Projections and Traces on von Neumann Algebras

A. M. Bikchentaev^{1*} and S. A. Abed^{1**}

(Submitted by F. G. Avkhadiev)

¹N. I. Lobachevskii Institute of Mathematics and Mechanics, Kazan (Volga Region) Federal University, Kazan, Tatarstan, 420008 Russia

Received January 26, 2019; revised March 5, 2019; accepted March 25, 2019

Abstract—Let P,Q be projections on a Hilbert space. We prove the equivalence of the following conditions: (i) $PQ + QP \leq 2(QPQ)^p$ for some number 0 ; (ii) <math>PQ is paranormal; (iii) PQ is M^* -paranormal; (iv) PQ = QP. This allows us to obtain the commutativity criterion for a von Neumann algebra. For a positive normal functional φ on von Neumann algebra \mathcal{M} it is proved the equivalence of the following conditions: (i) φ is tracial; (ii) $\varphi(PQ + QP) \leq 2\varphi((QPQ)^p)$ for all projections $P,Q \in \mathcal{M}$ and for some $p = p(P,Q) \in (0,1]$; (iii) $\varphi(PQP) \leq \varphi(P)^{1/p}\varphi(Q)^{1/q}$ for all projections $P,Q \in \mathcal{M}$ and some positive numbers p = p(P,Q), q = q(P,Q) with 1/p + 1/q = 1, $p \neq 2$. Corollary: for a positive normal functional φ on \mathcal{M} the following conditions are equivalent: (i) φ is tracial; (ii) $\varphi(A + A^*) \leq 2\varphi(|A^*|)$ for all $A \in \mathcal{M}$.

DOI: 10.1134/S1995080219090051

Keywords and phrases: Hilbert space, linear operator, projection, von Neumann algebra, positive functional, trace, operator inequality, commutativity.

1. INTRODUCTION

This work continues the research of the authors [1-4], which contain new conditions for the commutativity of projections and various characterizations of the trace among all positive normal functionals on von Neumann algebras.

Let P,Q be projections on a Hilbert space. In Theorem 3.2 we prove the equivalence of the following conditions: (i) $PQ + QP \le 2(QPQ)^p$ for some number 0 ; (ii) <math>PQ is paranormal; (iii) PQ is M^* -paranormal; (iv) PQ = QP. This allows us to obtain the commutativity criterion for a von Neumann algebra (Corollary 3.3). In Theorem 4.1 for a positive normal functional φ on von Neumann algebra \mathcal{M} we prove the equivalence of the following conditions: (i) φ is tracial; (ii) $\varphi(PQ + QP) \le 2\varphi((QPQ)^p)$ for all projections $P,Q \in \mathcal{M}$ and for some $p = p(P,Q) \in (0,1]$; (iii) $\varphi(PQP) \le \varphi(P)^{1/p}\varphi(Q)^{1/q}$ for all projections $P,Q \in \mathcal{M}$ and some positive numbers p = p(P,Q), q = q(P,Q) with 1/p + 1/q = 1, $p \ne 2$. Corollary 4.2: for a positive normal functional φ on \mathcal{M} the following conditions are equivalent: (i) φ is tracial; (ii) $\varphi(A + A^*) \le 2\varphi(|A^*|)$ for all $A \in \mathcal{M}$.

2. NOTATION, DEFINITIONS AND PRELIMINARIES

Let \mathcal{H} be a Hilbert space over field \mathbb{C} , and $\mathcal{B}(\mathcal{H})$ be the *-algebra of all linear bounded operators on \mathcal{H} . An operator $X \in \mathcal{B}(\mathcal{H})$ is said to be paranormal (respectively, M^* -paranormal for some number M>0), if $||X^2\xi|| \geq ||X\xi||^2$ (respectively, $M||X^2\xi|| \geq ||X^*\xi||^2$) for all $\xi \in \mathcal{H}$ with $||\xi|| = 1$. An operator $X \in \mathcal{B}(\mathcal{H})$ is a projection, if $X = X^2 = X^*$. By the commutant of a set $\mathcal{X} \subset \mathcal{B}(\mathcal{H})$ we mean the set

$$\mathcal{X}' = \{Y \in \mathcal{B}(\mathcal{H}) \colon XY = YX \text{ for all } X \in \mathcal{X}\}.$$

^{*}E-mail: Airat.Bikchentaev@kpfu.ru

^{**}E-mail: samialbarkish@gmail.com

A *-subalgebra \mathcal{M} of the algebra $\mathcal{B}(\mathcal{H})$ is called a von Neumann algebra acting on the Hilbert space \mathcal{H} if $\mathcal{M}=\mathcal{M}''$. If $\mathcal{X}\subset\mathcal{B}(\mathcal{H})$ then \mathcal{X}' is a von Neumann algebra, and \mathcal{X}'' is the smallest von Neumann algebra that containes \mathcal{X} . For a von Neumann algebra \mathcal{M} let $\mathcal{M}^{\mathrm{sa}}$, \mathcal{M}^+ , \mathcal{M}^{u} , $\mathcal{M}^{\mathrm{id}}$ and $\mathcal{M}^{\mathrm{pr}}$ denote its Hermitian, positive, unitary parts, the set of idempotents and the set of projections, respectively. For every operator $A\in\mathcal{M}$ its modulus $|A|=\sqrt{A^*A}$ lies in \mathcal{M}^+ . Let I and $\mathcal{Z}(\mathcal{M})=\mathcal{M}\cap\mathcal{M}'$ denote the unit and the center of the algebra \mathcal{M} , respectively. For $Q\in\mathcal{M}^{\mathrm{id}}$ we have $Q^\perp=I-Q\in\mathcal{M}^{\mathrm{id}}$. For $P,Q\in\mathcal{M}^{\mathrm{pr}}$ we write $P\sim Q$ (the Murray-von Neumann equivalence) if $P=U^*U$ and $Q=UU^*$ for some $U\in\mathcal{M}$. A positive functional φ on a von Neumann algebra \mathcal{M} is said to be a state, if $\varphi(I)=1$; tracial, if $\varphi(Z^*Z)=\varphi(ZZ^*)$ for all $Z\in\mathcal{M}$; normal, if $A_i\nearrow A$ $(A_i,A\in\mathcal{M}^+)\Rightarrow \varphi(A)=\sup \varphi(A_i)$.

