q ∈ Mpr condition (ii) of Theorem 4.1 is met with p = 1/2. The
assertion is proved. �

For other trace characterizations, see [14–24] and the references therein.
Corollary 4.3. For a von Neumann algebra M the following conditions are equivalent:
(i) an algebra M is Abelian;

(ii) ϕ

(
PQ+QP

2

)
≤ ϕ((QPQ)p) for all normal states ϕ on M and P,Q ∈ Mpr and some

number p = p(P,Q) ∈ (0, 1];

(iii)ϕ(PQP ) ≤ ϕ(P )1/pϕ(Q)1/q for all normal statesϕ onM andP,Q ∈ Mpr and some positive
numbers p = p(P,Q), q = q(P,Q) with 1/p + 1/q = 1, p �= 2.
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Proof. By Theorem 4.1 every normal state on M is tracial, i.e., ϕ(XY ) = ϕ(Y X) for all X,Y ∈ M.
Since the set M+

∗ separates the points of the algebra M [25, Chap. III, Theorem 2.4.5], it follows from
the last condition that XY = Y X (X,Y ∈ M), and thus the von Neumann algebra M is commutative.
�

Proposition 4.4. For every number K > 0 there exists a positive functional ϕ on M2(C) such
that

(i) ϕ(A2 +B2 +K(AB +BA)) ≥ 0 for all A,B ∈ M
+
2 (C);

(ii) ϕ �= λtr for all numbers λ > 0.
Proof. Let K > 1 and consider

X =

⎛

⎝K2 + 1 0

0 K2 − 1

⎞

⎠ , A =

⎛

⎝ x1 δ1x2

δ1x2 x3

⎞

⎠ , B =

⎛

⎝ y1 δ2y2

δ2y2 y3

⎞

⎠ ,

where x1, x2, x3, y1, y2, y3 ≥ 0, |δi| = 1, δi ∈ C, x1x3 ≥ x22, y1y3 ≥ y22. Then

ϕ(A2 +B2 +K(AB +BA))

= (K2 + 1)(x21 + x22) + (K2 − 1)(x22 + x23) + (K2 + 1)(y21 + y22) + (K2 − 1)(y22 + y23)

+ 2K((K2 + 1)x1y1 + ((K2 + 1)Reδ1δ2 + (K2 − 1)Reδ1δ2)x2y2 + (K2 − 1)x3y3)

= (K2 + 1)(x21 + y21) + (K2 − 1)(x23 + y23) + 2K2(x2 − y2)
2

+ 2K((K2 + 1)x1y1 + 2(K +K2Reδ1δ2)x2y2 + (K2 − 1)x3y3)

≥ (K2 + 1)(x21 + y21) + 2K2(x2 − y2)
2 + (K2 − 1)(x23 + y23)

+ 2K((K2 + 1)x1y1 + 2K(1−K)
√
x1y1x3y3 + (K2 − 1)x3y3)

= (K2 + 1)(x21 + y21) + 2K2(x2 − y2)
2 + (K2 − 1)(x23 + y23)

+ 2K(K + 1)x1y1 + 2K(K − 1)x3y3 + 2K2(K − 1) (
√
x1y1 −

√
x3y3)

2 > 0.

Proposition is proved. �

Consider a matrix

X =

⎛

⎝ x1 δ1x2

δ1x2 x3

⎞

⎠ with x1, x2, x3 ≥ 0, x1x3 ≥ x22, δ1 ∈ C, |δ1| = 1. (5)

Lemma 4.5. Let X be as in (5) and for λ ∈ [0, 1], a > 0, δ2 ∈ C, |δ2| = 1 put A = diag(a, 0),
B = R(δ2,λ). Then the following conditions are equivalent:

(i) ∃K0 > −1 ∀K > K0 ∀A,B ∈ M
+
2 (C) tr(X(A2 +B2 +K(AB +BA))) ≥ 0;

(ii) AX = XA (i.e., x2 = 0).

Proof. We have A2 = aA, AB = (BA)∗ and ϕ(A2) = tr(aXA) = a2x1,

ϕ(B2) = tr(XB) = tr

⎛

⎝λx1 + δ1δ2x2
√

λ(1− λ) ∗

∗ δ1δ2x2
√

λ(1− λ) + x3(1− λ)

⎞

⎠

= λx1 + 2Re(δ1δ2)x2
√

λ(1− λ) + x3(1− λ),

ϕ(AB) = tr

⎛

⎝ax1λ ∗

∗ δ1δ2ax2
√

λ(1− λ)

⎞

⎠ = ax1λ+ δ1δ2ax2
√

λ(1− λ),

ϕ(BA) = ϕ((AB)∗) = ϕ(AB) = ax1λ+ δ1δ2ax2
√

λ(1− λ).

Thus,

ϕ(A2 +B2 +K(AB +BA)) = (2aKλ+ a2 + λ)x1 + (Ka+ 1)δ2δ1
√

λ(1− λ)x2
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+ (Ka+ 1)δ2δ1
√

λ(1− λ)x2 + (1− λ)x3.

