τ-PSEUDOCOMPACT MAPPINGS Yu. N. Mironova

UDC 515.1

Introduction. In this article we consider the problem of extending the notion of τ -pseudocompactness from spaces to continuous mappings.

Recall that a Tychonoff space X is *pseudocompact* if every continuous function on X is bounded. The product of pseudocompact spaces is not necessarily pseudocompact; however, there are conditions under which pseudocompactness is preserved. Comfort and Ross (see [1]) proved that the product of pseudocompact topological groups is a pseudocompact topological group. Generalizing this assertion, M. G. Tkachenko [2] demonstrated that the product of relatively pseudocompact subsets of topological groups is relatively pseudocompact in the product. V. V. Uspenskii [3] considered a similar fact for relatively pseudocompact subsets of d-spaces. M. G. Tkachenko [4] established the most general fact in this field: If spaces X_{α} have countably directed lattices of d-open mappings onto Dieudonné complete spaces and if sets C_{α} are relatively pseudocompact in X_{α} , $\alpha \in A$, then the product $\prod_{\alpha \in A} C_{\alpha}$ is relatively pseudocompact in the product $\prod_{\alpha \in A} X_{\alpha}$.

B. A. Pasynkov posed the problem of further abstracting these assertions. This leads to the notion of τ -pseudocompact space [5] and to a sought generalization for τ -pseudocompact spaces.

Theorem [5]. If topological spaces X_s , $s \in S$, have τ -directed lattices of d-open mappings onto c- τ -bounded spaces and if sets C_s are relatively τ -pseudocompact in X_s , $s \in S$, then the set $C = \prod \{C_s : s \in S\}$ is relatively τ -pseudocompact in $X = \prod \{X_s : s \in S\}$.

The problem arises of extending the notion of τ -pseudocompactness from spaces to mappings. Translating the notion of τ -pseudocompactness to mappings, we obtain properties of τ -pseudocompact mappings similar to those of τ -pseudocompact spaces in [5].

Since every space X can be treated as a continuous mapping $f: X \to Y$ into a singleton, we derive corollaries to the multiplicativity theorems for τ -pseudocompactness for spaces which include the above results of [1–5] in particular.

1. τ -Pseudocompact and τ -compact mappings. Let X be a topological space and let τ be an infinite cardinal. A system λ is called τ -local in X if every point $x \in X$ possesses a neighborhood Ox such that $|\operatorname{St}(Ox, \lambda)| < \tau$.

DEFINITION 1. A continuous mapping $f: X \to Y$ is τ -pseudocompact if for every open set O in Y, a point $y \in O$, and a τ -local open system λ in $f^{-1}O$, there is a neighborhood Oy of y such that $Oy \subset O$ and $|\operatorname{St}(f^{-1}Oy, \lambda)| < \tau$.

For $\tau = \omega$ the notion of τ -pseudocompact mapping coincides with the notion of o-pseudocompact mapping (see [6]).

Property 1. Suppose that mappings $f_1 : X_1 \to Y$, $f_2 : X_2 \to Y$, and $g : X_1 \to X_2$ are continuous, the mapping g is surjective, and $f_1 = f_2 \circ g$. Then τ -pseudocompactness of f_1 implies τ -pseudocompactness of f_2 .

PROOF. Suppose that the mapping $f_2 : X_2 \to Y$ is not τ -pseudocompact. Then there exist an open set O in Y, a point $y \in O$, and a τ -local open system λ_2 in the inverse image $f_2^{-1}O$ such that $|\operatorname{St}(f_2^{-1}Oy, \lambda_2)| \geq \tau$ for every neighborhood Oy of y.

Since g is continuous and surjective, the system $g^{-1}\lambda_2$ is τ -local and open in the space $g^{-1}(f_2^{-1}O) = f_1^{-1}O$. Since f_1 is τ -pseudocompact; for the system $g^{-1}\lambda_2$, there is a neighborhood O_2y of y such

Moscow. Translated from *Sibirskiĭ Matematicheskiĭ Zhurnal*, Vol. 42, No. 3, pp. 634–644, May–June, 2001. Original article submitted January 10, 1999. Revision submitted July 30, 1999.

^{0037-4466/01/4203-0537 \$25.00 (}c) 2001 Plenum Publishing Corporation

that $|\operatorname{St}(f_1^{-1}O_1y, g^{-1}\lambda_2)| < \tau$. Consequently, $|\operatorname{St}(g(f_1^{-1}O_1y), g(g^{-1}\lambda_2))| \geq \tau$. However, we have $g(f_1^{-1}O_1y) = (f_2^{-1} \circ f_1)(f_1^{-1}O_1y) = f_2^{-1}O_1y, g(g^{-1}\lambda_2) = \lambda_2$ and $|\operatorname{St}(f_2^{-1}Oy, \lambda_2)| \geq \tau$ for every neighborhood Oy of y. This contradiction proves Property 1.

