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Abstract.The classical Euclidean Algorithm (EA) for calculation of greatest 

common divisor (gcd) of two integers have  a numerous applications in the 

Number Theory, the Theory of Algorithms, Cryptography and many other 

areas of Mathematics. One of the applications of EA is a search of pseudo-

prime and strong pseudoprime integers (see [1] – [4]). 

Weremind that an integer 𝑛 is called pseudoprime (psp) relative to base 𝑎 

if𝑛 is composite, (𝑎, 𝑛) = 1, and  𝑎𝑛−1 𝑚𝑜𝑑  𝑛 = 1. Respectively, integer 𝑛 

is called strong pseudoprime (spsp) relative to base 𝑎 if𝑛 is composite, 

(𝑎, 𝑛) = 1, and, 𝑎𝑑  𝑚𝑜𝑑  𝑛 = 1, or, 𝑎𝑑2𝑖
𝑚𝑜𝑑  𝑛 = −1, where 𝑛 − 1 = 2𝑠 ⋅

𝑑, d is odd, and 0 ≤ 𝑖 < 𝑠. 

Clearly, all spspintegers arepsp. Prime numbers satisfy to both definitions of 

pseudoprimality relative to all bases (due to Fermata’s Theorem), so pseu-

doprimes of both kinds generalize the notion of primality.  

Since, the number of spsp’s is small especially relative to several bases so 

the property to satisfy the definition of spsp can be used to separate primes 

from composite numbers. This was made in so called the Miller and Rabin 

primality test (see [5], [6]). 

Let 𝑛 be an integer pseudoprime relative to bases 𝑎 and 𝑏. Then, 

                             𝑛 ∈ gcd 𝑎𝑡 − 1, 𝑏𝑡 − 1  𝑤ℎ𝑒𝑟𝑒  𝑡|𝑛 − 1.                        (1) 

So, if we can effectively calculate 𝑑 = gcd 𝑎𝑡 − 1, 𝑏𝑡 − 1 , then we find 

easily pseudoprimes factoring d. Usually, this d is either prime, or has many 

small factors so the problem of factorization is not hard. 

In most cases, we can limit ourselves by 𝑎 = 2and 𝑏 = 3.  Let define 

𝐶𝑛 = 3𝑛 − 1, 𝐵𝑛 = 2𝑛 − 1.Since, all 𝐶𝑛  are even, so instead of  𝐶𝑛  we con-

sider 𝐴𝑛 = (3𝑛 − 1)/2. 

In this paper we study a method of acceleration of EAfor the sequence 

 𝐴𝑛 , 𝐵𝑛 , 𝑛 = 1,2,3, … . 

All required notions and definitions can be found in [7]. 

 

Keywordsandphrases.Euclidian algorithm; pseudoprime integers; strong 

pseudoprimes;  

Computing Classification System 1998:G.3 

Mathematics Subject Classification 2010:11A25, 11Y16 

 

mailto:ishm@nextmail.ru
mailto:breathe@bk.ru
mailto:mubbulat@mail.ru
http://www.kpfu.ru/
http://www.kpfu.ru/


24 S.Ishmukhametov, B.Mubarakov, A.Mochalov    

 

 

 

 

1. Introduction 

 

In this section we explain the importance of the considered problem. 

In [6] we considered an algorithm for checking integers on primality using 

a function 𝝍 𝒏 .For any integer 𝒏 the value 𝝍 𝒏  means a least spsp-

integer under the set of bases consisted of first 𝒏 primes. For example, 

𝝍 𝟎 = 𝟐𝟎𝟒𝟕 is the least composite integer, that is accepted by the one-

round Miller-Rabin Primality Test as a probably prime number with base 

𝒂 = 𝟐. Function 𝝍 𝒏  growths very quickly. Its values are counted up to 

𝝍 𝟏𝟐 [4], but in order to continue the process,non-trivial computer re-

sources are required. 

One of possible ways to accelerate a search of sequent values  of𝝍 𝒏  
is learn to calculate quickly𝒅𝒏 = 𝒈𝒄𝒅(𝟑𝒏 − 𝟏, 𝟐𝒏 − 𝟏). We consider it as a 

recurrent sequence and try to use previously counted values to find subse-

quent ones. 

