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Abstract: Manipulators are helpful in performing various hazardous tasks like sanitization with chemicals in germs

infected areas, spraying pesticides in fields, pick and place of heavy and hazardous materials where direct human in-

tervention is difficult. For manipulators to perform its assigned task accurately, prior estimation of its pose needs to be

pinpointed. End-effector grasping and arm manipulation require estimation of 3D object poses. Recently, a number of

procedures and databases for vision-based estimation of object pose have been advised. However, it is not clear about the

performance of the developed algorithms for visual pose estimation of robot manipulation. In this paper we present the

pose estimation of a 5-dof PhantomX Reactor Arm using On-Body/Aruco Markers. Forward and inverse kinematics were

used to estimate the pose from the position coordinates calculated using computer vision techniques. This paper imple-

ments an approach aimed at estimating the pose of a camera, affixed to a robotic manipulator, against a target object. We

adopt a single camera single-shot technique that minimizes the reprojection error over all the rigid poses. The simulation

and experimental results using industrial monocular camera for different sizes of On-body markers were presented.
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1. INTRODUCTION

Robot Arm (or manipulators) have a wide range of ap-

plications from warehouse automation to manufacturing

units. Traditionally, manipulators are calibrated, usually

in isolation from other systems, after manufacturing and

assembly is complete. To achieve high operational ac-

curacy, methods such as laser tracking or a motion cap-

ture system are used to calibrate these robot arms. How-

ever, these methods are expensive, stationary and require

a constrained environment. Although these might be fea-

sible for large-scale manufacturers to calibrate the manip-

ulators once assembled, these could deviate over time.

These deviations can be attributed to wear-and-tear due

to extensive usage or other error sources that might ac-

cumulate over time. It is beneficial for researchers and

smaller organizations to have an alternate method to cal-

ibrate their own robot arms which is relatively more ac-

cessible and inexpensive.

Pose estimation based on visual sensor data is a key

feature [1] in many robotic applications like localization

[2], robot navigation, SLAM [3] and others [4]. This pa-

per details a method to calibrate the manipulator using

an on-board monocular camera and an on-body marker

(ArUco) map[5]. This method provides an alternative for

an extensive setup such as a laser tracking system. Also,

since the setup is small and portable, we can calibrate the

robot arms anywhere (even in the field) otherwise trans-

porting ideally to a constrained environment as is the case

with motion tracking systems is difficult [5]. We also

demonstrate that it is possible to calibrate manipulators

using the same setup or decouple them, depending upon

the specific needs of the user and relative to performance

of the system. For robotic arm calibration the kinematic

parameters of the manipulator in DH parameter represen-

tation are used. In this paper, as an example 5-DoF ma-

nipulator is used.

This methodology for pose estimation of a 5-DOF manip-

ulator using on-Body markers is explained in two parts:

1. Camera calibration

2. Kinematic identification of the manipulator

This paper is organized as follows: section 2 describes

method of camera calibration used, section 3 explains

about the on-body(Aruco) markers and their identifica-

tion using a monocular camera, section 4 defines the kine-

matics of the 5-dof manipulator using existing methods

and the procedure of experimentation and finally section

5 discusses the results and conclusions.

2. CAMERA CALIBRATION

The camera used for the experimentation in this work

is the Basler ace aCA2440-20gc[6], with lens. The Basler

aCA2440-20gc GigE camera with the Sony IMX264

CMOS sensor delivers 23 frames per second at 5.0 MP

Resolution [6]. The advantage of using a High Dynamic

Range (HDR) camera is the ability to separately adjust

the gain of each pixel of the CMOS chip. Basler Lens

C23-1224-5M-P [7] f12mm is mounted on the top of the

basler camera.

2.1 Settings

The minimum working distance required for the basic

camera is 200mm. The lens is set at 0.7mm for exper-

iment and the aperture is set at f8 (for better depth of



field).

Using the pylon software, the image size captured by

the basler camera with lens is selected to 2430 X 1984

pixels, gain is set at 10dB for a decent contrast and bright-

ness, images are captured at 6.7 Frames Per Second for

slow pace of image capturing and Exposure time is also

adjusted for avoiding tracking error problems in the de-

tection of corners. With these fixed settings minimum

working distance of 600mm is calculated according to the

chosen lens from the basler website [8] for a better field

of view.