Let $f_{\alpha} : X_{\alpha} \to Y$, $\alpha \in A$, be mappings. Henceforth the fiberwise product f of the mappings $f_{\alpha} : X_{\alpha} \to Y$, $\alpha \in A$ (see [7]) is called the *product* of $f_{\alpha} : X_{\alpha} \to Y$, $\alpha \in A$, and denoted by $f = \prod_{\alpha \in A} f_{\alpha}$. Thus, we have some mapping $f : X \to Y$, and

$$f^{-1}y = \prod_{\alpha \in A} f_{\alpha}^{-1}y \subset \prod_{\alpha \in A} X_{\alpha}$$

for every $y \in Y$. The following property is well known:

Property 2. The fiberwise product of perfect mappings is perfect.

2. Relatively τ -pseudocompact mappings.

DEFINITION 1. Let $f: X \to Y$, $X_1 \subset X$, be a continuous mapping. A submapping $g = f|_{X_1}: X_1 \to Y$ of f is relatively τ -pseudocompact in f if for every open set O in Y, a point $y \in O$, and a τ -local open system λ in $f^{-1}O$, there is a neighborhood Oy of y such that $Oy \subset O$ and $|\operatorname{St}(g^{-1}Oy, \lambda)| < \tau$.

REMARK 1. It is clear that each τ -pseudocompact mapping $f: X \to Y$ is relatively τ -pseudocompact in itself.

Property 1. The continuous image of a relatively τ -pseudocompact mapping is relatively τ -pseudo-compact.

PROOF. Assume that the following diagram commutes:

$$\begin{array}{c} X_1' \subset X_1 \stackrel{\xi}{\longrightarrow} X_2 \supset X_2' \\ g_1 \searrow f_1 \searrow \swarrow f_2 \swarrow g_2 \\ Y \end{array}$$

The mapping $g_1 : X'_1 \to Y$ is relatively τ -pseudocompact in f_1 . Prove that the mapping $g_2 = \xi(g_1)$ is relatively τ -pseudocompact in f_2 . Consider an open set O in Y and a point $y \in O$. Let λ_2 be a τ -local open system in the tubular neighborhood $f_2^{-1}O$. Then the system $\lambda_1 = \xi^{-1}\lambda_2$ is open and τ -local in the tubular neighborhood $f_1^{-1}O = \xi^{-1}f_2^{-1}O$. Since the mapping $g_1 : X'_1 \to Y$ is relatively τ -pseudocompact in f_1 , there is a neighborhood Oy of y such that $Oy \subset O$ and $|\operatorname{St}(g_1^{-1}Oy, \lambda_1)| < \tau$. Then $|\operatorname{St}(\xi(g_1^{-1}Oy), \xi_1^2)| < \tau$; consequently, $|\operatorname{St}(g_2^{-1}Oy), \lambda_2| < \tau$.

Property 2. Suppose that a mapping $f_1 : X_1 \to Y$, $f_1 = f|_{X_1}$ is relatively τ -pseudocompact in $f : X \to Y$, $X_1 \subset X$, and $X_2 \subset X_1$. Then the mapping $f_2 = f|_{X_2} : X_2 \to Y$ is relatively τ -pseudocompact in f.

PROOF. Consider an open set O in Y, a point $y \in O$, and a τ -local open system λ in the tubular neighborhood $f^{-1}O$. Since the mapping $f_1 = f|_{X_1}$ is relatively τ -pseudocompact in f, there is a neighborhood $Oy \subset O$ of y such that $|\operatorname{St}(f_1^{-1}Oy, \lambda)| < \tau$. Since $f_2^{-1}Oy \subset f_1^{-1}Oy$, we have $|\operatorname{St}(f_2^{-1}Oy, \lambda)| < \tau$.

Property 3. Suppose that $X_2 \subset X_1 \subset X$, where $f_2 = f|_{X_2} : X \to Y$ is a mapping, and $f : X \to Y$ is relatively τ -pseudocompact in $f_1 : X_1 \to Y$, $f_1 = f|_{X_1}$. Then f_2 is relatively τ -pseudocompact in f.

PROOF. Consider an open set O in Y, a point $y \in O$, and a τ -local open system λ in $f^{-1}O$. Then the system $\lambda \cap f_1^{-1}O$ is open and τ -local in $f_1^{-1}O$; consequently, there is a neighborhood $Oy \subset O$ of ysuch that $\left|\operatorname{St}(f_2^{-1}O, \lambda \cap f_1^{-1}O)\right| < \tau$. Since $f_2^{-1}O \subset f_1^{-1}O$, we also have $\left|\operatorname{St}(f_2^{-1}Oy, \lambda)\right| < \tau$.

3. c- τ -Bounded mappings.

DEFINITION 1. A continuous mapping $f: X \to Y$ is $c - \tau$ -bounded if every closed relatively τ -pseudocompact submapping $g = f|_{X_1}$, where X_1 is closed in X, is a perfect mapping.

Consider some examples of c- τ -bounded mappings.

Recall [8] that $f: X \to Y$ is a T_0 -mapping if, for arbitrary two points x and $x' \neq x$ such that fx = fx', at least one of the points x and x' has a neighborhood in X that does not contain the other point, and f is completely regular if, for every point $x \in X$ and a closed set F in X ($F: x \notin F$), there is a neighborhood O of fx such that x and F are functionally separated in the inverse image $f^{-1}O$. A Tychonoff mapping is a completely regular T_0 -mapping.