If λ = 1, then ϕ(A2 +B2 +K(AB +BA)) = (a2 + 2aK + 1)x1 ≥ 0 for all x1 ≥ 0, hence K ≥ −1. Let
λ ∈ [0, 1), and t =

√
λ/(1 − λ) ∈ R

+, then

1

1− λ
ϕ(A2 +B2 +K(AB +BA)) = (2aK + 1)x1t

2 + a2x1(t
2 + 1) + 2Reδ1δ2(Ka+ 1)x2t+ x3

= (a2 + 2aK + 1)x1t
2 + 2Reδ1δ2(Ka+ 1)x2t+ x3 + a2x1.

If ϕ(A2 +B2 +K(AB +BA)) ≥ 0 for all A,B ∈ M
+
2 (C), then (for Reδ1δ2 = −1)

(a2 + 2aK + 1)x1t
2 − 2x2(Ka+ 1)t+ x3 + a2x1 ≥ 0 for any t ≥ 0, a ≥ 0,K > K0. (6)

Consider the equation αt2 − 2βt+ γ = 0, with

α = x1(a
2 + 2aK + 1) ≥ 0, β = x2(Ka+ 1), γ = x3 + a2x1 ≥ 0.

Note that x1x3 ≥ x22, and α, γ ≥ 0. Clearly, if x1 > 0 and (a− 1)2 + 2a(K + 1) = x1 = 0, then a = 1,
K = −1 and thus β = x2(Ka+ 1) = 0. Inequality (6) holds only in the following three cases:

1. α = 0, β = 0, γ ≥ 0;
2. α > 0, D = β2 − αγ ≤ 0;
3. α > 0, D = β2 − αγ ≥ 0, t1,2 = β ±

√
D ≤ 0.

In the first case of α = 0 = β we have (a− 1)2 + 2a(K + 1) = 0 and x2(Ka+ 1) = 0, but it is not
possible simultaneously for any a ≥ 0 and K > K0 > −1.

In the second case,

a2x22K
2 + 2(x22 − x1x3 − a2x21)aK + (x22 − (a2 + 1)x1(x3 + a2x1)) ≤ 0.

Note that for any a we have x22 − x1x3 − a2x21 ≤ 0 and x22 − (a2 + 1)x1(x3 + a2x1) ≤ 0. If we fix a > 0
and assume that K is sufficiently large, then obviously this inequality is violated for any x2 �= 0, which
leads us to the consideration of the third case. Else, if x2 = 0, then the inequality

2(−x1x3 − a2x21)aK + (−(a2 + 1)x1(x3 + a2x1)) ≤ 0

holds for any a > 0, K > K0. But also, if x2 = 0, then XA = AX, since

diag(x1, x3)diag(a, 0) = diag(a, 0)diag(x1, x3). (7)

In the third case, for any a > 0, K > K0 > −1 we have

a2x22K
2 + 2(x22 − x1x3 − a2x21)aK + (x22 − (a2 + 1)x1(x3 + a2x1)) ≥ 0

and β ≤ −
√
D ≤ 0. This is true only if β ≤ −

√
β2 − αγ, which in its turn holds if and only if β ≤ 0,

thus either aK ≤ −1, which is impossible for any K > K0 and a ≥ 0, simultaneously, or x2 = 0 for all
a > 0,K > K0. Again, we have (7). �

Teorem 4.6. For ϕ ∈ M+
∗ the following conditions are equivalent:

(i) ϕ is tracial;
(ii) ∀K ≥ −1 ∀A,B ∈ M+ ϕ(A2 +B2 +K(AB +BA)) ≥ 0;
(iii) ∃K0 > −1 ∀K > K0 ∀A,B ∈ M+ ϕ(A2 +B2 +K(AB +BA)) ≥ 0.

Proof. (i)⇒(ii). We have
√
AB

√
A ≥ 0 and ϕ(AB) = ϕ(BA) = ϕ(

√
AB

√
A) ≥ 0, thus ϕ(A2 +

B2 +K(AB +BA)) = ϕ((A−B)2) + (K + 1)ϕ(AB +BA) ≥ 0.
The implication (ii) ⇒ (iii) is obvious.
(iii) ⇒ (i). It is sufficient to consider the case M = M2(C), see the proof of Theorem 4.1. Let

P,Q be some arbitrary one-dimensional projections in M2(C)
pr. There exists an orthonormal basis

{ξ1, ξ2} in H = C
2 such that P = diag(1, 0), Q = R(δ2,λ) for λ ∈ [0, 1], δ2 ∈ C, |δ2| = 1. Also, without

loss of generality we may assume that ϕ(·) = tr(X·) with X as in (5). Let a > 0, then the inequality
ϕ((aP )2 +Q2 +K(aP +Q)) ≥ 0 implies

tr(X(A2 +B2 +K(A+B))) ≥ 0
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in terms of Lemma 4.5. Thus, x2 = 0 and PX = XP in some basis {ξ1, ξ2}, where ξ1 ∈ PH =

{Pξ : ξ ∈ H} and ξ2 ∈ P⊥H = {P⊥ξ : ξ ∈ H}. The commutativity property does not depend on the
representation of an operator in matrix form. Thus, simpliy for operators X and an arbitrary P the
equality PX = XP holds. Hence the operator X commutes with all of the operators of B(H) and the
matrix X commutes with all of the matrices in M2(C)

pr, which is possible only if X = λI for some
λ ∈ R

+. �
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