Projections and Traces on von Neumann Algebras

A. M. Bikchentaev ${ }^{1 *}$ and S. A. Abed ${ }^{1 * *}$
(Submitted by F. G. Avkhadiev)
${ }^{1}$ N. I. Lobachevskii Institute of Mathematics and Mechanics, Kazan (Volga Region) Federal University, Kazan, Tatarstan, 420008 Russia
Received January 26, 2019; revised March 5, 2019; accepted March 25, 2019

Abstract

Let P, Q be projections on a Hilbert space. We prove the equivalence of the following conditions: (i) $P Q+Q P \leq 2(Q P Q)^{p}$ for some number $0<p \leq 1$; (ii) $P Q$ is paranormal; (iii) $P Q$ is M^{*}-paranormal; (iv) $P Q=Q P$. This allows us to obtain the commutativity criterion for a von Neumann algebra. For a positive normal functional φ on von Neumann algebra \mathcal{M} it is proved the equivalence of the following conditions: (i) φ is tracial; (ii) $\varphi(P Q+Q P) \leq 2 \varphi\left((Q P Q)^{p}\right)$ for all projections $P, Q \in \mathcal{M}$ and for some $p=p(P, Q) \in(0,1]$; (iii) $\varphi(P Q P) \leq \varphi(P)^{1 / p} \varphi(Q)^{1 / q}$ for all projections $P, Q \in \mathcal{M}$ and some positive numbers $p=p(P, Q), q=q(P, Q)$ with $1 / p+1 / q=1$, $p \neq 2$. Corollary: for a positive normal functional φ on \mathcal{M} the following conditions are equivalent: (i) φ is tracial; (ii) $\varphi\left(A+A^{*}\right) \leq 2 \varphi\left(\left|A^{*}\right|\right)$ for all $A \in \mathcal{M}$.

DOI: 10.1134/S1995080219090051
Keywords and phrases: Hilbert space, linear operator, projection, von Neumann algebra, positive functional, trace, operator inequality, commutativity.

1. INTRODUCTION

This work continues the research of the authors [1-4], which contain new conditions for the commutativity of projections and various characterizations of the trace among all positive normal functionals on von Neumann algebras.

Let P, Q be projections on a Hilbert space. In Theorem 3.2 we prove the equivalence of the following conditions: (i) $P Q+Q P \leq 2(Q P Q)^{p}$ for some number $0<p \leq 1$; (ii) $P Q$ is paranormal; (iii) $P Q$ is M^{*}-paranormal; (iv) $P Q=Q P$. This allows us to obtain the commutativity criterion for a von Neumann algebra (Corollary 3.3). In Theorem 4.1 for a positive normal functional φ on von Neumann algebra \mathcal{M} we prove the equivalence of the following conditions: (i) φ is tracial; (ii) $\varphi(P Q+$ $Q P) \leq 2 \varphi\left((Q P Q)^{p}\right)$ for all projections $P, Q \in \mathcal{M}$ and for some $p=p(P, Q) \in(0,1] ;($ iii $) \varphi(P Q P) \leq$ $\varphi(P)^{1 / p} \varphi(Q)^{1 / q}$ for all projections $P, Q \in \mathcal{M}$ and some positive numbers $p=p(P, Q), q=q(P, Q)$ with $1 / p+1 / q=1, p \neq 2$. Corollary 4.2 : for a positive normal functional φ on \mathcal{M} the following conditions are equivalent: (i) φ is tracial; (ii) $\varphi\left(A+A^{*}\right) \leq 2 \varphi\left(\left|A^{*}\right|\right)$ for all $A \in \mathcal{M}$.

2. NOTATION, DEFINITIONS AND PRELIMINARIES

Let \mathcal{H} be a Hilbert space over field \mathbb{C}, and $\mathcal{B}(\mathcal{H})$ be the $*$-algebra of all linear bounded operators on \mathcal{H}. An operator $X \in \mathcal{B}(\mathcal{H})$ is said to be paranormal (respectively, M^{*}-paranormal for some number $M>0$), if $\left\|X^{2} \xi\right\| \geq\|X \xi\|^{2}$ (respectively, $M\left\|X^{2} \xi\right\| \geq\left\|X^{*} \xi\right\|^{2}$) for all $\xi \in \mathcal{H}$ with $\|\xi\|=1$. An operator $X \in \mathcal{B}(\mathcal{H})$ is a projection, if $X=X^{2}=X^{*}$. By the commutant of a set $\mathcal{X} \subset \mathcal{B}(\mathcal{H})$ we mean the set

$$
\mathcal{X}^{\prime}=\{Y \in \mathcal{B}(\mathcal{H}): X Y=Y X \text { for all } X \in \mathcal{X}\} .
$$

[^0]A *-subalgebra \mathcal{M} of the algebra $\mathcal{B}(\mathcal{H})$ is called a von Neumann algebra acting on the Hilbert space \mathcal{H} if $\mathcal{M}=\mathcal{M}^{\prime \prime}$. If $\mathcal{X} \subset \mathcal{B}(\mathcal{H})$ then \mathcal{X}^{\prime} is a von Neumann algebra, and $\mathcal{X}^{\prime \prime}$ is the smallest von Neumann algebra that containes \mathcal{X}. For a von Neumann algebra \mathcal{M} let $\mathcal{M}^{\text {sa }}, \mathcal{M}^{+}, \mathcal{M}^{u}, \mathcal{M}^{\text {id }}$ and $\mathcal{M}^{\text {pr }}$ denote its Hermitian, positive, unitary parts, the set of idempotents and the set of projections, respectively. For every operator $A \in \mathcal{M}$ its modulus $|A|=\sqrt{A^{*} A}$ lies in \mathcal{M}^{+}. Let I and $\mathcal{Z}(\mathcal{M})=\mathcal{M} \cap \mathcal{M}^{\prime}$ denote the unit and the center of the algebra \mathcal{M}, respectively. For $Q \in \mathcal{M}^{\text {id }}$ we have $Q^{\perp}=I-Q \in \mathcal{M}^{\text {id }}$. For $P, Q \in \mathcal{M}^{\mathrm{pr}}$ we write $P \sim Q$ (the Murray-von Neumann equivalence) if $P=U^{*} U$ and $Q=U U^{*}$ for some $U \in \mathcal{M}$. A positive functional φ on a von Neumann algebra \mathcal{M} is said to be a state, if $\varphi(I)=1$; tracial, if $\varphi\left(Z^{*} Z\right)=\varphi\left(Z Z^{*}\right)$ for all $Z \in \mathcal{M}$; normal, if $A_{i} \nearrow A\left(A_{i}, A \in \mathcal{M}^{+}\right) \Rightarrow \varphi(A)=\sup \varphi\left(A_{i}\right)$. By \mathcal{M}_{*}^{+}we denote the set of all positive normal functionals on \mathcal{M}.