By \mathcal{M}_{*}^{+} we denote the set of all positive normal functionals on \mathcal{M} .

Lemma 2.1 [5, Theorem 2.3.3]. Let \mathcal{N} be a von Neumann algebra of type I_n (n is a cardinal number). Then \mathcal{N} is *-isomorphic to the tensor product $\mathcal{Z}(\mathcal{N}) \overline{\otimes} \mathcal{B}(\mathcal{K})$, where \mathcal{K} is a Hilbert space with dim $\mathcal{K} = n$.

Lemma 2.2 [6, Corollary 3.3]. For every $X \in \mathbb{M}_n(C(\Omega))^{sa}$ the algebra $\mathbb{M}_n(C(\Omega))$ contains a unitary operator U such that $U^*XU(\omega)$ is diagonal for each $\omega \in \Omega$.

Lemma 2.3 [7, Chap. 5, item (ii) of Theorem 1.41]. If a von Neumann algebra \mathcal{N} is generated by two projections $P, R \in \mathcal{B}(\mathcal{H})^{\mathrm{pr}}$, then there exists a unique projection $Z \in \mathcal{Z}(\mathcal{N})$ such that the algebra \mathcal{N}_Z is of type I_2 and the algebra $\mathcal{N}_{Z^{\perp}}$ is Abelian, moreover, $\dim_{\mathbb{C}} \mathcal{N}_{Z^{\perp}} \leq 4$.

Let $g(t) = \sqrt{t(1-t)}$ for $0 \le t \le 1$ and $\delta \in \mathbb{C}$, $A |\delta| = 1$. By $R^{(\delta,t)}$ we denote the projection

$$R^{(\delta,t)} = \begin{pmatrix} t & \delta g(t) \\ \overline{delta}g(t) & 1 - t \end{pmatrix}, \tag{1}$$

which lies in $\mathbb{M}_2(\mathbb{C})^{\mathrm{pr}}$.

3. THE NEW COMMUTATIVITY CRITERIONS OF PROJECTIONS

The search of the new commutativity criterions of projections was motivated by the following definition: Two (possibly unbounded) self-adjoint operators A and B are said to be commuting, if all projections of the its corresponding projection-valued measures commute [8, Chap. VIII, § 5, Definition].

Proposition 3.1. If $X \in \mathcal{B}(\mathcal{H})^{sa}$, $Q \in \mathcal{B}(\mathcal{H})^{id}$ and XQ is an M^* -paranormal operator then $XQ = Q^*X$.

Proof. It is well known [9] that an operator $T \in \mathcal{B}(\mathcal{H})$ is M^* -paranormal if and only if

$$M^2T^{*2}T^2 - 2\lambda TT^* + \lambda^2 I \ge 0 \quad \text{for all} \quad \lambda \in \mathbb{R}.$$

For T = XQ this inequality takes the form

$$M^2Q^*XQ^*X^2QXQ - 2\lambda XQQ^*X + \lambda^2I \geq 0 \quad \text{for all} \quad \lambda \in \mathbb{R}.$$

We multiply both sides of this inequality from the left by the operator $Q^{*\perp} = Q^{\perp *}$ and from the right by the operator Q^{\perp} , and obtain

$$-2\lambda Q^{\perp*}XQQ^*XQ^{\perp} + \lambda^2 Q^{\perp*}Q^{\perp} \geq 0 \quad \text{for all} \quad \lambda \in \mathbb{R}.$$

Then division by $\lambda>0$ yields $-2Q^{\perp*}XQQ^*XQ^{\perp}+\lambda Q^{\perp*}Q^{\perp}\geq 0$ for all $\lambda>0$. Passing to the limit as $\lambda\to 0$, we obtain $-2Q^{\perp*}XQQ^*XQ^{\perp}=-2|Q^*XQ^{\perp}|^2\geq 0$. Hence, $Q^*XQ^{\perp}=0$ and $Q^*X=Q^*XQ=(Q^*XQ)^*=(Q^*XQ)^*=XQ$. The assertion is proved. \square

Theorem 3.2. For $P, Q \in \mathcal{B}(\mathcal{H})^{pr}$ the following conditions are equivalent:

- (i) $\frac{PQ + QP}{2} \le (QPQ)^p$ for some number 0 ;
- (ii) PQ is paranormal;
- (iii) PQ is M^* -paranormal;

(iv)
$$PQ = QP$$
.

Proof. (iv) \Rightarrow (i). For 0 we have

$$\frac{PQ + QP}{2} = QPQ \le (QPQ)^p$$

by the inequality $QPQ \leq QIQ = Q \leq I$ and the Spectral Theorem.