2.2 Calibration

Camera Calibration is necessary to map the virtual ob-

jects into the real world coordinates, this is generally re-

ferred to as mapping of camera coordinates to pixel co-

ordinates. To convert the camera coordinates to pixel co-

ordinates, camera (or intrinsic) parameters are required.

The camera parameters include :

scale factor s (often equal to 1).

Focal length F (in world coordinates) is the distance

between the pinhole of the camera and the image plane.

Principal point (cx, cy) which is assumed to be at the

centre of the image ideally.

Assuming the pinhole camera model, to map a 2D im-

age point Pi into a 3D point Pw the equation (1) needs

to be solved.

s ∗ Pi = C[R|t]Pw (1)

Pi in the 2D image plane is defined by [u v 1]T

C is the Camera (intrinsic) Matrix defined as





fx 0 cx
0 fy cy
0 0 1



 (2)

fx and fy are the effective focal lengths in x and y direc-

tion in pixels

[R|t] is a 3 X 4 extrinsic matrix which is





r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz



 (3)

(r, t) are called the extrinsic parameters where R is rota-

tion matrix and t = [tx ty tz]
T is translation vector.

and Pw is the world coordinate [Xw Yw Zw 1]T .

Distortion coefficients: Distortion coefficients are

required to minimize the image distortions which are

caused by factors like optical design of lens, position of

camera etc.

(k1 k2 p1 p2 k3) (4)

where k1, k2, k3 are the first, second and third order ra-

dial distortion coefficients, p1, p2 are the first and sec-

ond order tangential distortion coefficients and r is radial

displacement of the undistorted point from the principal

point.

In this paper, the existing methods to reduce two types

of distortions are considered.

Tangential distortion generally occurs when the lens

and the image plane are not aligned properly. Knowing

the distortion coefficients, it can be corrected by equa-

tions (5)-(6).

xcorrected = x+ [2p1xy + p2(r
2 + 2x2))] (5)

ycorrected = y + [p1(r
2 + 2y2)) + 2p2xy] (6)

Radial distortion is point-symmetric at the optical center

of the lens and causes an inward or outward shift of image

points from their initial perspective projection. By substi-

tuting the values of the distortion coefficients in equations

(7)-(8), the image can be undistorted.

xcorrected = x(1 + k1r
2 + k2r

4 + k3r
6) (7)

ycorrected = y(1 + k1r
2 + k2r

4 + k3r
6) (8)

Therefore the distortion coefficients are necessarily re-

quired to be accurate for decent undistortion/restoration

of the disturbed images.

3. EXPERIMENTS

3.1 Camera calibration using checkerboard images

In this a 7 X 9 checkerboard with each square of 20mm

X 20mm size was used for calibrating the camera, ob-

taining the camera parameters and distortion coefficients

[9]. The checkerboard was glued to a thick board and

is placed at a distance between 1 to 1.5m from the cam-

era. Python OpenCV was used to determine the parame-

ters for the camera matrix and distortion coefficients. As

shown in the Figure 1, 70 images were captured at differ-

ent perspective angles for a better initial calibration and

the calculated camera matrix and distortion coefficients

were stored [9]. This is a one-time procedure imple-

mented as the initial setup of the camera for a given cam-

era lens and corresponding settings. Initially the checker-

(a) (b)

Fig. 1.: Checker board images with different perspec-

tives.
board corners are detected from the image. Using the cor-

ner coordinates, camera matrix and distortion coefficients

are computed. The camera matrix obtained is





7.567e+ 03 0.0 1.239e+ 03
0.0 7.590e+ 03 1.023e+ 03
0.0 0.0 1.0



 (9)

and the distortion coefiicients are

−2.63e− 01 −4.48e+ 00 −2.89e− 03
−6.08e− 04 5.13e+ 01

(10)



The resultant average perview error or the residual error

is found to be 0.38 pixels.

Using the computed camera matrix and distortion co-

efficients, the images captured by basler camera as in fig-

ure 1, are corrected or undistorted approximately to the

original image as shown in Figure 2. Once the calibra-

(a) (b)

Fig. 2.: Undistorted images of Figure 1a and 1b respec-

tively.
tion is completed, it is important to verify the accuracy

of these parameters. It could be done in two ways, as

follows:

1. Obtain the camera pose with respect to a fiducial

(ARUCO) marker and compare it with the ground truth.