Lemma 2.1 [5, Theorem 2.3.3]. Let \mathcal{N} be a von Neumann algebra of type I_{n} (n is a cardinal number). Then \mathcal{N} is ${ }^{*}$-isomorphic to the tensor product $\mathcal{Z}(\mathcal{N}) \bar{\otimes} \mathcal{B}(\mathcal{K})$, where \mathcal{K} is a Hilbert space with $\operatorname{dim} \mathcal{K}=n$.

Lemma 2.2 [6, Corollary 3.3]. For every $X \in \mathbb{M}_{n}(C(\Omega))^{\text {sa }}$ the algebra $\mathbb{M}_{n}(C(\Omega))$ contains a unitary operator U such that $U^{*} X U(\omega)$ is diagonal for each $\omega \in \Omega$.

Lemma 2.3 [7, Chap. 5, item (ii) of Theorem 1.41]. If a von Neumann algebra \mathcal{N} is generated by two projections $P, R \in \mathcal{B}(\mathcal{H})^{\mathrm{pr}}$, then there exists a unique projection $Z \in \mathcal{Z}(\mathcal{N})$ such that the algebra \mathcal{N}_{Z} is of type I_{2} and the algebra $\mathcal{N}_{Z^{\perp}}$ is Abelian, moreover, $\operatorname{dim}_{\mathbb{C}} \mathcal{N}_{Z^{\perp}} \leq 4$.

Let $g(t)=\sqrt{t(1-t)}$ for $0 \leq t \leq 1$ and $\delta \in \mathbb{C}, \mathrm{A}|\delta|=1$. By $R^{(\delta, t)}$ we denote the projection

$$
R^{(\delta, t)}=\left(\begin{array}{cc}
t & \delta g(t) \tag{1}\\
\frac{\operatorname{delta}}{}(t) & 1-t
\end{array}\right)
$$

which lies in $\mathbb{M}_{2}(\mathbb{C})^{\mathrm{pr}}$.

3. THE NEW COMMUTATIVITY CRITERIONS OF PROJECTIONS

The search of the new commutativity criterions of projections was motivated by the following definition: Two (possibly unbounded) self-adjoint operators A and B are said to be commuting, if all projections of the its corresponding projection-valued measures commute [8, Chap. VIII, §5, Definition].

Proposition 3.1. If $X \in \mathcal{B}(\mathcal{H})^{s a}, Q \in \mathcal{B}(\mathcal{H})^{\text {id }}$ and $X Q$ is an M^{*}-paranormal operator then $X Q=Q^{*} X$.

Proof. It is well known [9] that an operator $T \in \mathcal{B}(\mathcal{H})$ is M^{*}-paranormal if and only if

$$
M^{2} T^{* 2} T^{2}-2 \lambda T T^{*}+\lambda^{2} I \geq 0 \quad \text { for all } \quad \lambda \in \mathbb{R}
$$

For $T=X Q$ this inequality takes the form

$$
M^{2} Q^{*} X Q^{*} X^{2} Q X Q-2 \lambda X Q Q^{*} X+\lambda^{2} I \geq 0 \quad \text { for all } \quad \lambda \in \mathbb{R} .
$$

We multiply both sides of this inequality from the left by the operator $Q^{* \perp}=Q^{\perp *}$ and from the right by the operator Q^{\perp}, and obtain

$$
-2 \lambda Q^{\perp *} X Q Q^{*} X Q^{\perp}+\lambda^{2} Q^{\perp *} Q^{\perp} \geq 0 \quad \text { for all } \quad \lambda \in \mathbb{R} .
$$

Then division by $\lambda>0$ yields $-2 Q^{\perp *} X Q Q^{*} X Q^{\perp}+\lambda Q^{\perp *} Q^{\perp} \geq 0$ for all $\lambda>0$. Passing to the limit as $\lambda \rightarrow 0$, we obtain $-2 Q^{\perp *} X Q Q^{*} X Q^{\perp}=-2\left|Q^{*} X Q^{\perp}\right|^{2} \geq 0$. Hence, $Q^{*} X Q^{\perp}=0$ and $Q^{*} X=$ $Q^{*} X Q=\left(Q^{*} X Q\right)^{*}=\left(Q^{*} X\right)^{*}=X Q$. The assertion is proved.

Theorem 3.2. For $P, Q \in \mathcal{B}(\mathcal{H})^{p r}$ the following conditions are equivalent:
(i) $\frac{P Q+Q P}{2} \leq(Q P Q)^{p}$ for some number $0<p \leq 1$;
(ii) $P Q$ is paranormal;
(iii) $P Q$ is M^{*}-paranormal;
(iv) $P Q=Q P$.