(i) \Rightarrow (iv). With P and Q we associate the von Neumann algebra $\mathcal{N}=\{P,Q\}''$ generated by them. By Lemma 2.3 there exists a unique projection $Z\in\mathcal{Z}(\mathcal{N})$ such that the algebra \mathcal{N}_Z is of type I_2 and the algebra \mathcal{N}_{Z^\perp} is Abelian. Obviously, the projections PZ^\perp and QZ^\perp commute. Gelfand's theorem on the representation of an Abelian unital C^* -algebra (see, for example, [7, Chap. 3, Theorem 1.18]) implies that the algebra $\mathcal{Z}(\mathcal{N}_Z)$ is *-isomorphic to the C^* -algebra $C(\Omega)$ of all complex-valued continuous functions on the Stone space Ω of all characters of the algebra $\mathcal{Z}(\mathcal{N}_Z)$. Now from Lemma 2.1 it follows that the algebra \mathcal{N}_Z is *-isomorphic to the matrix algebra $\mathbb{M}_2(C(\Omega))$.

We define the domains of the rank constancy (or, equivalently, the domains of the canonical trace tr) for $\tilde{R} \in \mathbb{M}_2(C(\Omega))^{\operatorname{pr}}$ as follows:

$$\Omega_j(\tilde{R}) = \{ \omega \in \Omega : \tilde{r}_{11}(\omega) + \tilde{r}_{22}(\omega) = j \}, \quad j \in \{0, 1, 2\}.$$

The sets $\Omega_j(\tilde{R})$ are closed (being the preimages of the closed sets $\{j\} \subset \mathbb{C}$ under a continuous mapping) and constitute a covering of the space Ω by disjoint sets.

The projections PZ and QZ are identified with $\tilde{P}, \tilde{Q} \in \mathbb{M}_2(C(\Omega))^{pr}$, respectively. Let

$$\Omega_{ij} = \Omega_i(\tilde{P}) \cap \Omega_j(\tilde{Q}), \quad i, j \in \{0, 1, 2\}.$$

All the nine sets Ω_{ij} are open-closed and constitute a covering of the space Ω by disjoint sets. If $\omega \in \Omega \setminus \Omega_{11}$, then $\tilde{P}\tilde{Q}(\omega) = \tilde{Q}\tilde{P}(\omega)$.

Lemma 2.2 implies that there exist a unitary $U \in \mathbb{M}_2(C(\Omega))^u$ and a closed subset $\Omega_1'(\tilde{P}) \subset \Omega_1(\tilde{P})$, such that $U^*(\omega)\tilde{P}(\omega)U(\omega) = \operatorname{diag}(1,0)$ for all $\omega \in \Omega_1'(\tilde{P})$ and $U^*(\omega)\tilde{P}(\omega)U(\omega) = \operatorname{diag}(0,1)$ for all $\omega \in \Omega_1(\tilde{P}) \setminus \Omega_1'(\tilde{P})$. Therefore, it is sufficient to consider the case

$$P=\mathrm{diag}(1,0),\quad Q=R^{(\delta,t)},\quad \delta\in\mathbb{C},\quad |\delta|=1,\quad 0\leq t\leq 1;$$

see (1). Since QPQ = tQ, we have $(QPQ)^t = t^pQ$. Since

$$\frac{PQ + QP}{2} = \begin{pmatrix} t & * \\ * & * \end{pmatrix}, \quad t^pQ - \frac{PQ + QP}{2} = \begin{pmatrix} t^{p+1} - t & * \\ * & * \end{pmatrix}$$

(here and elsewhere, the symbol "*" denotes matrix entries whose values will not be needed), we have $t^{p+1} - t \ge 0$ and $t \in \{0, 1\}$.

(ii) \Rightarrow (iv). It is well known [10, Problem 9.5], that an operator $T \in \mathcal{B}(\mathcal{H})$ is paranormal if and only if

$$|T|^2 \le \frac{1}{2}(\lambda^{-1}|T^2|^2 + \lambda I)$$
 for all $\lambda > 0$.

For T = PQ this inequality takes the form

$$2QPQ \le \lambda^{-1}(QPQ)^3 + \lambda I \quad \text{for all} \quad \lambda > 0.$$
 (2)

If $PQ \neq QP$, then an operator QPQ is not a projection and its spectrum $\sigma(QPQ)$ contains some number $x \in (0,1)$. By (2) and the Spectral Theorem the number x satisfies the inequality

$$2x \le \lambda^{-1}x^3 + \lambda$$
 for all $\lambda > 0$.

However, for $\lambda = x^{3/2}$ it does not hold.

The implication (iii) \Rightarrow (iv) follows from Proposition 3.1.

Corollary 3.3. For a von Neumann algebra \mathcal{M} the following conditions are equivalent:

(i)
$$\frac{PQ+QP}{2} \leq (QPQ)^p$$
 for all $P,Q \in \mathcal{M}^{\operatorname{pr}}$ and some $p=p(P,Q) \in (0,1];$

- (ii) PQ is paranormal for all $P, Q \in \mathcal{M}^{pr}$;
- (iii) PQ is M^* -paranormal for all $P, Q \in \mathcal{M}^{\operatorname{pr}}$ and some number M = M(P, Q) > 0;
- (iv) M is Abelian.

Proof. (i) \Rightarrow (iv). By assumption, all projections from \mathcal{M} commute. Then by the Spectral Theorem all the Hermitian operators from \mathcal{M} also commute. Recall that every operator A from \mathcal{M} can be represented as the sum A = T + iS with Hermitian operators $T = (A + A^*)/2$, $S = (A - A^*)/(2i)$ from \mathcal{M} .