Recall also [8] that a mapping $bf: X \to Y$ is a bicompactification of a mapping $f: X \to Y$ if $X \subseteq X$, $[X] = X, bf|_X = f$, and bf is a bicompact (perfect) mapping. Given two bicompactifications $b_1 f: X_1 \to Y$ and $b_2 f: x_2 \to Y$ of a mapping $f: X \to Y$, we write $b_2 f \ge b_1 f$ if there is a natural mapping from X_2 into X_1 . Every Tychonoff mapping $f: X \to Y$ possesses at least one Tychonoff bicompactification and among all Tychonoff bicompactifications of f there is a maximal bicompactification $\beta f: \beta_f X \to Y$.

Generalizing B. A. Pasynkov's definition of a Dieudonné tubular complete mapping [9], we arrive at the following definition:

DEFINITION 2. A Tychonoff mapping $f: X \to Y$ is called *Dieudonné complete in the extended sense* if, for every point $x \in \beta_f X \setminus X$, there exist a neighborhood U of $(\beta f)x$ in Y and a locally finite (in $f^{-1}U$) open covering λ of the tubular neighborhood $f^{-1}U$ such that $x \notin U[\lambda]_{(\beta f)U}^{-1} \equiv \cup \{[O](\beta f)^{-1}U : O \subset \lambda\}$.

Note that the Dieudonné tubular complete mappings as well as \mathbb{R} -complete mappings [10] are Dieudonné complete in the extended sense.

Lemma 1. If a mapping $f : X \to Y$ is Dieudonné complete in the extended sense, where Y is a T_1 -space, then f is a c- ω -bounded mapping.

PROOF. Consider a relatively pseudocompact closed submapping $f_1 = f|_{X_1}$ of f, where X_1 is closed in X. Prove that the mapping $f_1 : X_1 \to Y$ is perfect. Take $y \in Y$. Show that the inverse image $f_1^{-1}y$ is bicompact.

Since Y is a T_1 -space and the set $\{y\}$ is closed in Y, the set $f_1^{-1}y$ is closed in X_1 . Since f is Dieudonné complete in the extended sense; for every $x \in \beta_f X \setminus X$ such that $(\beta f)x = y$, there exist a neighborhood O of y in Y and an open locally finite covering λ of the tubular neighborhood $f^{-1}O$ such that $x \notin \bigcup[\lambda]_{(\beta f)^{-1}O}$. Since the mapping $f_1 : X_1 \to Y$ is relatively pseudocompact in f, there is a neighborhood O_1y of y in O such that $|\operatorname{St}(f_1^{-1}O_1y,\lambda)| < \omega$. Recalling that $x \notin \bigcup[\lambda]_{\beta_f X}$, we hence obtain

$$\begin{split} f_1^{-1}y &\subset f_1^{-1}Oy \subset B(x) = \cup \left[\mathrm{St} \left(f_1^{-1}O_1 y, \lambda \right) \right]_{\beta_f X} \cap X_1 \\ &= \left[\cup \mathrm{St} \left(f_1^{-1}O_1 y, \lambda \right) \right]_{\beta_f X} \cap X_1 \not\ni x. \end{split}$$

The set B(x) is closed in $\beta_f X$ and $f_1^{-1}y \subset B(x)$ for every $x \in \beta_f X \setminus X$ such that $(\beta f)x = y$. Since the mapping $\beta f : \beta_f X \to Y$ is perfect, the set $(\beta f)^{-1}y$ is bicompact; moreover, $f^{-1}y \subset (\beta f)^{-1}y$. Then $B = (\cap \{B(x) = x \in \beta_f X \setminus X, (\beta f)x = y\}) \cap (\beta f)^{-1}y$ is a bicompact set such that $f_1^{-1}y \subset B \subset (\beta_f X \setminus ((\beta_f X) \setminus X)) \cap X_1 = X_1$. Thereby $f_1^{-1}y$ is bicompact, since it is a closed subset of the bicompact set B. The mapping f_1 is perfect for it is closed.

Corollary 1. A tubular \mathbb{R} -complete mapping $f : X \to Y$, where Y is a T_1 -space, is a c- ω -bounded mapping.

Corollary 2. A Dieudonné complete mapping $f : X \to Y$, where Y is a T_1 -space, is a c- ω -bounded mapping.

It is well known [11, Theorem 3.1.1] that a space X is bicompact if and only if X is pseudocompact and \mathbb{R} -complete.

Theorem 1. A closed Tychonoff mapping $f : X \to Y$ is perfect if and only if f is pseudocompact [6] and \mathbb{R} -complete.

PROOF. 1. A perfect mapping is pseudocompact and \mathbb{R} -complete [6].

2. A pseudocompact closed \mathbb{R} -complete mapping is perfect (see [5]).

Theorem 2. A mapping $f : X \to Y$ is perfect if and only if f is pseudocompact, $c \cdot \omega$ -bounded, and closed.

PROOF. 1. A complete mapping is pseudocompact, closed, and c- ω -bounded. Indeed, suppose that X_1 is closed in X. Then $f_1 = f|_{X_1} : X_1 \to Y$ is perfect.

2. A pseudocompact closed c- ω -bounded mapping is perfect (by definition).

4. Multiplicativity of c- τ -boundedness of mappings.

Proposition 1. Suppose $f_{\alpha} : X_{\alpha} \to Y$ are closed $c \cdot \tau$ -bounded mappings for $\alpha \in A$. Then their fiberwise product $f : X \to Y$ is $c \cdot \tau$ -bounded as well.