 

2. INTRODUCING RECURRENT FORMULAS FOR 𝑨𝒏, 𝑩𝒏. 
 

In the abstract we introduced notations𝐴𝑛 = (3𝑛 − 1)/2, 𝐵𝑛 = 2𝑛 − 1.Now 

weimply formulas connecting different 𝐴𝑛 , 𝐵𝑛 . 
Note that 𝐴1 = 𝐵1 = 1. Then, 

Lemma 1.For all n   𝐴𝑛+1 = 3𝐴𝑛 + 1, 𝐵𝑛+1 = 2𝐵𝑛 + 1. 

Proof.Indeed, 

𝐴𝑛+1 =
3𝑛+1 − 1

2
= 3 ⋅

3𝑛 − 1

2
+ 1 = 3𝐴𝑛 + 1. 

The second formula proved by analogy. 

 

Lemma 2.For all𝑚 and  𝑛, 𝐴𝑚+𝑛 = 3𝑛𝐴𝑚 + 𝐴𝑛 , 𝐵𝑚+𝑛 = 2𝑛𝐵𝑚 + 𝐵𝑛 . 
 

Proof. We have, 

 
𝐴𝑚+1 = 3𝐴𝑚 + 1,                                                                                 

𝐴𝑚+𝑛+1 = 3𝐴𝑚+𝑛 + 1 = 3 3𝑛𝐴𝑚 + 𝐴𝑛 + 1 = 3𝑛+1𝐴𝑚 + 𝐴𝑛

  

The second formula proved by analogy. 

 

Lemma 3.For all𝑚 and  𝑛, 

𝐴𝑚+𝑛 = 2𝐴𝑚𝐴𝑛 + 𝐴𝑚 + 𝐴𝑛 , 𝐵𝑚+𝑛 = 𝐵𝑚𝐵𝑛 + 𝐵𝑚 + 𝐵𝑛 . 
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Proof. By lemma 2 we have, 

𝐴𝑚+𝑛 = 3𝑛𝐴𝑚 + 𝐴𝑛 =
2𝐴𝑚 3𝑛 − 1 

2
+ 𝐴𝑚 + 𝐴𝑛 = 2𝐴𝑚𝐴𝑛 + 𝐴𝑚 + 𝐴𝑛  

𝐵𝑚+𝑛 = 2𝑛𝐵𝑚 + 𝐵𝑛 = 𝐵𝑚 2𝑛 − 1 + 𝐵𝑚 + 𝐵𝑛 = 𝐵𝑚𝐵𝑛 + 𝐵𝑚+𝐵𝑛 . 

Corollary1. 
𝐴2𝑛 = 2𝐴𝑛 𝐴𝑛 + 1 ,         𝐵2𝑛 = 𝐵𝑛 𝐵𝑛 + 2 . 

Corollary 2. Let denote 𝑑𝑘 = gcd 𝐴𝑘 , 𝐵𝑘 .Then, for all n and k 

 𝑑_𝑛 |𝑑2𝑛 , 𝑎𝑛𝑑 𝑖𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙, 𝑑_𝑛 |𝑑𝑘𝑛  
 

 

Below we collect all formulas together. 

 

List 1. 

1. 𝐴𝑛 = (3𝑛 − 1)/2, 𝐵𝑛 = 2𝑛 − 1, 

2. 𝐴1 = 𝐵1 = 1, 𝐴𝑛+1 = 3𝐴𝑛 + 1,          𝐵𝑛+1 = 2𝐵𝑛 + 1. 
3. 𝐴𝑚+𝑛 = 3𝑛𝐴𝑚 + 𝐴𝑛 , 𝐵𝑚+𝑛 = 2𝑛𝐵𝑚 + 𝐵𝑛 . 
4. 𝐴𝑚+𝑛 = 2𝐴𝑚𝐴𝑛 + 𝐴𝑚 + 𝐴𝑛 , 𝐵𝑚+𝑛 = 𝐵𝑚𝐵𝑛 + 𝐵𝑚 + 𝐵𝑛 . 
5. 𝐴2𝑛 = 2𝐴𝑛 𝐴𝑛 + 1 ,         𝐵2𝑛 = 𝐵𝑛 𝐵𝑛 + 2 . 
6. 𝐴3𝑛 = 𝐴𝑛 4𝐴𝑛