Proof. (iv) \Rightarrow (i). For $0<p \leq 1$ we have

$$
\frac{P Q+Q P}{2}=Q P Q \leq(Q P Q)^{p}
$$

by the inequality $Q P Q \leq Q I Q=Q \leq I$ and the Spectral Theorem.
(i) \Rightarrow (iv). With P and Q we associate the von Neumann algebra $\mathcal{N}=\{P, Q\}^{\prime \prime}$ generated by them. By Lemma 2.3 there exists a unique projection $Z \in \mathcal{Z}(\mathcal{N})$ such that the algebra \mathcal{N}_{Z} is of type I_{2} and the algebra $\mathcal{N}_{Z \perp}$ is Abelian. Obviously, the projections $P Z^{\perp}$ and $Q Z^{\perp}$ commute. Gelfand's theorem on the representation of an Abelian unital C^{*}-algebra (see, for example, [7, Chap. 3, Theorem 1.18]) implies that the algebra $\mathcal{Z}\left(\mathcal{N}_{Z}\right)$ is ${ }^{*}$-isomorphic to the C^{*}-algebra $C(\Omega)$ of all complex-valued continuous functions on the Stone space Ω of all characters of the algebra $\mathcal{Z}\left(\mathcal{N}_{Z}\right)$. Now from Lemma 2.1 it follows that the algebra \mathcal{N}_{Z} is ${ }^{*}$-isomorphic to the matrix algebra $\mathbb{M}_{2}(C(\Omega))$.

We define the domains of the rank constancy (or, equivalently, the domains of the canonical trace tr) for $\tilde{R} \in \mathbb{M}_{2}(C(\Omega))^{\mathrm{pr}}$ as follows:

$$
\Omega_{j}(\tilde{R})=\left\{\omega \in \Omega: \tilde{r}_{11}(\omega)+\tilde{r}_{22}(\omega)=j\right\}, \quad j \in\{0,1,2\}
$$

The sets $\Omega_{j}(\tilde{R})$ are closed (being the preimages of the closed sets $\{j\} \subset \mathbb{C}$ under a continuous mapping) and constitute a covering of the space Ω by disjoint sets.

The projections $P Z$ and $Q Z$ are identified with $\tilde{P}, \tilde{Q} \in \mathbb{M}_{2}(C(\Omega))^{\mathrm{pr}}$, respectively. Let

$$
\Omega_{i j}=\Omega_{i}(\tilde{P}) \cap \Omega_{j}(\tilde{Q}), \quad i, j \in\{0,1,2\} .
$$

All the nine sets $\Omega_{i j}$ are open-closed and constitute a covering of the space Ω by disjoint sets. If $\omega \in \Omega \backslash \Omega_{11}$, then $\tilde{P} \tilde{Q}(\omega)=\tilde{Q} \tilde{P}(\omega)$.

Lemma 2.2 implies that there exist a unitary $U \in \mathbb{M}_{2}(C(\Omega))^{\text {u }}$ and a closed subset $\Omega_{1}^{\prime}(\tilde{P}) \subset \Omega_{1}(\tilde{P})$, such that $U^{*}(\omega) \tilde{P}(\omega) U(\omega)=\operatorname{diag}(1,0)$ for all $\omega \in \Omega_{1}^{\prime}(\tilde{P})$ and $U^{*}(\omega) \tilde{P}(\omega) U(\omega)=\operatorname{diag}(0,1)$ for all $\omega \in \Omega_{1}(\tilde{P}) \backslash \Omega_{1}^{\prime}(\tilde{P})$. Therefore, it is sufficient to consider the case

$$
P=\operatorname{diag}(1,0), \quad Q=R^{(\delta, t)}, \quad \delta \in \mathbb{C}, \quad|\delta|=1, \quad 0 \leq t \leq 1 ;
$$

see (1). Since $Q P Q=t Q$, we have $(Q P Q)^{t}=t^{p} Q$. Since

$$
\frac{P Q+Q P}{2}=\left(\begin{array}{ll}
t & * \\
* & *
\end{array}\right), \quad t^{p} Q-\frac{P Q+Q P}{2}=\left(\begin{array}{cc}
t^{p+1}-t & * \\
* & *
\end{array}\right)
$$

(here and elsewhere, the symbol "*" denotes matrix entries whose values will not be needed), we have $t^{p+1}-t \geq 0$ and $t \in\{0,1\}$.
(ii) \Rightarrow (iv). It is well known [10, Problem 9.5], that an operator $T \in \mathcal{B}(\mathcal{H})$ is paranormal if and only if

$$
|T|^{2} \leq \frac{1}{2}\left(\lambda^{-1}\left|T^{2}\right|^{2}+\lambda I\right) \quad \text { for all } \quad \lambda>0
$$

For $T=P Q$ this inequality takes the form

$$
\begin{equation*}
2 Q P Q \leq \lambda^{-1}(Q P Q)^{3}+\lambda I \quad \text { for all } \quad \lambda>0 . \tag{2}
\end{equation*}
$$

If $P Q \neq Q P$, then an operator $Q P Q$ is not a projection and its spectrum $\sigma(Q P Q)$ contains some number $x \in(0,1)$. By (2) and the Spectral Theorem the number x satisfies the inequality

$$
2 x \leq \lambda^{-1} x^{3}+\lambda \quad \text { for all } \quad \lambda>0
$$

However, for $\lambda=x^{3 / 2}$ it does not hold.
The implication (iii) \Rightarrow (iv) follows from Proposition 3.1.
Corollary 3.3. For a von Neumann algebra \mathcal{M} the following conditions are equivalent:
(i) $\frac{P Q+Q P}{2} \leq(Q P Q)^{p}$ for all $P, Q \in \mathcal{M}^{\mathrm{pr}}$ and some $p=p(P, Q) \in(0,1]$;
(ii) $P Q$ is paranormal for all $P, Q \in \mathcal{M}^{\text {pr }}$;
(iii) $P Q$ is M^{*}-paranormal for all $P, Q \in \mathcal{M}^{\mathrm{pr}}$ and some number $M=M(P, Q)>0$;
(iv) \mathcal{M} is Abelian.

Proof. (i) \Rightarrow (iv). By assumption, all projections from \mathcal{M} commute. Then by the Spectral Theorem all the Hermitian operators from \mathcal{M} also commute. Recall that every operator A from \mathcal{M} can be represented as the sum $A=T+i S$ with Hermitian operators $T=\left(A+A^{*}\right) / 2, S=\left(A-A^{*}\right) /(2 i)$ from \mathcal{M}.
(iv) \Rightarrow (i). An Abelian von Neumann algebra \mathcal{M} is ${ }^{*}$-isomorphic to the algebra $L_{\infty}(\Omega, \mathfrak{A}, \mu)$ on a localized measure space $(\Omega, \mathfrak{A}, \mu)$. For all $P, Q \in \mathcal{M}^{\text {pr }}$ there exist $A, B \in \mathfrak{A}$ such that $P=\chi_{A}, Q=\chi_{B}$ and inequality (i) for the indicators turns into equality. The assertion is proved.