PROOF. Let $f_1 : X_1 \to Y$ be a relatively τ -pseudocompact closed submapping of f, with X_1 a closed set in $X_0 \subset \prod \{X_\alpha : \alpha \in A\}$. (Observe that $X_0 \neq \prod \{X_\alpha : \alpha \in A\}$; see [7].) Prove that f_1 is perfect.

Since the mappings $\pi_{\alpha}|_{X_1} : X_1 \to X_{\alpha}$, where $\pi_{\alpha} : X_0 \to X_{\alpha}$ is the projection, are surjective and continuous for all $\alpha \in A$; the mappings $f_{\alpha}|_{\pi_{\alpha}}X_1 : X_1 \to Y$ are relatively τ -pseudocompact in f_{α} for all $\alpha \in A$ (Property 1 of Section 2).

Since the set X_1 is closed in X_0 and $X_1 = \prod_{\alpha \in A} \pi_\alpha X_1$, the sets $\pi_\alpha X_1$ are closed in X_α for all $\alpha \in A$ [11]. Consequently, the mappings $f_\alpha|_{\pi_\alpha} X_1$ are closed for all $\alpha \in A$.

Since $f_{\alpha}: X_{\alpha} \to Y$ are *c*- ω -bounded mappings, the mappings $f_{\alpha}|_{\pi_{\alpha}X_{1}}: X_{1} \to Y$ are perfect for all $\alpha \in A$. Then the mapping $\prod_{\alpha \in A} (f_{\alpha}|_{\pi_{\alpha}X_{1}}) \equiv f_{1}: X_{1} \to Y$ is perfect by Property 2.

5. Lattices of continuous morphisms over mappings.

DEFINITION 1. Suppose that $f_1: X_1 \to Y$ and $f_2: X_2 \to Y$ are mappings. A morphism $\varphi: f_1 \to f_2$ is called an *embedding* if the continuous mapping $\varphi: X_1 \to X_2$ is an embedding $(f_2|_{\varphi X_1} \equiv f_2)$.

REMARK. Here and in the sequel, it is convenient to use the same symbol φ for a morphism $\varphi : f_1 \to f_2$ and the corresponding continuous mapping $\varphi : X_1 \to X_2$, where $f_1 : X_1 \to Y$ and $f_2 : X_2 \to Y$.

DEFINITION 2. Let $f: X \to Y$ be a continuous mapping. We say that a system $L = \{\varphi_{\alpha}, \varphi_{\beta\alpha}; A\}$ of a directed set A, continuous surjective morphisms φ_{α} of $f, \varphi_{\alpha} : f \to f_{\alpha}$, where $f_{\alpha} : X_{\alpha} \to Y$, $f_{\alpha} = \varphi_{\alpha} f$, $\alpha \in A$, and continuous surjective morphisms $\varphi_{\beta\alpha} : \varphi_{\beta} \circ f \to \varphi_{\alpha} \circ f$, $\alpha, \beta \in A$, $\alpha < \beta$, is a *lattice of continuous morphisms over* $f: X \to Y$ if the following are satisfied:

(1) $\Delta = \Delta_{\alpha \in A} \varphi_{\alpha} : f \to \prod_{\alpha \in A} f_{\alpha}$ is an embedding;

(2) $\varphi_{\alpha} = \varphi_{\beta\alpha} \circ \varphi_{\beta}, \ \alpha, \beta \in \overline{A}, \ \alpha < \beta.$

Recall [2] that a mapping $f: X \to Y$ is called *d*-open if the image of every open set in X is dense in some open set in Y.

DEFINITION 3. The lattice L is τ -directed if the set A is τ -directed, and L is d-open if all morphisms φ_{α} are d-open.

REMARK. To each lattice $L = \{\varphi_{\alpha}, \varphi_{\beta\alpha}; A\}$ of continuous morphisms over a mapping $f : X \to Y$ there corresponds the lattice $L_0 = \{\varphi_{\alpha}, \varphi_{\beta\alpha}; A\}$ of continuous mappings of X, where $\varphi_{\alpha} : X \to X_{\alpha}$ are continuous surjective mappings of X for all $\alpha \in A$ and $\varphi_{\beta\alpha} : \varphi_{\beta}X \to \varphi_{\alpha}X$ are mappings of the images of X under φ_{β} and $\varphi_{\alpha}, \alpha, \beta \in A$.

If a lattice L is τ -directed (d-open) then the corresponding lattice L_0 is τ -directed (d-open) as well.

DEFINITION 4. Let $\{\varphi_{\alpha} : f_{\alpha} \to g_{\alpha}, \alpha \in A\}$ be a system of morphisms. The product $\varphi = \prod_{\alpha \in A} \varphi_{\alpha}$ of morphisms is the morphism taking the product $f = \prod_{\alpha \in A} f_{\alpha}$ of mappings into the product $f = \prod_{\alpha \in A} g_{\alpha}$ of mappings such that $f = g \circ \varphi$.