2 + 6𝐴𝑛 + 3 ,         𝐵3𝑛 = 𝐵𝑛 𝐵𝑛  
2 + 2𝐵𝑛 + 2 =

𝐵𝑛( 𝐵𝑛
′  2 + 1),   where 𝐵𝑛

′ = 𝐵𝑛 + 1. 
7. 𝐴4𝑛 = 4𝐴𝑛(𝐴𝑛 + 1) 2𝐴𝑛

2 + 2𝐴𝑛 + 1  

8. 𝐵4𝑛 = 𝐵𝑛 𝐵𝑛 + 2  𝐵𝑛
2 + 2𝐵𝑛 + 2 = 𝐵𝑛

′4 − 1    
9. 𝐴6𝑛 = 2𝐴𝑛 4𝐴𝑛

2 + 6𝐴𝑛 + 3  4𝐴𝑛
3 + 6𝐴𝑛

2 + 3𝐴𝑛 + 1  

10. 𝐵6𝑛 = 𝐵𝑛 𝐵𝑛
2 + 2𝐵𝑛 + 2  𝐵𝑛

3 + 2𝐵𝑛
2 + 2𝐵𝑛 + 2 . 

 

Lemma 4.For any n   values 𝐴𝑛  and  𝐵𝑛can be counted by 𝑂(𝑙𝑜𝑔 𝑛) opera-

tions. 

Proof. In order to count 𝐴𝑛  and  𝐵𝑛   present 𝑛 in the binary form, then use 

relations 4 and 5 from the list 1. For example, if = 11 = 10112 , then sub-

sequently count 𝐴2, 𝐴4, 𝐴8 using 5, then  𝐴10 = 𝐴8 + 𝐴2 + 𝐴1. 

 

3 CALCULATION OF  𝒅𝒏 = 𝒈𝒄𝒅 𝑨𝒏, 𝑩𝒏  

As noticed in the introductory section, the search of pseudoprimes can be 

performed using formula (1). So, the problem is effectively count 𝑑𝑛 =
gcd 𝐴𝑛 , 𝐵𝑛 . 
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The classical algorithm uses the known formula 

gcd 𝐴𝑛 , 𝐵𝑛 = gcd(𝐵𝑛 , 𝐴𝑛  𝑚𝑜𝑑 𝐵𝑛) 

that allows to count gcd 𝐴𝑛 , 𝐵𝑛  using in average 2𝑙𝑜𝑔2𝐵𝑛 ≈ 2𝑛 iterations. 

Each iteration performs actions with integers of length n which 

quire  𝑛 𝑙𝑜𝑔2 𝑛elementary actions, so the common estimate of the task is 

                                                         𝑂 𝑛2𝑙𝑜𝑔2 𝑛                                                  (2) 

Below we consider ways to accelerate this calculation using results of cal-

culation at previous steps. 

4 USING CALCULATIONS OF SMALLER N TO COUNT 𝑫𝑵 FOR 

LARGER N 

Below we consider some partial cases ofcalculation 𝑑𝑘 : 

1. 𝑘 = 2𝑛. In this case we can use relation 5 from list 1. It allows us in-

stead of calculation 𝑑2𝑛  with numbers of length 2n, to perform three calcu-

lations gcd 𝐴𝑛 + 1, 𝐵𝑛 , gcd 𝐴𝑛 , 𝐵𝑛+2 , 𝑎𝑛𝑑 gcd 𝐴𝑛 + 1, 𝐵𝑛 + 2  with 

integers of length n. Using estimate (2) we can evaluate that this saves not 

less than 25 percent’s of time. Indeed, let C(n) denote the time complexity 

of calculation of  𝑑𝑛   by the classical algorithm. Then,  

𝐶 𝑛 = 𝐶 ⋅ 𝑛2 log 𝑛,    𝐶 2𝑛 = 𝐶 ⋅ 4𝑛2 log2 𝑛,     

fora constant C.  The advantage of the trick is equal to 

𝐶 2𝑛 − 3𝐶 𝑛 = 𝐶 ⋅ 𝑛2(log 𝑛 + 4) >
𝐶 2𝑛 

4
 

2. Ifk= 3𝑛, then we  can apply relation 6 of list 1 and calculationof C(3n) 

requires one calculation with integers of length 2n and two calculations 

with integers of length n, so the gain is 

𝐶 3𝑛 − 𝐶 2𝑛 − 2𝐶 𝑛 > 3𝑛2 log 𝑛 >
𝐶 3𝑛 

3
, 

that gives reduction of no less thana thirdpart of the time. Note that when 

we estimate gcd of pairs formed by numbers with different lengths, we 

count the complexity by the lower length, since after the first step of com-

putation thelarger length diminished up to the lower length. 