(iv) \Rightarrow (i). An Abelian von Neumann algebra \mathcal{M} is *-isomorphic to the algebra $L_{\infty}(\Omega, \mathfrak{A}, \mu)$ on a localized measure space $(\Omega, \mathfrak{A}, \mu)$. For all $P, Q \in \mathcal{M}^{\operatorname{pr}}$ there exist $A, B \in \mathfrak{A}$ such that $P = \chi_A, Q = \chi_B$ and inequality (i) for the indicators turns into equality. The assertion is proved.

4. TRACE CHARACTERIZATION ON VON NEUMANN ALGEBRAS

Theorem 4.1. For $\varphi \in \mathcal{M}_*^+$ the following conditions are equivalent:

(i) φ is tracial;

$$\text{(ii)}\ \varphi\left(\frac{PQ+QP}{2}\right)\leq \varphi((QPQ)^p)\ \ \textit{for all}\ P,Q\in\mathcal{M}^{\text{pr}}\ \textit{and for some number}\ p=p(P,Q)\in(0,1];$$

(iii) $\varphi(PQP) \leq \varphi(P)^{1/p} \varphi(Q)^{1/q}$ for all $P, Q \in \mathcal{M}^{\operatorname{pr}}$ and for some positive numbers p = p(P,Q), q = q(P,Q) with 1/p + 1/q = 1, $p \neq 2$.

Proof. (i) \Rightarrow (ii). For all $P,Q \in \mathcal{M}^{pr}$ and $0 by the inequality <math>QPQ \le (QPQ)^p$ and monotonocity of φ on \mathcal{M}^{sa} we have

$$\varphi\left(\frac{PQ+QP}{2}\right) = \varphi(QPQ) \le \varphi((QPQ)^p).$$

The implication (i) \Rightarrow (iii) follows from the inequalities $PQP \leq PIP = P$, $QPQ \leq QIQ = Q$ and monotonocity of φ on \mathcal{M}^+ .

Let us show that for an arbitrary von Neumann algebra, the proof of the inverse implications can be reduced to the case of the algebra $\mathbb{M}_2(\mathbb{C})$ just as this was done in a number of other similar cases (see [11] or [12]).

It is well known [11] that $\varphi \in \mathcal{M}_*^+$ is tracial if and only if $\varphi(P) = \varphi(Q)$ for all $P,Q \in \mathcal{M}^{\operatorname{pr}}$ with PQ = 0 and $P \sim Q$ (also see [12, Lemma 2]). Assume that a *-algebra \mathcal{N} in the reduced algebra $(P+Q)\mathcal{M}(P+Q)$ is generated by a partial isometry $V \in \mathcal{M}$ realizing the equivalence of P and Q. Then \mathcal{N} is *-isomorphic to $\mathbb{M}_2(\mathbb{C})$, while inequalities (ii) and (iii) remain valid for operators from \mathcal{N} and the restriction of the functional $\varphi|_{\mathcal{N}}$. We shall show that such a restriction is a tracial functional on \mathcal{N} ; therefore, $\varphi(P) = \varphi(Q)$.

As it is well known, every linear functional φ on $\mathbb{M}_2(\mathbb{C})$ can be represented in the form $\varphi(\cdot) = \operatorname{tr}(S_{\varphi} \cdot)$. The two-by-two matrix S_{φ} is called the density matrix of φ . It is easily seen that without loss of generality we can assume that

$$S_{\varphi} = \operatorname{diag}\left(\frac{1}{2} - s, \frac{1}{2} + s\right), \quad 0 \le s \le \frac{1}{2}.$$

Thus $\varphi(X)$ equals $(1/2 - s)x_{11} + (1/2 + s)x_{22}$ for $X = [x_{ij}]_{i,j=1}^2$ in $\mathbb{M}_2(\mathbb{C})$.

Let $0 < \varepsilon \le 1/2$, $h(\varepsilon) = 1/4 - \varepsilon^2 (= g(1/2 - \varepsilon)^2)$. Consider two one-dimensional projections $P = R^{(1,1/2-\varepsilon)}$ and $Q = R^{(1,1/2+\varepsilon)}$, see (1). We have

$$QP = \begin{pmatrix} 2h(\varepsilon) & (1+2\varepsilon)\sqrt{h(\varepsilon)} \\ (1-2\varepsilon)\sqrt{h(\varepsilon)} & 2h(\varepsilon) \end{pmatrix}, \quad QPQ = 4h(\varepsilon)Q.$$

Hence $(QPQ)^p = (1 - 4\varepsilon^2)^p Q$ and inequality in (ii) takes the form

$$\frac{1}{2} - 2\varepsilon^2 \le (1 - 4\varepsilon^2)^p \left(\frac{1}{2} - 2\varepsilon s\right), \quad 0 < \varepsilon \le \frac{1}{2}.$$
 (3)

By the Taylor's formula with the remainder in the Peano form we obtain

$$(1 - 4\varepsilon^2)^p = 1 - 4p\varepsilon^2 + o(\varepsilon^2)$$
 as $\varepsilon \to 0$

and from (3) we obtain

$$\frac{1}{2} - 2\varepsilon^2 \le \frac{1}{2} - 2\varepsilon s - 2p\varepsilon^2 + o(\varepsilon^2) \quad \text{as} \quad \varepsilon \to 0.$$

By assumption $s \ge 0$, hence inequality (3) holds for all $\varepsilon \in (0, 1/2]$ only in the case s = 0.

