ISSN 1995-0802, Lobachevskii Journal of Mathematics, 2016, Vol. 37, No. 4, pp. 397-403. © Pleiades Publishing, Ltd., 2016.

Integrable Products of Measurable Operators

A. Bikchentaev^{*}

(Submitted by Oleg Tikhonov)

Kazan (Volga Region) Federal University, N.I. Lobachevskii Institute of Mathematics and Mechanics, Kremlevskaya ul. 18, Kazan, 420008 Tatarstan, Russia Received November 23, 2015

Abstract—Let τ be a faithful normal semifinite trace on von Neumann algebra $\mathcal{M}, 0 and <math>L_p(\mathcal{M}, \tau)$ be the space of all integrable (with respect to τ) with degree p operators, assume also that $\widetilde{\mathcal{M}}$ is the *-algebra of all τ -measurable operators. We give the sufficient conditions for integrability of operator product $A, B \in \widetilde{\mathcal{M}}$. We prove that $AB \in L_p(\mathcal{M}, \tau) \Leftrightarrow |A|B \in L_p(\mathcal{M}, \tau) \Leftrightarrow |A||B^*| \in L_p(\mathcal{M}, \tau)$; moreover, $||AB||_p = |||A|B||_p = |||A||B^*||_p$. If A is hyponormal, B is cohyponormal and $AB \in L_p(\mathcal{M}, \tau)$ then $BA \in L_p(\mathcal{M}, \tau)$ and $||BA||_p \leq ||AB||_p$; for p = 1 we have $\tau(AB) = \tau(BA)$. A nonzero hyponormal (or cohyponormal) operator $A \in \widetilde{\mathcal{M}}$ cannot be nilpotent. If $A \in \widetilde{\mathcal{M}}$ is quasinormal then the arrangement $\mu_t(A^n) = \mu_t(A)^n$ for all $n \in \mathbb{N}$ and t > 0. If A is a τ -compact operator and $B \in \widetilde{\mathcal{M}}$ is such that $|A|\log^+|A|, e^{p|B|} \in L_1(\mathcal{M}, \tau)$ then $AB, BA \in L_1(\mathcal{M}, \tau)$.

DOI: 10.1134/S1995080216040041

Keywords and phrases: Hilbert space, von Neumann algebra, normal trace, state, Radon–Nikodym derivative, τ -measurable operator, rearrangement, integrable operator, hyponormal operator, quasinormal operator, nilpotent, projection.

INTRODUCTION

Let \mathcal{M} be a von Neumann algebra of operators on a Hilbert space \mathcal{H} and τ be a faithful normal semifinite trace on \mathcal{M} , \mathcal{M}^{pr} be the lattice of projections in \mathcal{M} . Assume also that $\widetilde{\mathcal{M}}$ is the *-algebra of all τ -measurable operators, consider a number $0 and let <math>L_p(\mathcal{M}, \tau)$ be the space of all integrable (with respect to τ) with degree p operators.

Integrability of τ -measurable operator product is one of the key problems in the noncommutative integration theory (see, for example, [2, 3, 7, 8, 11, 16–19]). The Golden–Tompson and the Peierls–Bogoliubov inequalities also comprise τ -measurable operator products integration, moreover, these inequalities characterize tracial functionals on C^* -algebras [4, 5]. It is well known in Probability Theory that the product $\xi\eta$ of independent integrable random variables ξ and η is also integrable, moreover, $\int_{\Omega} \xi \eta d\mathbb{P} = \int_{\Omega} \xi d\mathbb{P} \int_{\Omega} \eta d\mathbb{P}$.

In this paper we give the sufficient conditions for integrability of the operator product $A, B \in \widetilde{\mathcal{M}}$. We prove that $AB \in L_p(\mathcal{M}, \tau) \Leftrightarrow |A|B \in L_p(\mathcal{M}, \tau) \Leftrightarrow |A||B^*| \in L_p(\mathcal{M}, \tau)$; moreover, $||AB||_p = |||A||B^*||_p$. We have $\tau(|A|B) = \tau(B|A|B) = \tau(B|A|)$ and $\tau(B|A|B^{\perp}) = \tau(B^{\perp}|A|B) = 0$ for $B \in \mathcal{M}^{\text{pr}}$ and p = 1 (Theorem 2.1). If A is hyponormal, B is cohyponormal, and $AB \in L_p(\mathcal{M}, \tau)$ then $BA \in L_p(\mathcal{M}, \tau)$ and $||BA||_p \leq ||AB||_p$; we have $\tau(AB) = \tau(BA)$ for p = 1 (Theorem 2.3). A nonzero hyponormal (or cohyponormal) operator $A \in \widetilde{\mathcal{M}}$ cannot be nilpotent (Theorem 2.4). If $A \in \widetilde{\mathcal{M}}$ is quasinormal then $\mu_t(A^n) = \mu_t(A)^n$ for all $n \in \mathbb{N}$ and t > 0 (Theorem 2.6). If $A \in \widetilde{\mathcal{M}}$ is a quasinormal operator and $A^2 = A$ then $A \in \mathcal{M}^{\text{pr}}$ (Corollary 2.8). If A is a τ -compact operator and $B \in \widetilde{\mathcal{M}}$ is

^{*}E-mail: Airat.Bikchentaev@kpfu.ru