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τ -PSEUDOCOMPACT MAPPINGS

Yu. N. Mironova UDC 515.1

Introduction. In this article we consider the problem of extending the notion of τ -pseudocompac-
tness from spaces to continuous mappings.

Recall that a Tychonoff space X is pseudocompact if every continuous function on X is bounded.
The product of pseudocompact spaces is not necessarily pseudocompact; however, there are conditions
under which pseudocompactness is preserved. Comfort and Ross (see [1]) proved that the product of
pseudocompact topological groups is a pseudocompact topological group. Generalizing this assertion,
M. G. Tkachenko [2] demonstrated that the product of relatively pseudocompact subsets of topological
groups is relatively pseudocompact in the product. V. V. Uspenskĭı [3] considered a similar fact for
relatively pseudocompact subsets of d-spaces. M. G. Tkachenko [4] established the most general fact in
this field: If spaces Xα have countably directed lattices of d-open mappings onto Dieudonné complete
spaces and if sets Cα are relatively pseudocompact in Xα, α ∈ A, then the product

∏
α∈A Cα is relatively

pseudocompact in the product
∏

α∈A Xα.
B. A. Pasynkov posed the problem of further abstracting these assertions. This leads to the notion

of τ -pseudocompact space [5] and to a sought generalization for τ -pseudocompact spaces.

Theorem [5]. If topological spaces Xs, s ∈ S, have τ -directed lattices of d-open mappings onto c-
τ -bounded spaces and if sets Cs are relatively τ -pseudocompact in Xs, s ∈ S, then the set C =

∏
{Cs :

s ∈ S} is relatively τ -pseudocompact in X =
∏
{Xs : s ∈ S}.

The problem arises of extending the notion of τ -pseudocompactness from spaces to mappings. Trans-
lating the notion of τ -pseudocompactness to mappings, we obtain properties of τ -pseudocompact map-
pings similar to those of τ -pseudocompact spaces in [5].

Since every space X can be treated as a continuous mapping f : X → Y into a singleton, we derive
corollaries to the multiplicativity theorems for τ -pseudocompactness for spaces which include the above
results of [1–5] in particular.

1. τ -Pseudocompact and τ -compact mappings. Let X be a topological space and let τ be
an infinite cardinal. A system λ is called τ -local in X if every point x ∈ X possesses a neighborhood Ox
such that |St(Ox, λ)| < τ .

Definition 1. A continuous mapping f : X → Y is τ -pseudocompact if for every open set O in Y ,
a point y ∈ O, and a τ -local open system λ in f−1O, there is a neighborhood Oy of y such that Oy ⊂ O
and |St(f−1Oy, λ)| < τ .

For τ = ω the notion of τ -pseudocompact mapping coincides with the notion of o-pseudocompact
mapping (see [6]).

Property 1. Suppose that mappings f1 : X1 → Y , f2 : X2 → Y , and g : X1 → X2 are continu-
ous, the mapping g is surjective, and f1 = f2 ◦ g. Then τ -pseudocompactness of f1 implies τ -pseudo-
compactness of f2.

Proof. Suppose that the mapping f2 : X2 → Y is not τ -pseudocompact. Then there exist
an open set O in Y , a point y ∈ O, and a τ -local open system λ2 in the inverse image f−1

2 O such
that

∣∣St
(
f−1
2 Oy, λ2

)∣∣ ≥ τ for every neighborhood Oy of y.
Since g is continuous and surjective, the system g−1λ2 is τ -local and open in the space g−1

(
f−1
2 O

)
=

f−1
1 O. Since f1 is τ -pseudocompact; for the system g−1λ2, there is a neighborhood O2y of y such
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that
∣∣St

(
f−1
1 O1y, g−1λ2

)∣∣ < τ . Consequently,
∣∣St

(
g
(
f−1
1 O1y

)
, g(g−1λ2)

)∣∣ ≥ τ . However, we have
g
(
f−1
1 O1y

)
=

(
f−1
2 ◦ f1

)(
f−1
1 O1y

)
= f−1

2 O1y, g(g−1λ2) = λ2 and
∣∣St

(
f−1
2 Oy, λ2

)∣∣ ≥ τ for every neigh-
borhood Oy of y. This contradiction proves Property 1.