6. Multiplicativity theorems for relatively τ -pseudocompact mappings.

Proposition 1. Let $f: X \to Y$ be a continuous mapping and let $L = \{\varphi_{\alpha}, \varphi_{\beta\alpha}; A\}$ be a τ -directed lattice of d-open morphisms over f. A submapping $f_1: X_1 \to y, X_1 \subset X$, is relatively τ -pseudocompact in f if and only if its image $\varphi_{\alpha} \circ f_1 = f_{1\alpha}$ is relatively τ -pseudocompact in $f_{\alpha} = \varphi_{\alpha} \circ f$ for every $\alpha \in A$.

PROOF. 1. If $f_1: X_1 \to Y$ is relatively τ -pseudocompact in $f: X \to Y$ then its image $f_{1\alpha} = X_{1\alpha} = \varphi_{\alpha}X_1 \to Y$ is relatively τ -pseudocompact in f_{α} by Property 1 of Section 2.

2. Suppose that $f_{1\alpha} : X_{1\alpha} \to Y$ is relatively τ -pseudocompact in f_{α} for each $\alpha \in A$. Assume that $f_1 : X_1 \to Y$ is not relatively τ -pseudocompact in f. Then there exist an open set O in Y, a point $y \in O$, and a τ -local system $\lambda = \{U_{\gamma}\}_{\gamma \in \Gamma}$ in $f^{-1}O$ constituted by elements of the base of X such that $|\Gamma| \geq \tau$ and $|\operatorname{St}(f_1^{-1}Oy, \lambda)| \geq \tau$ for every neighborhood Oy of y in O. Since the lattice I_0 is τ -directed, we have

$$\forall U_{\gamma} \in \lambda \; \exists W_{\gamma} \subset X_{\alpha 0} = \varphi_{\alpha(0)} X : \varphi_{\alpha(0)}^{-1} W_{\gamma} = U_{\gamma}.$$

We obtain the open system $\nu = \{W_{\gamma}\}_{\gamma \in \Gamma}$ in $X_{\alpha(0)}$ (here $\alpha(0) \in A$ is an index such that $\alpha(0) > \alpha(\gamma)$ for every $\gamma \in \Gamma$).

Since the system ν is open in $\varphi_{\alpha(0)}(f^{-1}O)$, the mapping $\varphi_{\alpha(0)}$ is *d*-open, and the system $\varphi_{\alpha(0)}^{-1}\nu = \lambda$ is τ -local in $f^{-1}O$; it follows that the system ν is τ -local in $\varphi_{\alpha(0)}(f^{-1}O)$ [5]. As soon as $f = f_{\alpha[0]} \circ \varphi_{\alpha(0)}$, we obtain $f^{-1}O = (f_{\alpha(0)} \circ \varphi_{\alpha(0)})^{-1}O = \varphi_{\alpha(0)}^{-1}(f_{\alpha(0)}^{-1}O)$; i.e., the system ν is τ -local in $f_{\alpha(0)}^{-1}O$. Since the mapping $f_{\alpha(0)} : X_{\alpha(0)} \to Y$ is relatively τ -pseudocompact in $f_{\alpha(0)}$, for $y \in O$ and the system ν there is a neighborhood Oy of y such that $Oy \subset O$ and $|\operatorname{St}(f_{1\alpha(0)}^{-1}Oy, \nu)| < \tau$; consequently, $|\operatorname{St}(f_1^{-1}Oy, \lambda)| < \tau$. This contradiction proves the proposition.

Lemma 1. Suppose that a mapping $f : X \to Y$ is d-open and $X_1 \subset X$. Then the submapping $f_1 = f|_{X_1} : X_1 \to Y$ is d-open.

PROOF. It is well known [2] that a mapping $f: X \to Y$ is d-open if and only if $[f^{-1}V] = f^{-1}[V]$ for every open set V in Y. Consider an open set V in Y. We have $f_1^{-1}[V]_{X_1} = f^{-1}[V] \cap X_1 = [f^{-1}V] \cap X_1 = [f^{-1}V]_{X_1}$. Consequently, the mapping $f_1: X_1 \to Y$ is d-open.

Lemma 2. Suppose that a mapping $f : X \to Y$ is $c - \tau$ -bounded and X_1 is closed in X. Then the submapping $f_1 = f|_{X_1} : X_1 \to Y$ is $c - \tau$ -bounded.

PROOF. Let $f_2 : X_2 \to Y$, where X_2 is closed in X_1 , be a mapping relatively τ -pseudocompact in f_1 and closed. We have $f_2 = f_1|_{X_2} = f|_{X_2}$. Since X_2 is closed in X_1 and X_1 is closed in X, X_2 is closed in X [11]. Since $X_2 \subset X_1$, by Property 3 of Section 2 the mapping $f_2 : X_2 \to Y$ is relatively τ -pseudocompact in f.

In view of c- τ -boundedness of $f: X \to Y$, the mapping $f_2: X_2 \to Y$ is perfect.

Theorem 1. If mappings $f_1^s : X_1^s \to Y$ are closed, $c \cdot \tau$ -bounded, and relatively τ -pseudocompact in $f^s : X^s \to Y$, where $f_1^s = f^s|_{X_1^s}$ and $X_1^s \subset X^s$, $s \in S$, then the mapping $f_1 = \prod_{s \in S} f_1^s$ is relatively τ -pseudocompact in $f = \prod_{s \in S} f^s$.