(iii) \Rightarrow (i). Let, for certainty, p>q. In our notation we have $PQP=4h(\varepsilon)P, \ \varphi(P)=1/2+2s\varepsilon, \ \varphi(Q)=1/2-2s\varepsilon$ and $\varphi(PQP)=1/2+2s\varepsilon-2\varepsilon^2-8s\varepsilon^3$. The inequality $\varphi(PQP)\leq \varphi(P)^{1/p}\varphi(Q)^{1/q}$ takes the form

$$\frac{1}{2} + 2s\varepsilon - 2\varepsilon^2 - 8s\varepsilon^3 \le \left(\frac{1}{2} + 2s\varepsilon\right)^{1/p} \left(\frac{1}{2} - 2s\varepsilon\right)^{1/q}.$$

Multiplying both sides of this inequality by $2 = 2^{1/p}2^{1/q}$, we obtain

$$1 + 4s\varepsilon - 4\varepsilon^2 - 16s\varepsilon^3 \le (1 + 4s\varepsilon)^{1/p} (1 - 4s\varepsilon)^{1/q}. \tag{4}$$

Taylor's formula implies the asymptotic equalities

$$(1+4s\varepsilon)^{1/p} = 1 + \frac{4s}{p}\varepsilon + o(\varepsilon), \quad (1-4s\varepsilon)^{1/q} = 1 - \frac{4s}{q}\varepsilon + o(\varepsilon)$$

as $\varepsilon \to 0+$, and the right-hand side of inequality (4) is equal to

$$1 + \frac{4(q-p)s}{pq}\varepsilon + o(\varepsilon) \quad (\varepsilon \to 0+).$$

Since $s \ge 0$, inequality (4) for all $0 < \varepsilon \le 1/2$ holds only in the case of s = 0.

Corollary 4.2. For $\varphi \in \mathcal{M}_*^+$ the following conditions are equivalent:

(i) φ is tracial;

(ii)
$$\varphi\left(\frac{A+A^*}{2}\right) \leq \varphi(|A^*|)$$
 for all $A \in \mathcal{M}$.

Proof. (i) \Rightarrow (ii). Recall [13], that for all $X, Y \in \mathcal{M}$ there exist partial isometries $U, V \in \mathcal{M}$ such that $|X + Y| \leq U|X|U^* + V|Y|V^*$.

If Z=W|Z| is the polar decomposition of an operator $Z\in\mathcal{M}$ then $W\in\mathcal{M}$ and $|Z^*|=W|Z|W^*$. Also $|\varphi(T)|\leq \varphi(|T|)$ for all $T\in\mathcal{M}$, see [7, p. 320]. By virtue of this and the monotonicity of the tracial functional φ for all $A\in\mathcal{M}$ we have

$$\varphi\left(\frac{A+A^{*}}{2}\right) \leq \left|\varphi\left(\frac{A+A^{*}}{2}\right)\right| \leq \varphi\left(\left|\frac{A+A^{*}}{2}\right|\right) = \frac{1}{2}\varphi(|A+A^{*}|) \leq \frac{1}{2}\varphi(U|A|U^{*}+V|A^{*}|V^{*})$$

$$= \frac{1}{2}(\varphi(U|A|U^{*}) + \varphi(V|A^{*}|V^{*})) = \frac{1}{2}(\varphi(UW|A^{*}|W^{*}U^{*}) + \varphi(V|A^{*}|V^{*})) \leq \varphi(|A^{*}|).$$

(ii) \Rightarrow (i). For A = PQ with $P, Q \in \mathcal{M}^{pr}$ condition (ii) of Theorem 4.1 is met with p = 1/2. The assertion is proved.

For other trace characterizations, see [14–24] and the references therein.

Corollary 4.3. For a von Neumann algebra M the following conditions are equivalent:

(i) an algebra M is Abelian;

(ii)
$$\varphi\left(\frac{PQ+QP}{2}\right) \leq \varphi((QPQ)^p)$$
 for all normal states φ on \mathcal{M} and $P,Q \in \mathcal{M}^{\operatorname{pr}}$ and some number $p=p(P,Q) \in (0,1];$

(iii) $\varphi(PQP) \leq \varphi(P)^{1/p} \varphi(Q)^{1/q}$ for all normal states φ on \mathcal{M} and $P, Q \in \mathcal{M}^{\operatorname{pr}}$ and some positive numbers p = p(P,Q), q = q(P,Q) with 1/p + 1/q = 1, $p \neq 2$.

Proof. By Theorem 4.1 every normal state on \mathcal{M} is tracial, i.e., $\varphi(XY) = \varphi(YX)$ for all $X, Y \in \mathcal{M}$. Since the set \mathcal{M}_*^+ separates the points of the algebra \mathcal{M} [25, Chap. III, Theorem 2.4.5], it follows from the last condition that XY = YX $(X, Y \in \mathcal{M})$, and thus the von Neumann algebra \mathcal{M} is commutative. \square

Proposition 4.4. For every number K > 0 there exists a positive functional φ on $\mathbb{M}_2(\mathbb{C})$ such that

- (i) $\varphi(A^2 + B^2 + K(AB + BA)) \ge 0$ for all $A, B \in \mathbb{M}_2^+(\mathbb{C})$;
- (ii) $\varphi \neq \lambda \text{tr } for all numbers <math>\lambda > 0$.