4. TRACE CHARACTERIZATION ON VON NEUMANN ALGEBRAS

Theorem 4.1. For $\varphi \in \mathcal{M}_{*}^{+}$the following conditions are equivalent:
(i) φ is tracial;
(ii) $\varphi\left(\frac{P Q+Q P}{2}\right) \leq \varphi\left((Q P Q)^{p}\right)$ for all $P, Q \in \mathcal{M}^{\mathrm{pr}}$ and for some number $p=p(P, Q) \in(0,1]$;
(iii) $\varphi(P Q P) \leq \varphi(P)^{1 / p} \varphi(Q)^{1 / q}$ for all $P, Q \in \mathcal{M}^{\mathrm{pr}}$ and for some positive numbers $p=p(P, Q)$, $q=q(P, Q)$ with $1 / p+1 / q=1, p \neq 2$.

Proof. (i) \Rightarrow (ii). For all $P, Q \in \mathcal{M}^{\text {pr }}$ and $0<p \leq 1$ by the inequality $Q P Q \leq(Q P Q)^{p}$ and monotonocity of φ on $\mathcal{M}^{\text {sa }}$ we have

$$
\varphi\left(\frac{P Q+Q P}{2}\right)=\varphi(Q P Q) \leq \varphi\left((Q P Q)^{p}\right)
$$

The implication (i) \Rightarrow (iii) follows from the inequalities $P Q P \leq P I P=P, Q P Q \leq Q I Q=Q$ and monotonocity of φ on \mathcal{M}^{+}.

Let us show that for an arbitrary von Neumann algebra, the proof of the inverse implications can be reduced to the case of the algebra $\mathbb{M}_{2}(\mathbb{C})$ just as this was done in a number of other similar cases (see [11] or [12]).

It is well known [11] that $\varphi \in \mathcal{M}_{*}^{+}$is tracial if and only if $\varphi(P)=\varphi(Q)$ for all $P, Q \in \mathcal{M}^{\text {pr }}$ with $P Q=0$ and $P \sim Q$ (also see [12, Lemma 2]). Assume that a ${ }^{*}$-algebra \mathcal{N} in the reduced algebra $(P+Q) \mathcal{M}(P+Q)$ is generated by a partial isometry $V \in \mathcal{M}$ realizing the equivalence of P and Q. Then \mathcal{N} is ${ }^{*}$-isomorphic to $\mathbb{M}_{2}(\mathbb{C})$, while inequalities (ii) and (iii) remain valid for operators from \mathcal{N} and the restriction of the functional $\left.\varphi\right|_{\mathcal{N}}$. We shall show that such a restriction is a tracial functional on \mathcal{N}; therefore, $\varphi(P)=\varphi(Q)$.

As it is well known, every linear functional φ on $\mathbb{M}_{2}(\mathbb{C})$ can be represented in the form $\varphi(\cdot)=\operatorname{tr}\left(S_{\varphi} \cdot\right)$. The two-by-two matrix S_{φ} is called the density matrix of φ. It is easily seen that without loss of generality we can assume that

$$
S_{\varphi}=\operatorname{diag}\left(\frac{1}{2}-s, \frac{1}{2}+s\right), \quad 0 \leq s \leq \frac{1}{2}
$$

Thus $\varphi(X)$ equals $(1 / 2-s) x_{11}+(1 / 2+s) x_{22}$ for $X=\left[x_{i j}\right]_{i, j=1}^{2}$ in $\mathbb{M}_{2}(\mathbb{C})$.
Let $0<\varepsilon \leq 1 / 2, h(\varepsilon)=1 / 4-\varepsilon^{2}\left(=g(1 / 2-\varepsilon)^{2}\right)$. Consider two one-dimensional projections $P=$ $R^{(1,1 / 2-\varepsilon)}$ and $Q=R^{(1,1 / 2+\varepsilon)}$, see (1). We have

$$
Q P=\left(\begin{array}{cc}
2 h(\varepsilon) & (1+2 \varepsilon) \sqrt{h(\varepsilon)} \\
(1-2 \varepsilon) \sqrt{h(\varepsilon)} & 2 h(\varepsilon)
\end{array}\right), \quad Q P Q=4 h(\varepsilon) Q
$$

Hence $(Q P Q)^{p}=\left(1-4 \varepsilon^{2}\right)^{p} Q$ and inequality in (ii) takes the form

$$
\begin{equation*}
\frac{1}{2}-2 \varepsilon^{2} \leq\left(1-4 \varepsilon^{2}\right)^{p}\left(\frac{1}{2}-2 \varepsilon s\right), \quad 0<\varepsilon \leq \frac{1}{2} \tag{3}
\end{equation*}
$$

By the Taylor's formula with the remainder in the Peano form we obtain

$$
\left(1-4 \varepsilon^{2}\right)^{p}=1-4 p \varepsilon^{2}+o\left(\varepsilon^{2}\right) \quad \text { as } \quad \varepsilon \rightarrow 0
$$

and from (3) we obtain

$$
\frac{1}{2}-2 \varepsilon^{2} \leq \frac{1}{2}-2 \varepsilon s-2 p \varepsilon^{2}+o\left(\varepsilon^{2}\right) \quad \text { as } \quad \varepsilon \rightarrow 0
$$

By assumption $s \geq 0$, hence inequality (3) holds for all $\varepsilon \in(0,1 / 2]$ only in the case $s=0$.
(iii) \Rightarrow (i). Let, for certainty, $p>q$. In our notation we have $P Q P=4 h(\varepsilon) P, \varphi(P)=1 / 2+2 s \varepsilon$, $\varphi(Q)=1 / 2-2 s \varepsilon$ and $\varphi(P Q P)=1 / 2+2 s \varepsilon-2 \varepsilon^{2}-8 s \varepsilon^{3}$. The inequality $\varphi(P Q P) \leq \varphi(P)^{1 / p} \varphi(Q)^{1 / q}$ takes the form

$$
\frac{1}{2}+2 s \varepsilon-2 \varepsilon^{2}-8 s \varepsilon^{3} \leq\left(\frac{1}{2}+2 s \varepsilon\right)^{1 / p}\left(\frac{1}{2}-2 s \varepsilon\right)^{1 / q}
$$