Let fα : Xα → Y , α ∈ A, be mappings. Henceforth the fiberwise product f of the mappings
fα : Xα → Y , α ∈ A (see [7]) is called the product of fα : Xα → Y , α ∈ A, and denoted by f =

∏
α∈A fα.

Thus, we have some mapping f : X → Y , and

f−1y =
∏
α∈A

f−1
α y ⊂

∏
α∈A

Xα

for every y ∈ Y . The following property is well known:

Property 2. The fiberwise product of perfect mappings is perfect.

2. Relatively τ -pseudocompact mappings.

Definition 1. Let f : X → Y , X1 ⊂ X, be a continuous mapping. A submapping g = f |X1 : X1 →
Y of f is relatively τ -pseudocompact in f if for every open set O in Y , a point y ∈ O, and a τ -local open
system λ in f−1O, there is a neighborhood Oy of y such that Oy ⊂ O and |St(g−1Oy, λ)| < τ .

Remark 1. It is clear that each τ -pseudocompact mapping f : X → Y is relatively τ -pseudocompact
in itself.

Property 1. The continuous image of a relatively τ -pseudocompact mapping is relatively τ -pseudo-
compact.

Proof. Assume that the following diagram commutes:

X ′
1 ⊂ X1

ξ−→ X2 ⊃ X ′
2

g1↘ f1↘ ↙f2 ↙g2

Y

The mapping g1 : X ′
1 → Y is relatively τ -pseudocompact in f1. Prove that the mapping g2 = ξ(g1)

is relatively τ -pseudocompact in f2. Consider an open set O in Y and a point y ∈ O. Let λ2 be
a τ -local open system in the tubular neighborhood f−1

2 O. Then the system λ1 = ξ−1λ2 is open and
τ -local in the tubular neighborhood f−1

1 O = ξ−1f−1
2 O. Since the mapping g1 : X ′

1 → Y is relatively
τ -pseudocompact in f1, there is a neighborhood Oy of y such that Oy ⊂ O and

∣∣St
(
g−1
1 Oy, λ1

)∣∣ < τ .
Then

∣∣St
(
ξ
(
g−1
1 Oy

)
, ξ2

1

)∣∣ < τ ; consequently,
∣∣St

(
g−1
2 Oy

)
, λ2

∣∣ < τ .

Property 2. Suppose that a mapping f1 : X1 → Y , f1 = f |X1 is relatively τ -pseudocompact
in f : X → Y , X1 ⊂ X, and X2 ⊂ X1. Then the mapping f2 = f |X2 : X2 → Y is relatively τ -
pseudocompact in f .

Proof. Consider an open set O in Y , a point y ∈ O, and a τ -local open system λ in the tubular
neighborhood f−1O. Since the mapping f1 = f |X1 is relatively τ -pseudocompact in f , there is a neigh-
borhood Oy ⊂ O of y such that

∣∣St
(
f−1
1 Oy, λ

)∣∣ < τ . Since f−1
2 Oy ⊂ f−1

1 Oy, we have
∣∣St

(
f−1
2 Oy, λ

)∣∣ < τ .

Property 3. Suppose that X2 ⊂ X1 ⊂ X, where f2 = f |X2 : X → Y is a mapping, and f : X → Y
is relatively τ -pseudocompact in f1 : X1 → Y , f1 = f |X1 . Then f2 is relatively τ -pseudocompact in f .

Proof. Consider an open set O in Y , a point y ∈ O, and a τ -local open system λ in f−1O. Then
the system λ ∩ f−1

1 O is open and τ -local in f−1
1 O; consequently, there is a neighborhood Oy ⊂ O of y

such that
∣∣St

(
f−1
2 O, λ ∩ f−1

1 O
)∣∣ < τ . Since f−1

2 O ⊂ f−1
1 O, we also have

∣∣St
(
f−1
2 Oy, λ

)∣∣ < τ .
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3. c-τ -Bounded mappings.
Definition 1. A continuous mapping f : X → Y is c-τ -bounded if every closed relatively τ -pseudo-

compact submapping g = f |X1 , where X1 is closed in X, is a perfect mapping.