PROOF. Consider an open set O in Y, a point $y \in O$, and an open τ -local system $\lambda = \{U_{\alpha}\}_{\alpha \in A}$ in $f^{-1}O$.

The mapping f_1^s is perfect for every $s \in S$. Hence, the mapping $f_1 = \prod_{s \in S} f_1^s$ is perfect. Consequently, the inverse image $f_1^{-1}y$ of y is bicompact.

Since the system λ is τ -local in $f^{-1}O$, every point $x \in f_1^{-1}y$ has a neighborhood Ox in $f^{-1}O$ such that $|\operatorname{St}(\lambda, Ox)| < \tau$. Since $f_1^{-1}y$ is bicompact, from the open covering $\mu = \{Ox \wedge f_1^{-1}y, x \in f^{-1}y\}$ of $f_1^{-1}y$ we can extract a finite subcovering μ' such that $f^{-1}y \subset \cup \mu'$. Then there exist $x_1, \ldots, x_k \in f^{-1}y$ such that $f^{-1}y \subset \bigcup_{j=1}^k Ox_j = V$. Since f_1 is closed, there is a neighborhood Oy of y such that $f_1^{-1}Oy \subset V$. Thus, we obtain $|\operatorname{St}(\lambda, V)| < \tau$; consequently, $|\operatorname{St}(\lambda, f_1^{-1}Oy)| < \tau$. Hence, f_1 is relatively τ -pseudocompact in f.

Theorem 2. Suppose that mappings $f^s : X^s \to Y$ are closed and over them there are τ -directed lattices $L^s = \{\varphi_{\alpha(s)}, \varphi_{\beta(s)\alpha(s)}; A(s)\}, s \in S$, of d-open morphisms onto c- τ -bounded mappings $f_{\alpha(s)} : f_{\alpha(s)} = \varphi_{\alpha(s)} \circ f^s, s \in S, \alpha(s) \in A(s)$. Suppose also that the mappings $f_1^s = f^s|_{X_1^s}, f_1^s : X_1^s \to Y$, where X_1^s is closed in X^s , are closed and relatively τ -pseudocompact in $f^s, s \in S$. Then the product $f_1 = \prod_{s \in S} f_1^s$ is relatively τ -pseudocompact in $f = \prod_{s \in S} f^s$.

PROOF. By Proposition 1 of Section 6, the mapping $f_{\alpha(s)}^1 = \varphi_{\alpha(s)} \circ f_1^s$ is relatively τ -pseudocompact in $f_{\alpha(s)} = \varphi_{\alpha(s)} \circ f^s$ for every $\alpha(s) \in A(s)$.

Take $A \in \prod_{s \in S} A(s)$. Consider the lattice $L = \{\varphi_{\alpha}, \varphi_{\beta\alpha}; A\}$ over f. Here

$$\varphi_{\alpha} = \prod_{s \in S} \varphi_{\alpha(s)}, \ \varphi_{\alpha} : f \to f_{\alpha}, \quad f_{\alpha} = \prod_{s \in S} f_{\alpha(s)}, \quad \alpha \in A, \ s \in S,$$
$$\varphi_{\beta\alpha} = \prod_{s \in S} \varphi_{\beta(s)\alpha(s)}, \ \beta > \alpha, \ \beta \in A, \quad \varphi_{\beta\alpha} : f \to f_{\alpha}.$$

We order A as follows: given $\alpha = \{\alpha(s) : s \in S\}$ and $\beta = \{\beta(s) : s \in S\}$, with $\alpha(s), \beta(s) \in A(s), s \in S$, we put $\beta > \alpha$ if $\beta(s) > \alpha(s)$ for every $s \in S$. The set A with this order is τ -directed, since the set A(s) is τ -directed for every $s \in S$.

Since the morphisms $\varphi_{\alpha(s)}$ are *d*-open for all $s \in S$, the products $\varphi_{\alpha} = \prod_{s \in S} \varphi_{\alpha(s)}$ are *d*-open as products of *d*-open morphisms. Moreover, since $\varphi_{\alpha(s)} = \varphi_{\beta(s)\alpha(s)} \circ \varphi_{\beta(s)}$ for every $s \in S$, we have $\varphi_{\alpha} = \varphi_{\beta\alpha} \circ \varphi_{\beta}, \beta > \alpha, \beta, \alpha \in A$.

Since $\Delta\{\varphi_{\alpha(s)} : \alpha(s) \in A(s)\} : f_s \to \prod_{\alpha(s) \in A(s)} f_{\alpha(s)}$ is an embedding for every $s \in S$; therefore, $\Delta\{\varphi_{\alpha} : \alpha \in A\} : f \to \prod_{\alpha \in A} f_{\alpha}$ is an embedding too.

Thus, L is a τ -directed lattice of d-open morphisms over the mapping $f = \prod_{s \in S} f^s$ and the mappings $f_1 = \prod_{s \in S} f_1^s$ are relatively τ -pseudocompact in the product $f_\alpha = \prod_{s \in S} f_{\alpha(s)}$ by Theorem 1 of Section 6. By Proposition 1 of Section 6, the mapping f_1 is relatively τ -pseudocompact in f.