2. In many real-life cases, it might be difficult to

get accurate distances between the camera origin and the

marker. So, considering this use case, two ArUco mark-

ers are placed at a fixed distance from each other and the

camera pose with respect to both are found. These two

camera poses are then used to compute the pose of one

marker with respect to each other and hence compared

with ground truth. This method should give accurate pose

closer to ground truth.

3.2 Camera Pose Estimation using On-body (Aruco)

Markers

Aruco Marker Map (AMM) consists of Aruco Mark-

ers with encoded binary information. Each Aruco marker

contains different pixel information stored in different

IDs. Python library "aruco.DICT_6X6_250" is used in

this work to generate the Aruco images. Each Aruco

marker is enclosed by black boxes as borders. Figure

3a is generated using the IDS: 14 to 19, Figure 3b us-

ing the IDS: 20 to 25 and Figure 3c using the IDS: 1

to 12. In this experiment the distance between AMM

and camera was in the range of 100 to 120cm. The

AMM was printed on an A4 thick sheet and was glued

to a thick and flat acrylic board. Using python Aruco

(a) (b) (c)

Fig. 3.: AMMs of different patterns: no two markers are

identical.(a) 8cm X 8cm square size AMM of 2 X 3 grid,

(b) 8cm X 8cm square size AMM of 2 X 3 grid and (c)

6cm X 6cm square size AMM of 3 X 3 grid.

library "aruco.detectmarkers", computed camera matrix

and the distortion coefficients from the initial setup, the

corners and ids of each marker are identified from the im-

age. With "aruco.drawDetectedMarkers" python opencv

library the identified corners and Ids are displayed as

shown in Figure 4.

In each marker, the "estimatePoseSingleMarkers"

Aruco library retrieves the information of corners, rota-

tion matrix R and translational vector t. Thus from the

corner coordinates, the origin of each Marker is calcu-

lated. Further, using the equation 1 world coordinates of

the image are transformed into camera coordinates. The

translation vector t can be interpreted as the position of

the world origin of each marker in camera coordinates,

and the columns of the rotation matrix R represent the di-

rections of the world-axes in camera coordinates. If the

(a) (b) (c)

Fig. 4.: Images of detected IDs and corners along with

axis orientation embedded in the center of Aruco markers

in Figure 3 respectively by the Aruco library.

camera position coordinates are denoted as

Pc =
[

Xc Yc Zc

]T
(11)

Origin of the Marker in world axis as

Po =
[

Xi Yi Zi

]T
(12)

and the orientation (roll, pictch and yaw angles) matrix

of the camera as

Rc =
[

αc βc γc

]T
(13)

Therefore the following expressions can be used to find

Pc and Rc

Pc = −RT t & Rc = RT (14)

For each marker in the Aruco Marker Map of Figure 4a

positions and orientations are as tabulated in table 1. Sim-

ilarly for each AMM, the image and camera data w.r.t. the

world frame is collected and stored in excel sheet using

python. The true values of the distances between mark-

ers of map are approximately identical both in horizontal

and vertical directions. Accurate distances are measured

physically using a vernier scale. The results are tabulated

in table 2. Similar computations are made for Figures 4b

and 4c and the overall results are tabulated in table 3 with

measured average horizontal distance, measured average

vertical distance, True values, errors and percentage of

errors and distance from AMM to camera.

From table 3, it is evident that the errors in bigger size

AMM were better than that of the smaller size AMM.

Assumptions made in this experiment were that the real

distance between camera and the AMMs were between 1

to 1.2m, the markers printed on the map are of true size

(error of 0.5mm to 0.7mm) and lens having a circle of

least confusion [10].