Multiplying both sides of this inequality by $2=2^{1 / p} 2^{1 / q}$, we obtain

$$
\begin{equation*}
1+4 s \varepsilon-4 \varepsilon^{2}-16 s \varepsilon^{3} \leq(1+4 s \varepsilon)^{1 / p}(1-4 s \varepsilon)^{1 / q} \tag{4}
\end{equation*}
$$

Taylor's formula implies the asymptotic equalities

$$
(1+4 s \varepsilon)^{1 / p}=1+\frac{4 s}{p} \varepsilon+o(\varepsilon), \quad(1-4 s \varepsilon)^{1 / q}=1-\frac{4 s}{q} \varepsilon+o(\varepsilon)
$$

as $\varepsilon \rightarrow 0+$, and the right-hand side of inequality (4) is equal to

$$
1+\frac{4(q-p) s}{p q} \varepsilon+o(\varepsilon) \quad(\varepsilon \rightarrow 0+)
$$

Since $s \geq 0$, inequality (4) for all $0<\varepsilon \leq 1 / 2$ holds only in the case of $s=0$.
Corollary 4.2. For $\varphi \in \mathcal{M}_{*}^{+}$the following conditions are equivalent:
(i) φ is tracial;
(ii) $\varphi\left(\frac{A+A^{*}}{2}\right) \leq \varphi\left(\left|A^{*}\right|\right)$ for all $A \in \mathcal{M}$.

Proof. (i) \Rightarrow (ii). Recall [13], that for all $X, Y \in \mathcal{M}$ there exist partial isometries $U, V \in \mathcal{M}$ such that

$$
|X+Y| \leq U|X| U^{*}+V|Y| V^{*}
$$

If $Z=W|Z|$ is the polar decomposition of an operator $Z \in \mathcal{M}$ then $W \in \mathcal{M}$ and $\left|Z^{*}\right|=W|Z| W^{*}$. Also $|\varphi(T)| \leq \varphi(|T|)$ for all $T \in \mathcal{M}$, see [7, p. 320]. By virtue of this and the monotonicity of the tracial functional φ for all $A \in \mathcal{M}$ we have

$$
\begin{gathered}
\varphi\left(\frac{A+A^{*}}{2}\right) \leq\left|\varphi\left(\frac{A+A^{*}}{2}\right)\right| \leq \varphi\left(\left|\frac{A+A^{*}}{2}\right|\right)=\frac{1}{2} \varphi\left(\left|A+A^{*}\right|\right) \leq \frac{1}{2} \varphi\left(U|A| U^{*}+V\left|A^{*}\right| V^{*}\right) \\
=\frac{1}{2}\left(\varphi\left(U|A| U^{*}\right)+\varphi\left(V\left|A^{*}\right| V^{*}\right)\right)=\frac{1}{2}\left(\varphi\left(U W\left|A^{*}\right| W^{*} U^{*}\right)+\varphi\left(V\left|A^{*}\right| V^{*}\right)\right) \leq \varphi\left(\left|A^{*}\right|\right)
\end{gathered}
$$

(ii) \Rightarrow (i). For $A=P Q$ with $P, Q \in \mathcal{M}^{\text {pr }}$ condition (ii) of Theorem 4.1 is met with $p=1 / 2$. The assertion is proved.

For other trace characterizations, see [14-24] and the references therein.
Corollary 4.3. For a von Neumann algebra \mathcal{M} the following conditions are equivalent:
(i) an algebra \mathcal{M} is Abelian;
(ii) $\varphi\left(\frac{P Q+Q P}{2}\right) \leq \varphi\left((Q P Q)^{p}\right)$ for all normal states φ on \mathcal{M} and $P, Q \in \mathcal{M}^{\text {pr }}$ and some number $p=p(P, Q) \in(0,1]$;
(iii) $\varphi(P Q P) \leq \varphi(P)^{1 / p} \varphi(Q)^{1 / q}$ for all normal states φ on \mathcal{M} and $P, Q \in \mathcal{M}^{\mathrm{pr}}$ and some positive numbers $p=p(P, Q), q=q(P, Q)$ with $1 / p+1 / q=1, p \neq 2$.

Proof. By Theorem 4.1 every normal state on \mathcal{M} is tracial, i.e., $\varphi(X Y)=\varphi(Y X)$ for all $X, Y \in \mathcal{M}$. Since the set \mathcal{M}_{*}^{+}separates the points of the algebra \mathcal{M} [25, Chap. III, Theorem 2.4.5], it follows from the last condition that $X Y=Y X(X, Y \in \mathcal{M})$, and thus the von Neumann algebra \mathcal{M} is commutative.

Proposition 4.4. For every number $K>0$ there exists a positive functional φ on $\mathbb{M}_{2}(\mathbb{C})$ such that
(i) $\varphi\left(A^{2}+B^{2}+K(A B+B A)\right) \geq 0$ for all $A, B \in \mathbb{M}_{2}^{+}(\mathbb{C})$;
(ii) $\varphi \neq \lambda$ tr for all numbers $\lambda>0$.