Consider some examples of c-τ -bounded mappings.
Recall [8] that f : X → Y is a T0-mapping if, for arbitrary two points x and x′ 6= x such that

fx = fx′, at least one of the points x and x′ has a neighborhood in X that does not contain the other
point, and f is completely regular if, for every point x ∈ X and a closed set F in X (F : x 6∈ F ), there
is a neighborhood O of fx such that x and F are functionally separated in the inverse image f−1O.
A Tychonoff mapping is a completely regular T0-mapping.

Recall also [8] that a mapping bf : X → Y is a bicompactification of a mapping f : X → Y if X ⊆ X,
[X] = X, bf |X = f , and bf is a bicompact (perfect) mapping. Given two bicompactifications b1f : X1 →
Y and b2f : x2 → Y of a mapping f : X → Y , we write b2f ≥ b1f if there is a natural mapping from X2

into X1. Every Tychonoff mapping f : X → Y possesses at least one Tychonoff bicompactification and
among all Tychonoff bicompactifications of f there is a maximal bicompactification βf : βfX → Y .

Generalizing B. A. Pasynkov’s definition of a Dieudonné tubular complete mapping [9], we arrive at
the following definition:

Definition 2. A Tychonoff mapping f : X → Y is called Dieudonné complete in the extended sense
if, for every point x ∈ βfX \X, there exist a neighborhood U of (βf)x in Y and a locally finite (in f−1U)
open covering λ of the tubular neighborhood f−1U such that x 6∈ U [λ]−1

(βf)U ≡ ∪{[O](βf)−1U : O ⊂ λ}.
Note that the Dieudonné tubular complete mappings as well as R-complete mappings [10] are

Dieudonné complete in the extended sense.

Lemma 1. If a mapping f : X → Y is Dieudonné complete in the extended sense, where Y is
a T1-space, then f is a c-ω-bounded mapping.

Proof. Consider a relatively pseudocompact closed submapping f1 = f |X1 of f , where X1 is closed
in X. Prove that the mapping f1 : X1 → Y is perfect. Take y ∈ Y . Show that the inverse image f−1

1 y is
bicompact.

Since Y is a T1-space and the set {y} is closed in Y , the set f−1
1 y is closed in X1. Since f is

Dieudonné complete in the extended sense; for every x ∈ βfX \ X such that (βf)x = y, there exist
a neighborhood O of y in Y and an open locally finite covering λ of the tubular neighborhood f−1O
such that x 6∈ ∪[λ](βf)−1O. Since the mapping f1 : X1 → Y is relatively pseudocompact in f , there is
a neighborhood O1y of y in O such that

∣∣St
(
f−1
1 O1y, λ

)∣∣ < ω. Recalling that x 6∈ ∪[λ]βf X , we hence
obtain

f−1
1 y ⊂ f−1

1 Oy ⊂ B(x) = ∪
[
St

(
f−1
1 O1y, λ

)]
βf X

∩X1

=
[
∪St

(
f−1
1 O1y, λ

)]
βf X

∩X1 63 x.

The set B(x) is closed in βfX and f−1
1 y ⊂ B(x) for every x ∈ βfX \ X such that (βf)x = y. Since

the mapping βf : βfX → Y is perfect, the set (βf)−1y is bicompact; moreover, f−1y ⊂ (βf)−1y. Then
B = (∩{B(x) = x ∈ βfX \ X, (βf)x = y}) ∩ (βf)−1y is a bicompact set such that f−1

1 y ⊂ B ⊂
(βfX \ ((βfX) \X))∩X1 = X1. Thereby f−1

1 y is bicompact, since it is a closed subset of the bicompact
set B. The mapping f1 is perfect for it is closed.

Corollary 1. A tubular R-complete mapping f : X → Y , where Y is a T1-space, is a c-ω-bounded
mapping.