Proof. Let K > 1 and consider

$$X = \begin{pmatrix} K^2 + 1 & 0 \\ 0 & K^2 - 1 \end{pmatrix}, \quad A = \begin{pmatrix} x_1 & \delta_1 x_2 \\ \overline{\delta_1} x_2 & x_3 \end{pmatrix}, \quad B = \begin{pmatrix} y_1 & \delta_2 y_2 \\ \overline{\delta_2} y_2 & y_3 \end{pmatrix},$$

where $x_1, x_2, x_3, y_1, y_2, y_3 \ge 0$, $|\delta_i| = 1$, $\delta_i \in \mathbb{C}$, $x_1x_3 \ge x_2^2$, $y_1y_3 \ge y_2^2$. Then

$$\varphi(A^2 + B^2 + K(AB + BA))$$

$$= (K^2 + 1)(x_1^2 + x_2^2) + (K^2 - 1)(x_2^2 + x_3^2) + (K^2 + 1)(y_1^2 + y_2^2) + (K^2 - 1)(y_2^2 + y_3^2)$$

$$+ 2K((K^2 + 1)x_1y_1 + ((K^2 + 1)Re\delta_1\overline{\delta_2} + (K^2 - 1)Re\overline{\delta_1}\delta_2)x_2y_2 + (K^2 - 1)x_3y_3)$$

$$= (K^2 + 1)(x_1^2 + y_1^2) + (K^2 - 1)(x_3^2 + y_3^2) + 2K^2(x_2 - y_2)^2$$

$$+ 2K((K^2 + 1)x_1y_1 + 2(K + K^2Re\delta_1\overline{\delta_2})x_2y_2 + (K^2 - 1)x_3y_3)$$

$$\geq (K^2 + 1)(x_1^2 + y_1^2) + 2K^2(x_2 - y_2)^2 + (K^2 - 1)(x_3^2 + y_3^2)$$

$$+ 2K((K^2 + 1)x_1y_1 + 2K(1 - K)\sqrt{x_1y_1x_3y_3} + (K^2 - 1)x_3y_3)$$

$$= (K^2 + 1)(x_1^2 + y_1^2) + 2K^2(x_2 - y_2)^2 + (K^2 - 1)(x_3^2 + y_3^2)$$

$$+ 2K(K + 1)x_1y_1 + 2K(K - 1)x_3y_3 + 2K^2(K - 1)(\sqrt{x_1y_1} - \sqrt{x_3y_3})^2 > 0.$$

Proposition is proved.

Consider a matrix

$$X = \begin{pmatrix} x_1 & \delta_1 x_2 \\ \overline{\delta_1} x_2 & x_3 \end{pmatrix} \text{ with } x_1, x_2, x_3 \ge 0, \quad x_1 x_3 \ge x_2^2, \quad \delta_1 \in \mathbb{C}, \quad |\delta_1| = 1.$$
 (5)

Lemma 4.5. Let X be as in (5) and for $\lambda \in [0,1], a > 0, \delta_2 \in \mathbb{C}, |\delta_2| = 1$ put $A = \operatorname{diag}(a,0), B = R^{(\delta_2,\lambda)}$. Then the following conditions are equivalent:

(i)
$$\exists K_0 > -1 \ \forall K > K_0 \ \forall A, B \in \mathbb{M}_2^+(\mathbb{C}) \ \text{tr}(X(A^2 + B^2 + K(AB + BA))) \ge 0;$$

(ii) AX = XA (i.e., $x_2 = 0$).

Proof. We have $A^2 = aA$, $AB = (BA)^*$ and $\varphi(A^2) = \operatorname{tr}(aXA) = a^2x_1$,

$$\varphi(B^{2}) = \operatorname{tr}(XB) = \operatorname{tr}\left(\frac{\lambda x_{1} + \delta_{1}\overline{\delta_{2}}x_{2}\sqrt{\lambda(1-\lambda)}}{*} + \frac{*}{\overline{\delta_{1}}\delta_{2}x_{2}\sqrt{\lambda(1-\lambda)} + x_{3}(1-\lambda)}\right)$$

$$= \lambda x_{1} + 2\operatorname{Re}(\delta_{1}\overline{\delta_{2}})x_{2}\sqrt{\lambda(1-\lambda)} + x_{3}(1-\lambda),$$

$$\varphi(AB) = \operatorname{tr}\left(\frac{ax_{1}\lambda}{*} + \frac{*}{\overline{\delta_{1}}\delta_{2}ax_{2}\sqrt{\lambda(1-\lambda)}}\right) = ax_{1}\lambda + \overline{\delta_{1}}\delta_{2}ax_{2}\sqrt{\lambda(1-\lambda)},$$

$$\varphi(BA) = \varphi((AB)^{*}) = \overline{\varphi(AB)} = ax_{1}\lambda + \delta_{1}\overline{\delta_{2}}ax_{2}\sqrt{\lambda(1-\lambda)}.$$

Thus,

$$\varphi(A^2 + B^2 + K(AB + BA)) = (2aK\lambda + a^2 + \lambda)x_1 + (Ka + 1)\delta_2\overline{\delta_1}\sqrt{\lambda(1 - \lambda)}x_2$$

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 40 No. 9 2019

$$+(Ka+1)\overline{\delta_2}\delta_1\sqrt{\lambda(1-\lambda)}x_2+(1-\lambda)x_3.$$

