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Results of demagnetizing effect studies in yttrium iron garnet Y3Fe5O12 thin films are reported.

Experiments were performed on X-Band of electron paramagnetic resonance spectrometer at

room temperature. The ferromagnetic resonance (FMR) spectra were obtained for one-layer

single crystal YIG films for different values of the applied microwave power. Nonlinear FMR

spectra transformation by the microwave power increasing in various directions of magnetic

field sweep was observed. It is explained by the influence of the demagnetization action of

nonequilibrium magnons.

PACS: 76.30.-v, 74.25.nj, 75.50.Gg
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The FMR spectra investigations of yttrium iron garnet (YIG) Y3Fe5O12 single crystal thin

films are presented. Experiments were performed on X-band of electron paramagnetic resonance

(EPR) spectrometer Varian E-12 (f ≈ 9.3 GHz) at room temperature. The sample was pre-

pared in Carat company (Lvov, Ukraine) by standard isothermal liquid phase epitaxial (LPE)

method during the joint work with the RAS Institute of Kotelnikov Radio Engineering and

Electronics [1]. The yttrium iron garnet is a well-studied crystal with a ferrimagnetic ordering

(Tc = 560 K). The 2D gadolinium gallium garnet (460 ÷ 490 µm) was used as a substrate for the

thin film (6 ÷ 9 µm) of yttrium iron garnet. The typical FMR spectrum in the perpendicular

orientation of the external magnetic field H to the surface is shown in Fig. 1a. The experiments

were performed at the microwave pump power P of 10 mW, modulation amplitude of 5 mOe.

Fig. 1b shows the corresponding integrated spectrum. The integrated spectra are presented in

Fig. 2a and 2b.

The characteristic “collapse” points in all spectra can be seen. These points correspond to

such value of a magnetic field, where the sharp decrease of adsorption is observed. With the

increasing of microwave pumping power P the position of “collapse” H0 shifts to the lower fields.

This shift depends linearly on the microwave pumping power (see Fig. 3a). Furthermore, the

spectra strongly depend on the field sweep direction (Fig. 3b).

Fig. 3 shows integrated spectra for the various microwave power values in different directions

of the magnetic field sweep.

The non-linearity of FMR spectra corresponds to the big value of magnetization deflection

angle and decreased demagnetization factor. This effect is clearly seen in the Fig. 2, where the

FMR lines at small excitations show the inhomogeneous broadening. With the increasing of
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Figure 1. The differential FMR spectrum of YIG thin film in perpendicular orientation of magnetic

field to the surface (a) and corresponding integrated spectrum (b).
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Figure 2. Integrated spectra for various microwave power P in increasing (a) and decreasing (b) of

magnetic field.
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Figure 3. The dependence of the collapse position from the microwave pump power (a); FMR spectra

for various direction of magnetic field sweep (b).
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excitation the line asymmetry is observed. This asymmetry can be explained by a relatively

large angle of magnetization deflection β, which decreases the demagnetization field 4πMs cos β

and, consequently, increases the frequency of FMR at given field [2]:

ωres = γ(H0 − 4πMs cos β). (1)

The creation of magnon leads to a reducing the sample magnetization Ms to one Bohr

magneton βM . The number of stationary nonequilibrium magnons NM is proportional to the

absorption and microwave power. As a result the signal shifts to the lower field:

∆H0 = 4π∆Ms cos β, (2)

where ∆Ms = NMβM . The excited state has a relaxation rate. At some magnetic field H0 value

the signal disappears (“collapse” points). It can be explained as the microwave pumping power

is not enough for supporting the necessary amount of nonequilibrium magnons NM . In Fig. 2

and Fig. 3 the signal shift from the resonance is seen, which is described in good agreement with

equations (1) and (2). The described FMR spectrum behavior was simulated. The results of

simulation are shown in Fig. 4 and Fig. 5, AP = ∆H0, where P is a microwave power, A is a

dimensional coefficient.

It is clearly seen an excellent match of simulated spectrum transformation with experimental

behavior, but for the total understanding of all nonlinear effects and, consequently, for sugges-

tion of theoretical model it is necessary to provide some additional investigations of magnons

dynamics.
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a) Increasing of magnetic field AP = 30
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b) Decreasing of magnetic field

Figure 4. Simulated FMR spectra.
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Figure 5. Simulated FMR spectra at the different magnetic field sweep directions (AP = 30).
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