Corollary 2. A Dieudonné complete mapping f : X → Y , where Y is a T1-space, is a c-ω-bounded
mapping.

It is well known [11, Theorem 3.1.1] that a space X is bicompact if and only if X is pseudocompact
and R-complete.
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Theorem 1. A closed Tychonoff mapping f : X → Y is perfect if and only if f is pseudocompact [6]
and R-complete.

Proof. 1. A perfect mapping is pseudocompact and R-complete [6].
2. A pseudocompact closed R-complete mapping is perfect (see [5]).

Theorem 2. A mapping f : X → Y is perfect if and only if f is pseudocompact, c-ω-bounded, and
closed.

Proof. 1. A complete mapping is pseudocompact, closed, and c-ω-bounded. Indeed, suppose that
X1 is closed in X. Then f1 = f |X1 : X1 → Y is perfect.

2. A pseudocompact closed c-ω-bounded mapping is perfect (by definition).

4. Multiplicativity of c-τ -boundedness of mappings.

Proposition 1. Suppose fα : Xα → Y are closed c-τ -bounded mappings for α ∈ A. Then their
fiberwise product f : X → Y is c-τ -bounded as well.

Proof. Let f1 : X1 → Y be a relatively τ -pseudocompact closed submapping of f , with X1 a closed
set in X0 ⊂

∏
{Xα : α ∈ A}. (Observe that X0 6=

∏
{Xα : α ∈ A}; see [7].) Prove that f1 is perfect.

Since the mappings πα|X1 : X1 → Xα, where πα : X0 → Xα is the projection, are surjective and
continuous for all α ∈ A; the mappings fα|παX1 : X1 → Y are relatively τ -pseudocompact in fα for all
α ∈ A (Property 1 of Section 2).

Since the set X1 is closed in X0 and X1 =
∏

α∈A παX1, the sets παX1 are closed in Xα for all α ∈ A
[11]. Consequently, the mappings fα|παX1 are closed for all α ∈ A.

Since fα : Xα → Y are c-ω-bounded mappings, the mappings fα|παX1 : X1 → Y are perfect for all
α ∈ A. Then the mapping

∏
α∈A(fα|παX1) ≡ f1 : X1 → Y is perfect by Property 2.

5. Lattices of continuous morphisms over mappings.

Definition 1. Suppose that f1 : X1 → Y and f2 : X2 → Y are mappings. A morphism ϕ : f1 → f2

is called an embedding if the continuous mapping ϕ : X1 → X2 is an embedding (f2|ϕX1 ≡ f2).

Remark. Here and in the sequel, it is convenient to use the same symbol ϕ for a morphism ϕ : f1 →
f2 and the corresponding continuous mapping ϕ : X1 → X2, where f1 : X1 → Y and f2 : X2 → Y .

Definition 2. Let f : X → Y be a continuous mapping. We say that a system L = {ϕα, ϕβα;A} of
a directed set A, continuous surjective morphisms ϕα of f , ϕα : f → fα, where fα : Xα → Y , fα = ϕαf ,
α ∈ A, and continuous surjective morphisms ϕβα : ϕβ ◦ f → ϕα ◦ f , α, β ∈ A, α < β, is a lattice of
continuous morphisms over f : X → Y if the following are satisfied:

(1) ∆ = ∆α∈Aϕα : f →
∏

α∈A fα is an embedding;
(2) ϕα = ϕβα ◦ ϕβ, α, β ∈ A, α < β.
Recall [2] that a mapping f : X → Y is called d-open if the image of every open set in X is dense in

some open set in Y .
Definition 3. The lattice L is τ -directed if the set A is τ -directed, and L is d-open if all mor-

phisms ϕα are d-open.

Remark. To each lattice L = {ϕα, ϕβα;A} of continuous morphisms over a mapping f : X → Y
there corresponds the lattice L0 = {ϕα, ϕβα;A} of continuous mappings of X, where ϕα : X → Xα are
continuous surjective mappings of X for all α ∈ A and ϕβα : ϕβX → ϕαX are mappings of the images
of X under ϕβ and ϕα, α, β ∈ A.