Proof. Let $K>1$ and consider

$$
X=\left(\begin{array}{cc}
K^{2}+1 & 0 \\
0 & K^{2}-1
\end{array}\right), \quad A=\left(\begin{array}{cc}
x_{1} & \delta_{1} x_{2} \\
\delta_{1} x_{2} & x_{3}
\end{array}\right), \quad B=\left(\begin{array}{cc}
y_{1} & \delta_{2} y_{2} \\
\delta_{2} y_{2} & y_{3}
\end{array}\right)
$$

where $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3} \geq 0,\left|\delta_{i}\right|=1, \delta_{i} \in \mathbb{C}, x_{1} x_{3} \geq x_{2}^{2}, y_{1} y_{3} \geq y_{2}^{2}$. Then

$$
\begin{gathered}
\varphi\left(A^{2}+B^{2}+K(A B+B A)\right) \\
=\left(K^{2}+1\right)\left(x_{1}^{2}+x_{2}^{2}\right)+\left(K^{2}-1\right)\left(x_{2}^{2}+x_{3}^{2}\right)+\left(K^{2}+1\right)\left(y_{1}^{2}+y_{2}^{2}\right)+\left(K^{2}-1\right)\left(y_{2}^{2}+y_{3}^{2}\right) \\
+2 K\left(\left(K^{2}+1\right) x_{1} y_{1}+\left(\left(K^{2}+1\right) \operatorname{Re} \delta_{1} \overline{\delta_{2}}+\left(K^{2}-1\right) \operatorname{Re} \overline{\delta_{1}} \delta_{2}\right) x_{2} y_{2}+\left(K^{2}-1\right) x_{3} y_{3}\right) \\
=\left(K^{2}+1\right)\left(x_{1}^{2}+y_{1}^{2}\right)+\left(K^{2}-1\right)\left(x_{3}^{2}+y_{3}^{2}\right)+2 K^{2}\left(x_{2}-y_{2}\right)^{2} \\
+2 K\left(\left(K^{2}+1\right) x_{1} y_{1}+2\left(K+K^{2} \operatorname{Re} \delta_{1} \overline{\delta_{2}}\right) x_{2} y_{2}+\left(K^{2}-1\right) x_{3} y_{3}\right) \\
\geq\left(K^{2}+1\right)\left(x_{1}^{2}+y_{1}^{2}\right)+2 K^{2}\left(x_{2}-y_{2}\right)^{2}+\left(K^{2}-1\right)\left(x_{3}^{2}+y_{3}^{2}\right) \\
+2 K\left(\left(K^{2}+1\right) x_{1} y_{1}+2 K(1-K) \sqrt{x_{1} y_{1} x_{3} y_{3}}+\left(K^{2}-1\right) x_{3} y_{3}\right) \\
=\left(K^{2}+1\right)\left(x_{1}^{2}+y_{1}^{2}\right)+2 K^{2}\left(x_{2}-y_{2}\right)^{2}+\left(K^{2}-1\right)\left(x_{3}^{2}+y_{3}^{2}\right) \\
+2 K(K+1) x_{1} y_{1}+2 K(K-1) x_{3} y_{3}+2 K^{2}(K-1)\left(\sqrt{x_{1} y_{1}}-\sqrt{x_{3} y_{3}}\right)^{2}>0 .
\end{gathered}
$$

Proposition is proved.
Consider a matrix

$$
X=\left(\begin{array}{cc}
x_{1} & \delta_{1} x_{2} \tag{5}\\
\overline{\delta_{1}} x_{2} & x_{3}
\end{array}\right) \quad \text { with } \quad x_{1}, x_{2}, x_{3} \geq 0, \quad x_{1} x_{3} \geq x_{2}^{2}, \quad \delta_{1} \in \mathbb{C}, \quad\left|\delta_{1}\right|=1 .
$$

Lemma 4.5. Let X be as in (5) and for $\lambda \in[0,1], a>0, \delta_{2} \in \mathbb{C},\left|\delta_{2}\right|=1$ put $A=\operatorname{diag}(a, 0)$, $B=R^{\left(\delta_{2}, \lambda\right)}$. Then the following conditions are equivalent:
(i) $\exists K_{0}>-1 \forall K>K_{0} \forall A, B \in \mathbb{M}_{2}^{+}(\mathbb{C}) \operatorname{tr}\left(X\left(A^{2}+B^{2}+K(A B+B A)\right)\right) \geq 0$;
(ii) $A X=X A\left(\right.$ i.e., $\left.x_{2}=0\right)$.

Proof. We have $A^{2}=a A, A B=(B A)^{*}$ and $\varphi\left(A^{2}\right)=\operatorname{tr}(a X A)=a^{2} x_{1}$,

$$
\begin{aligned}
& \varphi\left(B^{2}\right)=\operatorname{tr}(X B)=\operatorname{tr}\left(\begin{array}{cc}
\lambda x_{1}+\delta_{1} \overline{\delta_{2}} x_{2} \sqrt{\lambda(1-\lambda)} & * \\
* & \overline{\delta_{1}} \delta_{2} x_{2} \sqrt{\lambda(1-\lambda)}+x_{3}(1-\lambda)
\end{array}\right) \\
& =\lambda x_{1}+2 \operatorname{Re}\left(\delta_{1} \overline{\delta_{2}}\right) x_{2} \sqrt{\lambda(1-\lambda)}+x_{3}(1-\lambda) \text {, } \\
& \varphi(A B)=\operatorname{tr}\left(\begin{array}{ccc}
a x_{1} \lambda & * \\
* & \overline{\delta_{1}} \delta_{2} a x_{2} \sqrt{\lambda(1-\lambda)}
\end{array}\right)=a x_{1} \lambda+\overline{\delta_{1}} \delta_{2} a x_{2} \sqrt{\lambda(1-\lambda)}, \\
& \varphi(B A)=\varphi\left((A B)^{*}\right)=\overline{\varphi(A B)}=a x_{1} \lambda+\delta_{1} \overline{\delta_{2}} a x_{2} \sqrt{\lambda(1-\lambda)} .
\end{aligned}
$$

Thus,

$$
\varphi\left(A^{2}+B^{2}+K(A B+B A)\right)=\left(2 a K \lambda+a^{2}+\lambda\right) x_{1}+(K a+1) \delta_{2} \overline{\delta_{1}} \sqrt{\lambda(1-\lambda)} x_{2}
$$

$$
+(K a+1) \overline{\delta_{2}} \delta_{1} \sqrt{\lambda(1-\lambda)} x_{2}+(1-\lambda) x_{3} .
$$