As a consequence of the Theorem 2 for $\tau = \omega$, we obtain the following assertion:

Theorem 3. Suppose that, over closed mappings $f^s : X^s \to Y$, there are countably directed lattices of d-open morphisms onto mappings Dieudonné complete in the extended sense (in particular, on Dieudonné complete or \mathbb{R} -complete mappings) and the mappings $f^s : X^s \to Y$ and $f_1^s = f^s|_{X_1^s}$, $X_1^s \subset X^s$ are relatively pseudocompact in f_s , $s \in S$. Then $f_1 = \prod_{s \in S} f_1^s$ is relatively pseudocompact in $f = \prod_{s \in S} f^s$.

7. Corollaries to the multiplicativity theorem of τ -pseudocompactness for spaces. Every space X can be viewed as a continuous mapping $f: X \to Y$ into a singleton. Since f is closed and the space $Y = \{y\}$ is locally bicompact, we obtain the following corollaries to the multiplicativity theorems of τ -pseudocompactness for spaces [5].

7.1. *c*- τ -Bounded spaces. Recall [5] that a set $B \subset X$ is relatively τ -pseudocompact in X if $|\operatorname{St}(\lambda, B)| < \tau$ for every τ -local open system λ in X.

For $\tau = \omega$, relative τ -pseudocompactness of a set B in a Tychonoff space X is equivalent to its boundedness or relative pseudocompactness [2], i.e., boundedness of every continuous function $\varphi = X \rightarrow \mathbb{R}$ on B.

From the definition of relative τ -pseudocompactness we derive the following properties:

Property 1. If a mapping $f : X \to Y$ is continuous and a set B is relatively τ -pseudocompact in X then the image f(B) is relatively τ -pseudocompact in Y.

Property 2. If a set B is relatively τ -pseudocompact in X then its closure [B] is relatively τ -pseudocompact in X.

Property 3. If B is a relatively τ -pseudocompact subset of a subspace Y of a space X then B is relatively τ -pseudocompact in X.

DEFINITION 1. A space X is c- τ -bounded if the closure of every relatively τ -pseudocompact subset in X is bicompact.

REMARK 1. A closed subspace Y of a c- τ -bounded space X is c- τ -bounded.

Proposition 1. The class of c- τ -bounded spaces is multiplicative.

PROOF. Suppose that X_{α} are c- τ -bounded spaces for all $\alpha \in A$ and B is a relatively τ -pseudocompact set in $X = \prod \{X_{\alpha} : \alpha \in A\}$. For every $\alpha \in A$, the set $\pi_{\alpha}B$, where π_{α} is the projection of X onto X_{α} , is relatively τ -pseudocompact in X_{α} . Therefore, the closure $[\pi_{\alpha}B]$ is bicompact. Then the product $C = \prod \{[\pi_{\alpha}B] : \alpha \in A\}$ is bicompact too, and $[B] \subset C$. Consequently, the closure [B] is bicompact.

Lemma 1. A mapping f of a c-bounded space X into a singleton $\{y\}$ is c- τ -bounded.

PROOF. Given a submapping $f_1 = f|_{X_1}$, where X_1 is closed in X, for a point y we have $|\operatorname{St}(f_1^{-1}y,\lambda)| < \tau$. The space X_1 is relatively τ -pseudocompact in X; moreover, since X_1 is closed in X, the space $[X_1] = X_1$ is bicompact. Consequently, the mapping f_1 is perfect.

Thus, $c - \tau$ -bounded spaces are particular instances of $c - \tau$ -bounded mappings.

7.2. $c-\omega$ -Bounded spaces. We indicate some classes of $c-\omega$ -bounded spaces.

DEFINITION 2 (B. A. Pasynkov). A Tychonoff space X is called *Dieudonné complete in the extended* sense if, for every point $x \in \beta X \setminus X$, there is an open locally finite covering ω of X such that $x \notin \cup [\omega]_{\beta X} \equiv \cup \{[O]_{\beta X} : O \in \omega\}$.

Proposition 2. A space Dieudonné complete in the extended sense is c- ω -bounded [5].

Corollary. Dieudonné complete spaces are c- ω -bounded.

Lemma 2. If a space X is normal and a set B is relatively pseudocompact in X and closed in X then the space B is countably compact [5].

Corollary 1. The closure of a relatively pseudocompact subset B of a normal space X is countably compact.

Recall that a space X is called *isocompact* if every countably compact closed subspace of X is bicompact.

Corollary 2. A normal isocompact space is c- ω -bounded.

Corollary 3. A closed subspace of the product of normal isocompact spaces is c- ω -bounded.

Corollary 4. A closed subspace of the product of normal weakly paracompact spaces is c- ω -bounded.

Other examples of c- ω -bounded spaces can be found in [4, 12].

Assertion 6 [4]. Suppose that a space X condenses on a metrizable space and a set B is bounded in X. Then $[B]_X$ is a compact set.

Hence, spaces condensing on metrizable spaces are c- ω -bounded.

DEFINITION [4]. A subgroup H of a topological group G is called *admissible* if there is a sequence $\{U_n : n \in \mathbb{N}\}$ of open neighborhoods of the identity in G such that $U_n^{-1} = U_n$, $U_{n+1}^3 \subseteq U_n$ for every $n \in \mathbb{N}$, and $H = \cap \{U_n : n \in \mathbb{N}\}$.