If a lattice L is τ -directed (d-open) then the corresponding lattice L0 is τ -directed (d-open) as well.

Definition 4. Let {ϕα : fα → gα, α ∈ A} be a system of morphisms. The product ϕ =
∏

α∈A ϕα of
morphisms is the morphism taking the product f =

∏
α∈A fα of mappings into the product f =

∏
α∈A gα

of mappings such that f = g ◦ ϕ.
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6. Multiplicativity theorems for relatively τ -pseudocompact mappings.

Proposition 1. Let f : X → Y be a continuous mapping and let L = {ϕα, ϕβα;A} be a τ -directed
lattice of d-open morphisms over f . A submapping f1 : X1 → y, X1 ⊂ X, is relatively τ -pseudocompact
in f if and only if its image ϕα ◦ f1 = f1α is relatively τ -pseudocompact in fα = ϕα ◦ f for every α ∈ A.

Proof. 1. If f1 : X1 → Y is relatively τ -pseudocompact in f : X → Y then its image f1α = X1α =
ϕαX1 → Y is relatively τ -pseudocompact in fα by Property 1 of Section 2.

2. Suppose that f1α : X1α → Y is relatively τ -pseudocompact in fα for each α ∈ A. Assume that
f1 : X1 → Y is not relatively τ -pseudocompact in f . Then there exist an open set O in Y , a point y ∈ O,
and a τ -local system λ = {Uγ}γ∈Γ in f−1O constituted by elements of the base of X such that |Γ| ≥ τ

and
∣∣St

(
f−1
1 Oy, λ

)∣∣ ≥ τ for every neighborhood Oy of y in O. Since the lattice I0 is τ -directed, we have

∀Uγ ∈ λ ∃Wγ ⊂ Xα0 = ϕα(0)X : ϕ−1
α(0)Wγ = Uγ .

We obtain the open system ν = {Wγ}γ∈Γ in Xα(0) (here α(0) ∈ A is an index such that α(0) > α(γ) for
every γ ∈ Γ).

Since the system ν is open in ϕα(0)(f−1O), the mapping ϕα(0) is d-open, and the system ϕ−1
α(0)ν = λ

is τ -local in f−1O; it follows that the system ν is τ -local in ϕα(0)(f−1O) [5]. As soon as f = fα[0] ◦ϕα(0),
we obtain f−1O = (fα(0) ◦ ϕα(0))−1O = ϕ−1

α(0)

(
f−1

α(0)O
)
; i.e., the system ν is τ -local in f−1

α(0)O. Since the
mapping fα(0) : Xα(0) → Y is relatively τ -pseudocompact in fα(0), for y ∈ O and the system ν there is
a neighborhood Oy of y such that Oy ⊂ O and

∣∣St
(
f−1
1α(0)Oy, ν

)∣∣ < τ ; consequently,
∣∣St

(
f−1
1 Oy, λ

)∣∣ < τ .
This contradiction proves the proposition.

Lemma 1. Suppose that a mapping f : X → Y is d-open and X1 ⊂ X. Then the submapping
f1 = f |X1 : X1 → Y is d-open.

Proof. It is well known [2] that a mapping f : X → Y is d-open if and only if [f−1V ] = f−1[V ] for
every open set V in Y . Consider an open set V in Y . We have f−1

1 [V ]X1 = f−1[V ]∩X1 = [f−1V ]∩X1 =[
f−1
1 V

]
X1

. Consequently, the mapping f1 : X1 → Y is d-open.

Lemma 2. Suppose that a mapping f : X → Y is c-τ -bounded and X1 is closed in X. Then the
submapping f1 = f |X1 : X1 → Y is c-τ -bounded.

Proof. Let f2 : X2 → Y , where X2 is closed in X1, be a mapping relatively τ -pseudocompact
in f1 and closed. We have f2 = f1|X2 = f |X2 . Since X2 is closed in X1 and X1 is closed in X, X2 is
closed in X [11]. Since X2 ⊂ X1, by Property 3 of Section 2 the mapping f2 : X2 → Y is relatively
τ -pseudocompact in f .