If $\lambda=1$, then $\varphi\left(A^{2}+B^{2}+K(A B+B A)\right)=\left(a^{2}+2 a K+1\right) x_{1} \geq 0$ for all $x_{1} \geq 0$, hence $K \geq-1$. Let $\lambda \in[0,1)$, and $t=\sqrt{\lambda /(1-\lambda)} \in \mathbb{R}^{+}$, then

$$
\begin{gathered}
\frac{1}{1-\lambda} \varphi\left(A^{2}+B^{2}+K(A B+B A)\right)=(2 a K+1) x_{1} t^{2}+a^{2} x_{1}\left(t^{2}+1\right)+2 \operatorname{Re} \delta_{1} \overline{\delta_{2}}(K a+1) x_{2} t+x_{3} \\
=\left(a^{2}+2 a K+1\right) x_{1} t^{2}+2 \operatorname{Re} \delta_{1} \overline{\delta_{2}}(K a+1) x_{2} t+x_{3}+a^{2} x_{1} .
\end{gathered}
$$

If $\varphi\left(A^{2}+B^{2}+K(A B+B A)\right) \geq 0$ for all $A, B \in \mathbb{M}_{2}^{+}(\mathbb{C})$, then (for $\operatorname{Re} \delta_{1} \overline{\delta_{2}}=-1$)

$$
\begin{equation*}
\left(a^{2}+2 a K+1\right) x_{1} t^{2}-2 x_{2}(K a+1) t+x_{3}+a^{2} x_{1} \geq 0 \quad \text { for any } \quad t \geq 0, a \geq 0, K>K_{0} . \tag{6}
\end{equation*}
$$

Consider the equation $\alpha t^{2}-2 \beta t+\gamma=0$, with

$$
\alpha=x_{1}\left(a^{2}+2 a K+1\right) \geq 0, \quad \beta=x_{2}(K a+1), \quad \gamma=x_{3}+a^{2} x_{1} \geq 0 .
$$

Note that $x_{1} x_{3} \geq x_{2}^{2}$, and $\alpha, \gamma \geq 0$. Clearly, if $x_{1}>0$ and $(a-1)^{2}+2 a(K+1)=x_{1}=0$, then $a=1$, $K=-1$ and thus $\beta=x_{2}(K a+1)=0$. Inequality (6) holds only in the following three cases:

1. $\alpha=0, \beta=0, \gamma \geq 0$;
2. $\alpha>0, D=\beta^{2}-\alpha \gamma \leq 0$;
3. $\alpha>0, D=\beta^{2}-\alpha \gamma \geq 0, t_{1,2}=\beta \pm \sqrt{D} \leq 0$.

In the first case of $\alpha=0=\beta$ we have $(a-1)^{2}+2 a(K+1)=0$ and $x_{2}(K a+1)=0$, but it is not possible simultaneously for any $a \geq 0$ and $K>K_{0}>-1$.

In the second case,

$$
a^{2} x_{2}^{2} K^{2}+2\left(x_{2}^{2}-x_{1} x_{3}-a^{2} x_{1}^{2}\right) a K+\left(x_{2}^{2}-\left(a^{2}+1\right) x_{1}\left(x_{3}+a^{2} x_{1}\right)\right) \leq 0 .
$$

Note that for any a we have $x_{2}^{2}-x_{1} x_{3}-a^{2} x_{1}^{2} \leq 0$ and $x_{2}^{2}-\left(a^{2}+1\right) x_{1}\left(x_{3}+a^{2} x_{1}\right) \leq 0$. If we fix $a>0$ and assume that K is sufficiently large, then obviously this inequality is violated for any $x_{2} \neq 0$, which leads us to the consideration of the third case. Else, if $x_{2}=0$, then the inequality

$$
2\left(-x_{1} x_{3}-a^{2} x_{1}^{2}\right) a K+\left(-\left(a^{2}+1\right) x_{1}\left(x_{3}+a^{2} x_{1}\right)\right) \leq 0
$$

holds for any $a>0, K>K_{0}$. But also, if $x_{2}=0$, then $X A=A X$, since

$$
\begin{equation*}
\operatorname{diag}\left(x_{1}, x_{3}\right) \operatorname{diag}(a, 0)=\operatorname{diag}(a, 0) \operatorname{diag}\left(x_{1}, x_{3}\right) . \tag{7}
\end{equation*}
$$

In the third case, for any $a>0, K>K_{0}>-1$ we have

$$
a^{2} x_{2}^{2} K^{2}+2\left(x_{2}^{2}-x_{1} x_{3}-a^{2} x_{1}^{2}\right) a K+\left(x_{2}^{2}-\left(a^{2}+1\right) x_{1}\left(x_{3}+a^{2} x_{1}\right)\right) \geq 0
$$

and $\beta \leq-\sqrt{D} \leq 0$. This is true only if $\beta \leq-\sqrt{\beta^{2}-\alpha \gamma}$, which in its turn holds if and only if $\beta \leq 0$, thus either $a K \leq-1$, which is impossible for any $K>K_{0}$ and $a \geq 0$, simultaneously, or $x_{2}=0$ for all $a>0, K>K_{0}$. Again, we have (7).

Teorem 4.6. For $\varphi \in \mathcal{M}_{*}^{+}$the following conditions are equivalent:
(i) φ is tracial;
(ii) $\forall K \geq-1 \forall A, B \in \mathcal{M}^{+} \varphi\left(A^{2}+B^{2}+K(A B+B A)\right) \geq 0$;
(iii) $\exists K_{0}>-1 \forall K>K_{0} \forall A, B \in \mathcal{M}^{+} \varphi\left(A^{2}+B^{2}+K(A B+B A)\right) \geq 0$.

Proof. (i) \Rightarrow (ii). We have $\sqrt{A} B \sqrt{A} \geq 0$ and $\varphi(A B)=\varphi(B A)=\varphi(\sqrt{A} B \sqrt{A}) \geq 0$, thus $\varphi\left(A^{2}+\right.$ $\left.B^{2}+K(A B+B A)\right)=\varphi\left((A-B)^{2}\right)+(K+1) \varphi(A B+B A) \geq 0$.