It is well known [4] that every admissible subgroup of a group G is closed in G.

Assertion 3 [4]. Let H be an admissible subgroup of a topological group G. Then G/H condenses on a metrizable space.

Corollary. If H is an admissible subgroup of a topological group G then the space G/H is c- ω -bo-unded.

In [12] a μ -space is defined as follows:

DEFINITION [12]. If A is a compact set for every bounded $A \subset X$ then X is a μ -space.

It is clear that the classes of μ -spaces and c- ω -bounded spaces coincide. Some properties of μ -spaces are listed in [12]:

Theorem 1 [12]. If X is a μ -space and Y is closed in X then the canonical mapping $i_Y : F(Y) \to F(X)$ is a k-mapping (i.e., $i^{-1}y(\Phi)$ is a compact set for every compact set $\Phi \subset F(X)$).

We have considered several classes of c- ω -bounded spaces. We can construct some classes of corresponding c- ω -bounded mappings.

Recall [12] that a mapping $f: X \to Y$ is *d*-open if, for every open set $O \subset X$, there is an open set V in Y such that $fO \subset V \subset [fO]$.

Property 1. The product of *d*-open mappings is *d*-open [2].

Theorem 1 [5]. If topological spaces X_s , $s \in S$, have τ -directed lattices of d-open mappings onto c- τ -bounded spaces and if sets C_s are relatively τ -pseudocompact in X_s , $s \in S$, then the set $C = \prod \{C_s : s \in S\}$ is relatively τ -pseudocompact in $X = \prod \{X_s : s \in S\}$.

PROOF. The assertion follows from Theorem 1 of Section 1 and Lemma 1.

Using the above examples of c- ω -bounded spaces, we obtain the following consequences of the above theorem for $\tau = \omega$:

Theorem 2. Assume that topological spaces X_s , $s \in S$, have countably directed lattices of d-open mappings onto c- τ -bounded spaces, in particular, onto

- (1) spaces Dieudonné complete in the extended sense;
- (2) Dieudonné complete spaces;
- (3) normal isocompact spaces;
- (4) closed subspaces of normal isocompact spaces;
- (5) closed subspaces of normal weakly paracompact spaces;
- (6) spaces condensing on metrizable spaces;
- (7) quotient spaces of topological groups by admissible subgroups of these groups;
- (8) free topological groups over μ -spaces.

Assume further that sets C_s are relatively pseudocompact in X_s , $s \in S$. Then the set $C = \prod \{C_s : s \in S\}$ is relatively pseudocompact in $X = \prod \{X_s : s \in S\}$.

Corollary 1 [1]. The product of pseudocompact topological groups is a pseudocompact topological group.

Corollary 2 [3]. A subproduct of relatively pseudocompact subsets of *d*-spaces is relatively pseudocompact in the product.

REMARK. Assertion (2) of Theorem 2 was proven in [4].

Thus, in this article we have considered the notion of τ -pseudocompact mapping, some properties of such a mapping similar to those of a pseudocompact space, and consequences of the above assertions for spaces.

All problems were posed by B. A. Pasynkov.

References

- Comfort W. and Kenneth A. R., "Pseudocompactness and uniform continuity in topological groups," Pacific J. Math., 16, No. 3, 483–496 (1966).
- 2. Tkachenko M. G., "Generalization of the Comfort-Ross theorem. I," Ukrain. Mat. Zh., 41, No. 3, 377-382 (1989).

- 3. Uspenskii V. V., "Topological groups and the Dugundji compacta," Mat. Sb., 180, No. 8, 1092–1118 (1989).
- 4. Tkachenko M. G., "Generalization of the Comfort-Ross theorem. II," Ukrain. Mat. Zh., 41, No. 7, 939-952 (1989).
- 5. Mironova Yu. N., "Multiplicativity of relative τ-pseudocompactness," in: General Topology. Mappings, Products, and Dimension of Spaces, Moscow Univ., Moscow, 1994, pp. 77–82.
- 6. Mironova Yu. N., "Properties of o-pseudocompact mappings," in: Abstracts: VI International Conference of Women-Mathematicians: Mathematics. Education. Economics, Cheboksary, May 25–30, 1998, Cheboksary, 1998, p. 54.
- 7. Aleksandrov P. S. and Pasynkov B. A., An Introduction to Dimension Theory [in Russian], Nauka, Moscow (1973).
- 8. Pasynkov B. A., "On translation to mappings of some notions and statements concerning spaces," in: Mappings and Functors [in Russian], Moscow Univ., Moscow, 1984, pp. 77–82.
- Buzulina T. I. and Pasynkov B. A., "On Dieudonné complete mappings," in: Geometry of Immersed Manifolds [in Russian], Moscow Ped. Inst., Moscow, 1989, pp. 95–99.
- Il'ina N. I. and Pasynkov B. A., "On R-complete mappings," in: Geometry of Immersed Manifolds [in Russian], Moscow Ped. Inst., Moscow, 1989, pp. 125–131.
- 11. Engelking R., General Topology [Russian translation], Mir, Moscow (1986).
- 12. Arkhangel'skiĭ A. V., "Free topological groups: state of the art and problems," in: Abstracts: Baku International Topological Conference, Baku, 1987, p. 18.