3. Let 𝑘 = 4𝑛. When using relations 7 and 8 from list 1 we replace the di-

rect computation of 𝑑4𝑛  by 𝑔𝑐𝑑- calculationof9 combinations of pairs 
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formed by a divisor of 𝐴4𝑛  and a divisor of𝐵4𝑛 . Four of them we already 

know, so the rest consists of 5 calculations with numbers of length 1 and 

one with length 2. The total gain of the trick is 

𝐶 4𝑛 − 𝐶 2𝑛 − 5𝐶 𝑛 = 

= 16𝑛2 log 4𝑛 − 4𝑛2 log 2𝑛 − 5𝑛2 log 𝑛 > 7 n2log 𝑛. 

Thus, the  gainforms almost half of the time. 

4. Finally, we consider case 𝑘 = 6𝑛 and use formulas 9 and 10 from list 1. 

There are 9 possible combinations of pairs of divisors of 𝐴6𝑛  and a divisor 

of  𝐵6𝑛 . Four of them we already know, so the rest consists of 2 calcula-

tions with numbers of length 1, 2 calculations with numbers of length 2,  

and one with length 3. The total gain of the trick is 

𝐶 6𝑛 − 𝐶 3𝑛 − 2𝐶 2𝑛 − 2𝐶 𝑛 > 17𝑛2 log 𝑛, 

that gives a gain of almost a half of time. 

Theorem 1. The total gain of application of this technology is about a quar-

ter of time. 

Proof. We count the average cost of 6 consecutive terms of parameter n, 

namely, C(n), C(2n),C(3), C(4n),C(5n), C(6n): 

𝐶𝑡𝑜𝑡𝑎𝑙 > 𝐶 𝑛 ⋅  0 +
1

4
+

1

3
+

7

16
+ 0 +

17

36
 = 

=
𝐶 𝑛 

144
 36 + 48 + 63 + 68 ≈ 1,493𝐶(𝑛) 

Thus, the average gain is equal to 1,493𝐶(𝑛)/6 = 0,248𝐶(𝑛). 

Of course, if we extend the list 1, we can improve a little this theorem. 

5 REDUCING TERMS 𝑨𝒏  AND 𝑩𝒏 BY SMALL DIVISORS 

One of possible ways to accelerate the calculation is to divide 

𝐴𝑛and𝐵𝑛  by possible small divisors. This cannot loss possible spsp’s since 

their divisors are of form 𝑘𝑛 + 1 and lie in 𝑑𝑛 .  

Let p be an integer. The sequence 𝐴𝑛  𝑚𝑜𝑑 𝑝 is finite and contains no 

more than 𝑝 − 1 members.  Let 𝑡 be the number of different members of 

this sequence. Assume also that there is a k such that 𝐴𝑘  𝑚𝑜𝑑 𝑝 = 0.  
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Lemma 5. Let 𝑝, 𝑡 𝑎𝑛𝑑 𝑘 be such as above. Then, 𝐴𝑘+𝑚𝑡 ≡ 0 𝑚𝑜𝑑 𝑝, for 

any 𝑚 ∈  𝑁. The same holds for 𝐵𝑛 . 

Example 1.Let p=11. Elements 𝐴𝑛  𝑚𝑜𝑑 𝑝 forms a finite sequence {1, 4, 2, 

7, 0} containing 5 different members, so t=4, k=5, and all members of kind 

𝐴5𝑛+4are multiples of 5. 

Example 2.For p=41, we find t=8, k=7,and members 𝐴7, 𝐴15 , 𝐴23 , …  are 

divided by 41.  

Example 3. For p=11 elements 𝐵𝑛  𝑚𝑜𝑑 𝑝form a sequence of length 10 

with k=9. So all elements 𝐵9+10𝑡  are multiples of 11. Uniting this with ex-

ample 1 we get that all gcd𝑑9+10𝑡are divided by 11. 

6 CONCLUSION 

In this paper we outlined the importance of the problem of finding pseudo-

prime and strong pseudoprime integers. This helps to find prime numbers 

required for needs of the theory numbers and cryptography. One of ways to 

find them is to exploit the relation (1) calculating the greatest common di-

visor 𝒅𝒏 of pairs 𝑨𝒏, 𝑩𝒏, defined by recursion. To accelerate calculation of 

𝒅𝒏 we suggested to use information gathered at the previous stages of 

computation. This gives a common income by no less than 25 percent’s. 
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