If $\lambda=1$, then $\varphi(A^2+B^2+K(AB+BA))=(a^2+2aK+1)x_1\geq 0$ for all $x_1\geq 0$, hence $K\geq -1$. Let $\lambda\in[0,1)$, and $t=\sqrt{\lambda/(1-\lambda)}\in\mathbb{R}^+$, then

$$\frac{1}{1-\lambda}\varphi(A^2+B^2+K(AB+BA)) = (2aK+1)x_1t^2 + a^2x_1(t^2+1) + 2\operatorname{Re}\delta_1\overline{\delta_2}(Ka+1)x_2t + x_3$$
$$= (a^2+2aK+1)x_1t^2 + 2\operatorname{Re}\delta_1\overline{\delta_2}(Ka+1)x_2t + x_3 + a^2x_1.$$

If $\varphi(A^2 + B^2 + K(AB + BA)) \ge 0$ for all $A, B \in \mathbb{M}_2^+(\mathbb{C})$, then (for $\operatorname{Re} \delta_1 \overline{\delta_2} = -1$)

$$(a^2 + 2aK + 1)x_1t^2 - 2x_2(Ka + 1)t + x_3 + a^2x_1 \ge 0 \quad \text{for any} \quad t \ge 0, a \ge 0, K > K_0.$$
 (6)

Consider the equation $\alpha t^2 - 2\beta t + \gamma = 0$, with

$$\alpha = x_1(a^2 + 2aK + 1) \ge 0, \quad \beta = x_2(Ka + 1), \quad \gamma = x_3 + a^2x_1 \ge 0.$$

Note that $x_1x_3 \ge x_2^2$, and $\alpha, \gamma \ge 0$. Clearly, if $x_1 > 0$ and $(a-1)^2 + 2a(K+1) = x_1 = 0$, then a=1, K=-1 and thus $\beta = x_2(Ka+1) = 0$. Inequality (6) holds only in the following three cases:

- 1. $\alpha = 0, \beta = 0, \gamma \ge 0;$
- 2. $\alpha > 0, D = \beta^2 \alpha \gamma \le 0;$

3.
$$\alpha > 0$$
, $D = \beta^2 - \alpha \gamma > 0$, $t_{1,2} = \beta \pm \sqrt{D} < 0$.

In the first case of $\alpha = 0 = \beta$ we have $(a-1)^2 + 2a(K+1) = 0$ and $x_2(Ka+1) = 0$, but it is not possible simultaneously for any $a \ge 0$ and $K > K_0 > -1$.

In the second case,

$$a^{2}x_{2}^{2}K^{2} + 2(x_{2}^{2} - x_{1}x_{3} - a^{2}x_{1}^{2})aK + (x_{2}^{2} - (a^{2} + 1)x_{1}(x_{3} + a^{2}x_{1})) \le 0.$$

Note that for any a we have $x_2^2-x_1x_3-a^2x_1^2\leq 0$ and $x_2^2-(a^2+1)x_1(x_3+a^2x_1)\leq 0$. If we fix a>0 and assume that K is sufficiently large, then obviously this inequality is violated for any $x_2\neq 0$, which leads us to the consideration of the third case. Else, if $x_2=0$, then the inequality

$$2(-x_1x_3 - a^2x_1^2)aK + (-(a^2+1)x_1(x_3 + a^2x_1)) \le 0$$

holds for any a > 0, $K > K_0$. But also, if $x_2 = 0$, then XA = AX, since

$$\operatorname{diag}(x_1, x_3)\operatorname{diag}(a, 0) = \operatorname{diag}(a, 0)\operatorname{diag}(x_1, x_3). \tag{7}$$

In the third case, for any a > 0, $K > K_0 > -1$ we have

$$a^{2}x_{2}^{2}K^{2} + 2(x_{2}^{2} - x_{1}x_{3} - a^{2}x_{1}^{2})aK + (x_{2}^{2} - (a^{2} + 1)x_{1}(x_{3} + a^{2}x_{1})) \ge 0$$

and $\beta \leq -\sqrt{D} \leq 0$. This is true only if $\beta \leq -\sqrt{\beta^2 - \alpha \gamma}$, which in its turn holds if and only if $\beta \leq 0$, thus either $aK \leq -1$, which is impossible for any $K > K_0$ and $a \geq 0$, simultaneously, or $x_2 = 0$ for all $a > 0, K > K_0$. Again, we have (7).

Teorem 4.6. For $\varphi \in \mathcal{M}_*^+$ the following conditions are equivalent:

- (i) φ is tracial;
- (ii) $\forall K > -1 \ \forall A, B \in \mathcal{M}^+ \ \varphi(A^2 + B^2 + K(AB + BA)) > 0;$
- (iii) $\exists K_0 > -1 \, \forall K > K_0 \, \forall A, B \in \mathcal{M}^+ \, \varphi(A^2 + B^2 + K(AB + BA)) \ge 0.$

Proof. (i) \Rightarrow (ii). We have $\sqrt{A}B\sqrt{A} \ge 0$ and $\varphi(AB) = \varphi(BA) = \varphi(\sqrt{A}B\sqrt{A}) \ge 0$, thus $\varphi(A^2 + B^2 + K(AB + BA)) = \varphi((A - B)^2) + (K + 1)\varphi(AB + BA) \ge 0$.

The implication (ii) \Rightarrow (iii) is obvious.