In view of c-τ -boundedness of f : X → Y , the mapping f2 : X2 → Y is perfect.

Theorem 1. If mappings fs
1 : Xs

1 → Y are closed, c-τ -bounded, and relatively τ -pseudocompact
in fs : Xs → Y , where fs

1 = fs|Xs
1

and Xs
1 ⊂ Xs, s ∈ S, then the mapping f1 =

∏
s∈S fs

1 is relatively
τ -pseudocompact in f =

∏
s∈S fs.

Proof. Consider an open set O in Y , a point y ∈ O, and an open τ -local system λ = {Uα}α∈A

in f−1O.
The mapping fs

1 is perfect for every s ∈ S. Hence, the mapping f1 =
∏

s∈S fs
1 is perfect. Conse-

quently, the inverse image f−1
1 y of y is bicompact.

Since the system λ is τ -local in f−1O, every point x ∈ f−1
1 y has a neighborhood Ox in f−1O such that

|St(λ, Ox)| < τ . Since f−1
1 y is bicompact, from the open covering µ =

{
Ox∧f−1

1 y, x ∈ f−1y
}

of f−1
1 y we

can extract a finite subcovering µ′ such that f−1y ⊂ ∪µ′. Then there exist x1, . . . , xk ∈ f−1y such that
f−1y ⊂

⋃k
j=1 Oxj = V . Since f1 is closed, there is a neighborhood Oy of y such that f−1

1 Oy ⊂ V . Thus,
we obtain |St(λ, V )| < τ ; consequently,

∣∣St
(
λ, f−1

1 Oy
)∣∣ < τ . Hence, f1 is relatively τ -pseudocompact

in f .
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Theorem 2. Suppose that mappings fs : Xs → Y are closed and over them there are τ -directed
lattices Ls = {ϕα(s), ϕβ(s)α(s);A(s)}, s ∈ S, of d-open morphisms onto c-τ -bounded mappings fα(s) :
fα(s) = ϕα(s) ◦ fs, s ∈ S, α(s) ∈ A(s). Suppose also that the mappings fs

1 = fs|Xs
1
, fs

1 : Xs
1 → Y ,

where Xs
1 is closed in Xs, are closed and relatively τ -pseudocompact in fs, s ∈ S. Then the product

f1 =
∏

s∈S fs
1 is relatively τ -pseudocompact in f =

∏
s∈S fs.

Proof. By Proposition 1 of Section 6, the mapping f1
α(s) = ϕα(s) ◦ fs

1 is relatively τ -pseudocompact
in fα(s) = ϕα(s) ◦ fs for every α(s) ∈ A(s).

Take A ∈
∏

s∈S A(s). Consider the lattice L = {ϕα, ϕβα;A} over f . Here

ϕα =
∏
s∈S

ϕα(s), ϕα : f → fα, fα =
∏
s∈S

fα(s), α ∈ A, s ∈ S,

ϕβα =
∏
s∈S

ϕβ(s)α(s), β > α, β ∈ A, ϕβα : f → fα.

We order A as follows: given α = {α(s) : s ∈ S} and β = {β(s) : s ∈ S}, with α(s), β(s) ∈ A(s), s ∈ S,
we put β > α if β(s) > α(s) for every s ∈ S. The set A with this order is τ -directed, since the set A(s)
is τ -directed for every s ∈ S.

Since the morphisms ϕα(s) are d-open for all s ∈ S, the products ϕα =
∏

s∈S ϕα(s) are d-open
as products of d-open morphisms. Moreover, since ϕα(s) = ϕβ(s)α(s) ◦ ϕβ(s) for every s ∈ S, we have
ϕα = ϕβα ◦ ϕβ, β > α, β, α ∈ A.

Since ∆{ϕα(s) : α(s) ∈ A(s)} : fs →
∏

α(s)∈A(s) fα(s) is an embedding for every s ∈ S; therefore,
∆{ϕα : α ∈ A} : f →

∏
α∈A fα is an embedding too.