The implication (ii) \Rightarrow (iii) is obvious.
(iii) \Rightarrow (i). It is sufficient to consider the case $\mathcal{M}=\mathbb{M}_{2}(\mathbb{C})$, see the proof of Theorem 4.1. Let P, Q be some arbitrary one-dimensional projections in $\mathbb{M}_{2}(\mathbb{C})^{\mathrm{pr}}$. There exists an orthonormal basis $\left\{\xi_{1}, \xi_{2}\right\}$ in $\mathcal{H}=\mathbb{C}^{2}$ such that $P=\operatorname{diag}(1,0), Q=R^{\left(\delta_{2}, \lambda\right)}$ for $\lambda \in[0,1], \delta_{2} \in \mathbb{C},\left|\delta_{2}\right|=1$. Also, without loss of generality we may assume that $\varphi(\cdot)=\operatorname{tr}(X \cdot)$ with X as in (5). Let $a>0$, then the inequality $\varphi\left((a P)^{2}+Q^{2}+K(a P+Q)\right) \geq 0$ implies

$$
\operatorname{tr}\left(X\left(A^{2}+B^{2}+K(A+B)\right)\right) \geq 0
$$

in terms of Lemma 4.5. Thus, $x_{2}=0$ and $P X=X P$ in some basis $\left\{\xi_{1}, \xi_{2}\right\}$, where $\xi_{1} \in P \mathcal{H}=$ $\{P \xi: \xi \in \mathcal{H}\}$ and $\xi_{2} \in P^{\perp} \mathcal{H}=\left\{P^{\perp} \xi: \xi \in \mathcal{H}\right\}$. The commutativity property does not depend on the representation of an operator in matrix form. Thus, simpliy for operators X and an arbitrary P the equality $P X=X P$ holds. Hence the operator X commutes with all of the operators of $\mathcal{B}(\mathcal{H})$ and the matrix X commutes with all of the matrices in $\mathbb{M}_{2}(\mathbb{C})^{\text {pr }}$, which is possible only if $X=\lambda I$ for some $\lambda \in \mathbb{R}^{+}$.

FUNDING

This work was supported by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities (1.9773.2017/8.9).

REFERENCES

1. S. A. Abed, "An inequality for projections and convex functions," Lobachevskii J. Math. 39 (9), 1287-1292 (2018).
2. A. M. Bikchentaev, "Commutativity of projections and characterization of traces on von Neumann algebras," Sib. Math. J. 51, 971-977 (2010).
3. A. M. Bikchentaev, "Commutation of projections and trace characterization on von Neumann algebras. II," Math. Notes 89, 461-471 (2011).
4. A. M. Bikchentaev, "Commutation of projections and characterization of traces on von Neumann algebras. III," Int. J. Theor. Phys. 54, 4482-4493 (2015).
5. S. Sakai, C^{*}-algebras and W^{*}-algebras, Vol. 60 of Ergeb. Mat. Grenzgeb. (Springer, New York, Heidelberg, Berlin, 1971).
6. D. Deckard and C. Pearcy, "On matrices over ring of continuous complex valued functions on a Stonian space," Proc. Am. Math. Soc. 14, 322-328 (1963).
7. M. Takesaki, Theory of Operator Algebras (Springer, Berlin, 1979). Vol. 1.
8. M. Reed and B. Simon, Methods of Modern Mathematical Physics. 1. Functional Analysis (Mir, Moscow, 1977) [in Russian].
9. S. C. Arora and J. K. Thukral, " M^{*}-Paranormal operators," Glas. Math., Ser. III 22, 123-129 (1987).
10. C. S. Kubrusly, Hilbert Space Operators. A Problem Solving Approach (Birkhaüser, Boston, MA, 2003).
11. L. T. Gardner, "An inequality characterizes the trace," Canad. J. Math. 31, 1322-1328 (1979).
12. O. E. Tikhonov, "Subadditivity inequalities in von Neumann algebras and characterization of tracial functionals," Positivity 9, 259-264 (2005).
13. C. A. Akemann, J. Anderson, and G. K. Pedersen, "Triangle inequalities in operator algebras," Linear Multilinear Algebra 11, 167-178 (1982).
14. D. Petz and J. Zemánek, "Characterizations of the trace," Linear Algebra Appl. 111, 43-52 (1988).
15. A. M. Bikchentaev and O. E. Tikhonov, "Characterization of the trace by Young's inequality," J. Ineq. Pure Appl. Math. 6, 49 (2005).
16. A. M. Bikchentaev and O. E. Tikhonov, "Characterization of the trace by monotonicity inequalities," Linear Algebra Appl. 422, 274-278 (2007).
17. A. M. Bikchentaev, "The Peierls-Bogoliubov inequality in C^{*}-algebras and characterization of tracial functionals," Lobachevskii J. Math. 32 (3), 175-179 (2011).
18. A. M. Bikchentaev, "Commutativity of operators and characterization of traces on C^{*}-algebras," Dokl. Math. 87, 79-82 (2013).
19. A. M. Bikchentaev, "Inequality for a trace on a unital C^{*}-algebra," Math. Notes 99, 487-491 (2016).
20. A. M. Bikchentaev, "Differences of idempotents in C^{*}-algebras," Sib. Math. J. 58, 183-189 (2017).
21. A. M. Bikchentaev, "Differences of idempotents in C^{*}-algebras and the quantum Hall effect," Theor. Math. Phys. 195, 557-562 (2018).
22. H. T. Dinh and O. E. Tikhonov, "Weighted trace inequalities of monotonicity," Lobachevskii J. Math. 26, 63-67 (2007).
23. H. T. Dinh and O. E. Tikhonov, "Weighted monotonicity inequalities for traces on operator algebras," Math. Notes 88, 177-182 (2010).
24. A. I. Stolyarov, O. E. Tikhonov, and A. N. Sherstnev, "Characterization of normal traces on von Neumann algebras by inequalities for the modulus," Math. Notes 72, 411-416 (2002)
25. B. Blackadar, Operator Algebras. Theory of C^{*}-Algebras and von Neumann Algebras, Vol. 122 of Encyclopaedia of Mathematical Sciences (Springer, Berlin, 2006).

[^0]: *E-mail: Airat.Bikchentaev@kpfu.ru
 ** E-mail: samialbarkish@gmail.com