Table 1.: Image and camera points; orientation angles of

camera w.r.to each marker in the first image of Figure 4

ID 14 15 16 17 18 19

Xi −4.47−3.92 −3.39 7.05 7.57 8.15

Yi 9.16 −0.42 −10.04 9.77 0.21 −9.44

Zi 112.01 112.78 113.79 111.48 112.28 113.82

Xc 1.57 −5.35 −15.34 −2.09 −2.10 −7.58

Yc −10.95−11.40 −5.03 14.46 15.42 −2.61

Zc 111.92 111.45 113.15 111.17 111.45 111.22

αc 0.07 0.05 0.05 0.09 0.01 −0.02

βc −0.06 −0.06 −0.01 0.07 0.07 −0.09

γc 1.51 1.51 1.51 1.52 1.52 1.52

Table 2.: Distance between the origin of Markers in the

Figure 4 a. both in horizontal and vertical axis.

Horizontal distance in cms

id-id 18-19 15-18 14-17

distance 11.56 11.52 11.54

Average = 11.35 True Value = 11.35

Error = 0.19 %Error = 1.64

Vertical distance in cms

16-15 15-14 19-18 14-17

9.64 9.59 9.67 9.58

Average = 9.621 True Value = 9.45

Error = 0.17 %Error = 1.81

4. KINEMATIC IDENTIFICATION OF THE
MANIPULATOR

Manipulators can perform an array of complex tasks

such as pick-and-place objects or assemble products in a

warehouse. Many of these tasks are becoming automated,

which require the robot to know the end-effector trans-

formation with respect to its base. The origin is at the

base of the manipulator, which is stationary or fixed as

shown in figure 5. The end-effector transformation with

respect to the base, can be computed using the popular

DH parameter representation. For each ith joint, the DH

parameters are the joint offset (bi), link length (ai), joint

angle (θi) and twist angle(αi). The joint angle is vari-

able (fixed with respect to the home position). The DH

parameters of a PhantomX Reactor robotic arm (Figure

5) are computed, and the kinematics of manipulator are

modelled [12]. The robot has 5 DOFs, and all the five

joints are revolute joints.

4.1 Forward Kinematics

Using the Homogeneous Transformation Matrix(HTM)

formulation in [12], HTM of the 5-DOF reactor arm is

obtained. The resultant forward kinematics for position

is given by

T = T1 ∗ T2 ∗ T3 ∗ T4 ∗ T5 (15)

Table 3.: Results from the AMMs in figure 4 are tabulated

here. All the measured values, true values and errors are

in cms.
(a)

Readings Horizontal Vertical Z-distance

Measured 11.5357 9.625 112.649

True value 11.35 9.45 112.343

Error 0.18569 0.17089 0.35078

%Error 1.636 1.808 0.312

(b)

Readings Horizontal Vertical Z-distance

Measured 11.5224 9.5997 112.639

True value 11.34 9.58 112.414

Error 0.1824 0.0197 0.226

%Error 1.61 0.21 0.20

(c)

Readings Horizontal Vertical Z-distance

distance 7.501 7.164 116.046

True value 7.18 6.86 115.144

Error 0.321 0.304 0.902

%Error 4.476 4.425 0.78

Fig. 5.: PhantomX Reactor Arm at home position.

which yields

Px = 3.34s1 + 4.71s234c1 + 14.52c1c2 + 14.37c1c23
(16)

Py = 4.71s1s234 + 14.52s1c2 + 14.37s1c23 − 3.34c1
(17)

Pz = 14.52s2 + 14.37s23 − 4.71c234 + 3.82 (18)

This point P = [Px Py Pz]
T are the coordinates of

the manipulator’s end effector w.r.t. the world frame. If

the camera is placed above the gripper, the camera pose

will reflect the end-effector position for the manipulator

(since the transformation between the end-effector and

camera origin is rigid). Hence any constrained move-

ment of the manipulator will be reflected by the change of

camera pose. With respect to a fixed world frame, we can

trace the manipulator’s movement by tracking the camera

poses in the same reference frame. Thus P and Pc should

be identical. From this, the error between P and the cam-

era coordinates Pc are calculated and the experiment is

verified.

After this verification of the 3D-points from the image,



Table 4.: DH parameters of PhantomX Reactor Arm

lengths measured in cm and angles measured in degrees.

Link bi αi ai θi

1 b1=3.82 90 0 θ1

2 b2=3.34 0 a2=14.52 θ2

3 0 0 a3=14.37 θ3

4 0 90 0 θ4

5 b5=4.71 0 0 θ5

bi is Joint offset, αi is Twist angle, ai is Link length and

θi is the Joint angle.

the pose of manipulator and mobile robot can be mod-

elled using inverse kinematics.