Thus, L is a τ -directed lattice of d-open morphisms over the mapping f =
∏

s∈S fs and the mappings
f1 =

∏
s∈S fs

1 are relatively τ -pseudocompact in the product fα =
∏

s∈S fα(s) by Theorem 1 of Section 6.
By Proposition 1 of Section 6, the mapping f1 is relatively τ -pseudocompact in f .

As a consequence of the Theorem 2 for τ = ω, we obtain the following assertion:

Theorem 3. Suppose that, over closed mappings fs : Xs → Y , there are countably directed
lattices of d-open morphisms onto mappings Dieudonné complete in the extended sense (in particular,
on Dieudonné complete or R-complete mappings) and the mappings fs : Xs → Y and fs

1 = fs|Xs
1
,

Xs
1 ⊂ Xs are relatively pseudocompact in fs, s ∈ S. Then f1 =

∏
s∈S fs

1 is relatively pseudocompact in
f =

∏
s∈S fs.

7. Corollaries to the multiplicativity theorem of τ -pseudocompactness for spaces. Every
space X can be viewed as a continuous mapping f : X → Y into a singleton. Since f is closed and the
space Y = {y} is locally bicompact, we obtain the following corollaries to the multiplicativity theorems
of τ -pseudocompactness for spaces [5].

7.1. c-τ -Bounded spaces. Recall [5] that a set B ⊂ X is relatively τ -pseudocompact in X if
|St(λ, B)| < τ for every τ -local open system λ in X.

For τ = ω, relative τ -pseudocompactness of a set B in a Tychonoff space X is equivalent to its
boundedness or relative pseudocompactness [2], i.e., boundedness of every continuous function ϕ = X →
R on B.

From the definition of relative τ -pseudocompactness we derive the following properties:

Property 1. If a mapping f : X → Y is continuous and a set B is relatively τ -pseudocompact in X
then the image f(B) is relatively τ -pseudocompact in Y .

Property 2. If a set B is relatively τ -pseudocompact in X then its closure [B] is relatively τ -pseu-
docompact in X.
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Property 3. If B is a relatively τ -pseudocompact subset of a subspace Y of a space X then B is
relatively τ -pseudocompact in X.

Definition 1. A space X is c-τ -bounded if the closure of every relatively τ -pseudocompact subset
in X is bicompact.

Remark 1. A closed subspace Y of a c-τ -bounded space X is c-τ -bounded.

Proposition 1. The class of c-τ -bounded spaces is multiplicative.

Proof. Suppose that Xα are c-τ -bounded spaces for all α ∈ A and B is a relatively τ -pseudocompact
set in X =

∏
{Xα : α ∈ A}. For every α ∈ A, the set παB, where πα is the projection of X onto Xα,

is relatively τ -pseudocompact in Xα. Therefore, the closure [παB] is bicompact. Then the product
C =

∏
{[παB] : α ∈ A} is bicompact too, and [B] ⊂ C. Consequently, the closure [B] is bicompact.

Lemma 1. A mapping f of a c-bounded space X into a singleton {y} is c-τ -bounded.

Proof. Given a submapping f1 = f |X1 , where X1 is closed in X, for a point y we have
∣∣St

(
f−1
1 y, λ

)∣∣
< τ . The space X1 is relatively τ -pseudocompact in X; moreover, since X1 is closed in X, the space
[X1] = X1 is bicompact. Consequently, the mapping f1 is perfect.

Thus, c-τ -bounded spaces are particular instances of c-τ -bounded mappings.

7.2. c-ω-Bounded spaces. We indicate some classes of c-ω-bounded spaces.

Definition 2 (B. A. Pasynkov). A Tychonoff space X is called Dieudonné complete in the extended
sense if, for every point x ∈ βX \ X, there is an open locally finite covering ω of X such that x 6∈
∪[ω]βX ≡ ∪{[O]βX : O ∈ ω}.

Proposition 2. A space Dieudonné complete in the extended sense is c-ω-bounded [5].

Corollary. Dieudonné complete spaces are c-ω-bounded.

Lemma 2. If a space X is normal and a set B is relatively pseudocompact in X and closed in X
then the space B is countably compact [5].