(iii) \Rightarrow (i). It is sufficient to consider the case $\mathcal{M}=\mathbb{M}_2(\mathbb{C})$, see the proof of Theorem 4.1. Let P,Q be some arbitrary one-dimensional projections in $\mathbb{M}_2(\mathbb{C})^{\operatorname{pr}}$. There exists an orthonormal basis $\{\xi_1,\xi_2\}$ in $\mathcal{H}=\mathbb{C}^2$ such that $P=\operatorname{diag}(1,0),\ Q=R^{(\delta_2,\lambda)}$ for $\lambda\in[0,1],\delta_2\in\mathbb{C},\ |\delta_2|=1$. Also, without loss of generality we may assume that $\varphi(\cdot)=\operatorname{tr}(X\cdot)$ with X as in (5). Let a>0, then the inequality $\varphi((aP)^2+Q^2+K(aP+Q))\geq 0$ implies

$$tr(X(A^2 + B^2 + K(A + B))) \ge 0$$

in terms of Lemma 4.5. Thus, $x_2 = 0$ and PX = XP in some basis $\{\xi_1, \xi_2\}$, where $\xi_1 \in P\mathcal{H} =$ $\{P\xi: \xi \in \mathcal{H}\}\$ and $\xi_2 \in P^{\perp}\mathcal{H} = \{P^{\perp}\xi: \xi \in \mathcal{H}\}\$. The commutativity property does not depend on the representation of an operator in matrix form. Thus, simplify for operators X and an arbitrary P the equality PX = XP holds. Hence the operator X commutes with all of the operators of $\mathcal{B}(\mathcal{H})$ and the matrix X commutes with all of the matrices in $\mathbb{M}_2(\mathbb{C})^{\mathrm{pr}}$, which is possible only if $X = \lambda I$ for some $\lambda \in \mathbb{R}^+$.

FUNDING

This work was supported by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities (1.9773.2017/8.9).

REFERENCES

- 1. S. A. Abed, "An inequality for projections and convex functions," Lobachevskii J. Math. 39 (9), 1287–1292
- 2. A. M. Bikchentaey, "Commutativity of projections and characterization of traces on von Neumann algebras," Sib. Math. J. **51**, 971–977 (2010).
- 3. A. M. Bikchentaev, "Commutation of projections and trace characterization on von Neumann algebras. II," Math. Notes 89, 461-471 (2011).
- 4. A. M. Bikchentaev, "Commutation of projections and characterization of traces on von Neumann algebras.
- III," Int. J. Theor. Phys. **54**, 4482–4493 (2015).

 5. Sakai, *C*-algebras and W*-algebras*, Vol. 60 of *Ergeb. Mat. Grenzgeb*. (Springer, New York, Heidelberg, Berlin, 1971).
- 6. D. Deckard and C. Pearcy, "On matrices over ring of continuous complex valued functions on a Stonian space," Proc. Am. Math. Soc. 14, 322-328 (1963).
- 7. M. Takesaki, *Theory of Operator Algebras* (Springer, Berlin, 1979). Vol. 1.
- 8. M. Reed and B. Simon, Methods of Modern Mathematical Physics. 1. Functional Analysis (Mir, Moscow, 1977) [in Russian].
- 9. S. C. Arora and J. K. Thukral, " M^* -Paranormal operators," Glas. Math., Ser. III 22, 123–129 (1987).
- 10. C. S. Kubrusly, Hilbert Space Operators. A Problem Solving Approach (Birkhaüser, Boston, MA, 2003).
- 11. L. T. Gardner, "An inequality characterizes the trace," Canad. J. Math. 31, 1322–1328 (1979).
- 12. O. E. Tikhonov, "Subadditivity inequalities in von Neumann algebras and characterization of tracial functionals," Positivity 9, 259–264 (2005).
- 13. C. A. Akemann, J. Anderson, and G. K. Pedersen, "Triangle inequalities in operator algebras," Linear Multilinear Algebra 11, 167–178 (1982).
- 14. D. Petz and J. Zemánek, "Characterizations of the trace," Linear Algebra Appl. 111, 43–52 (1988).
- 15. A. M. Bikchentaev and O. E. Tikhonov, "Characterization of the trace by Young's inequality," J. Ineq. Pure Appl. Math. 6, 49 (2005).
- 16. A. M. Bikchentaev and O. E. Tikhonov, "Characterization of the trace by monotonicity inequalities," Linear Algebra Appl. 422, 274-278 (2007).
- 17. A. M. Bikchentaev, "The Peierls-Bogoliubov inequality in C^* -algebras and characterization of tracial functionals," Lobachevskii J. Math. 32 (3), 175–179 (2011).
- 18. A. M. Bikchentaev, "Commutativity of operators and characterization of traces on C^* -algebras," Dokl. Math. **87**, 79–82 (2013).
- 19. A. M. Bikchentaev, "Inequality for a trace on a unital C^* -algebra," Math. Notes 99, 487–491 (2016).
- 20. A. M. Bikchentaev, "Differences of idempotents in C^* -algebras," Sib. Math. J. **58**, 183–189 (2017). 21. A. M. Bikchentaev, "Differences of idempotents in C^* -algebras and the quantum Hall effect," Theor. Math. Phys. **195**, 557–562 (2018).
- 22. H. T. Dinh and O. E. Tikhonov, "Weighted trace inequalities of monotonicity," Lobachevskii J. Math. 26, 63-67(2007).
- 23. H. T. Dinh and O. E. Tikhonov, "Weighted monotonicity inequalities for traces on operator algebras," Math. Notes 88, 177–182 (2010).
- 24. A. I. Stolyarov, O. E. Tikhonov, and A. N. Sherstnev, "Characterization of normal traces on von Neumann algebras by inequalities for the modulus," Math. Notes **72**, 411–416 (2002)
- 25. B. Blackadar, Operator Algebras, Theory of C*-Algebras and von Neumann Algebras, Vol. 122 of *Encyclopaedia of Mathematical Sciences* (Springer, Berlin, 2006).