4.2 Inverse Position Analysis

The manipulator pose is identified, if all the set of joint

variables can be calculated using inverse kinematics cor-

responding to a given end-effector location and orienta-

tion. This 5 dof reactor arm has a closed form of solution

and no arbitrary orientation. Algebraic approach is used

for deriving closed form solutions.

The coordinate transformation given by Eq. 15 can be

rearranged as

[

Pb

1

]

=

[

Q Oc

OT 1

] [

Pc

1

]

(19)

where O = [0, 0, 0]T is a three dimensional vector (col-

umn) of zeros.

Q =





q11 q12 q13
q21 q22 q23
q31 q32 q33



 (20)

where

q11 = s1s5 + c1c5c234

q12 = s1c5 − s5c1c234

q13 = s234c1

q21 = s1c5c234 − s5c1

q22 = −s1s5c234 − c1c5

q23 = s1s234

q31 = s234c5

q32 = −s5s234

q33 = −c234

Using algebraic approach, joint angles (θ1, θ2, θ3, θ4
and θ5) can be computed using the above equations (15)

to (20).

Simulations

The pose of PhantomX Reactor Arm is visualized in

both python and RoboAnalyzer software [13] using both

inverse and forward kinematics.

Fig. 6.: Forward kinematics in RoboAnalyzer software

To verify the inverse kinematic equations a known

pose (Home) of the end effector (EE) is assumed. Using

RoboAnalyzer and forward kinematics, the EE location

and orientation is computed from the evaluated HTM as

shown in Figure 6. Using this data, the inverse kinematic

equations are solved for the pose. Solving the above

equations results in multiple solutions. Based on the joint

and link constraints and other factors a suitable solution

should be chosen. In this example we check the error

in distance between the actual and computed locations.

From the four sets of solutions obtained two sets of dif-

ferent poses match the desired location (verified through

python simulations).

Actual points Px, Py and Pz for the pose in Figure.6

is:
[

0.0334 − 0.1908 0.1834
]

Upon solving the inverse kinematics in Python (Ver

3.8) four sets of solutions and respective EE points are

obtained. The 3d plot shows the calculated pose and the

distance between the actual EE point and the calculated

EE point.

Table 5.: DH parameters of PhantomX Reactor Arm

lengths measured in cm and angles measured in degrees.

solution 1 2 3 4

θ1 90.00 90.00 -70.14 -70.14

θ2 0.59 90.00 0.59 -180.59

θ3 90.00 -90.00 90.00 -90.00

θ4 -180.59 -90.00 -0.59 90.00

θ5 0.00 0.00 -180.00 -180.00

x 0.0334 0.0334 0.0334 0.0334

y 0.0966 0.0966 -0.1908 -0.1908

z 0.1834 0.1834 0.1834 0.1834

error

between
actual and

calculated

0.2874 0.2874 2.082e-

17

1.388e-

17

We obtained two solutions with different poses reach-

ing the desired EE position as shown in Figure 8a and 8b.

But set 4 is considered as the desired pose when com-

pared to set 3 as the links are closer to the base platform.

From this simulation exercise, it is evident that one of



(a)
(b)

Fig. 7.: The pose of solution 1 in(a) and solution 2 in (b)

and actual EE points marked in RED. Origin is marked in

BLUE and each joint is marked in GREEN.

(a) (b)

Fig. 8.: The pose of solution 3 in (a) and solution 4 in (b)

and actual EE points marked in RED. Origin is marked in

BLUE and each joint is marked in GREEN.

the solutions from the inverse kinematics gives the de-

sired pose.

5. CONCLUSIONS

In this paper we have developed and implemented the

calibration algorithms for pose estimation of PhantomX

Reactor arm using On-body markers. It is observed that

the Aruco markers of medium size give better results than

much bigger and smaller sizes where we found tracking

error problems. The mobile manipulator has been setup

and pose estimation using inverse kinematics for the ma-

nipulator has been verified. Field experiments using mo-

bile manipulator could not be conducted due to covid

pandemic, however, numerical calculations and simula-

tions using RoboAnalyzer software and Python program-

ming were done for the manipulator.
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