Corollary 1. The closure of a relatively pseudocompact subset B of a normal space X is countably
compact.

Recall that a space X is called isocompact if every countably compact closed subspace of X is
bicompact.

Corollary 2. A normal isocompact space is c-ω-bounded.

Corollary 3. A closed subspace of the product of normal isocompact spaces is c-ω-bounded.

Corollary 4. A closed subspace of the product of normal weakly paracompact spaces is c-ω-bounded.

Other examples of c-ω-bounded spaces can be found in [4, 12].

Assertion 6 [4]. Suppose that a space X condenses on a metrizable space and a set B is bounded
in X. Then [B]X is a compact set.

Hence, spaces condensing on metrizable spaces are c-ω-bounded.

Definition [4]. A subgroup H of a topological group G is called admissible if there is a sequence
{Un : n ∈ N} of open neighborhoods of the identity in G such that U−1

n = Un, U3
n+1 ⊆ Un for every

n ∈ N, and H = ∩{Un : n ∈ N}.
It is well known [4] that every admissible subgroup of a group G is closed in G.

Assertion 3 [4]. Let H be an admissible subgroup of a topological group G. Then G/H condenses
on a metrizable space.
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Corollary. If H is an admissible subgroup of a topological group G then the space G/H is c-ω-bo-
unded.

In [12] a µ-space is defined as follows:
Definition [12]. If A is a compact set for every bounded A ⊂ X then X is a µ-space.

It is clear that the classes of µ-spaces and c-ω-bounded spaces coincide. Some properties of µ-spaces
are listed in [12]:

Theorem 1 [12]. If X is a µ-space and Y is closed in X then the canonical mapping iY : F (Y ) →
F (X) is a k-mapping (i.e., i−1y(Φ) is a compact set for every compact set Φ ⊂ F (X)).

We have considered several classes of c-ω-bounded spaces. We can construct some classes of corre-
sponding c-ω-bounded mappings.

Recall [12] that a mapping f : X → Y is d-open if, for every open set O ⊂ X, there is an open set V
in Y such that fO ⊂ V ⊂ [fO].

Property 1. The product of d-open mappings is d-open [2].

Theorem 1 [5]. If topological spaces Xs, s ∈ S, have τ -directed lattices of d-open mappings onto c-
τ -bounded spaces and if sets Cs are relatively τ -pseudocompact in Xs, s ∈ S, then the set C =

∏
{Cs :

s ∈ S} is relatively τ -pseudocompact in X =
∏
{Xs : s ∈ S}.

Proof. The assertion follows from Theorem 1 of Section 1 and Lemma 1.
Using the above examples of c-ω-bounded spaces, we obtain the following consequences of the above

theorem for τ = ω:

Theorem 2. Assume that topological spaces Xs, s ∈ S, have countably directed lattices of d-open
mappings onto c-τ -bounded spaces, in particular, onto

(1) spaces Dieudonné complete in the extended sense;
(2) Dieudonné complete spaces;
(3) normal isocompact spaces;
(4) closed subspaces of normal isocompact spaces;
(5) closed subspaces of normal weakly paracompact spaces;
(6) spaces condensing on metrizable spaces;
(7) quotient spaces of topological groups by admissible subgroups of these groups;
(8) free topological groups over µ-spaces.

Assume further that sets Cs are relatively pseudocompact in Xs, s ∈ S. Then the set C =
∏
{Cs : s ∈ S}

is relatively pseudocompact in X =
∏
{Xs : s ∈ S}.

Corollary 1 [1]. The product of pseudocompact topological groups is a pseudocompact topological
group.

Corollary 2 [3]. A subproduct of relatively pseudocompact subsets of d-spaces is relatively pseudo-
compact in the product.

Remark. Assertion (2) of Theorem 2 was proven in [4].

Thus, in this article we have considered the notion of τ -pseudocompact mapping, some properties of
such a mapping similar to those of a pseudocompact space, and consequences of the above assertions for
spaces.

All problems were posed by B. A. Pasynkov.
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