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Abstract

In the paper, we study mod-retractable modules, CSL-modules, fully Kasch mod-

ules, and their interrelations. Right fully Kasch rings are described. It is proved

that for a module M of �nite length, the following conditions are equivalent. 1) In

the category σ(M), every module is retractable. 2) In the category σ(M), every

module is coretractable. 3) M is a CSL-module. 4) Ext1R(S1, S2) = 0 for any two

simple nonisomorphic modules S1, S2 ∈ σ(M). 5) M is a fully Kasch module.
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1. Introduction

All rings are assumed to be associative and with nonzero identity element;
all modules are assumed to be unitary.

A moduleM is said to be retractable if HomR(M,N) 6= 0 for every nonzero
submodule N of M . If every module in the category σ(M) is retractable,
then the moduleM is said to be mod-retractable. A ring R is said to be right
mod-retractable if every right R-module is retractable. In [1, Theorem 3.5], it
is proved that the class of SV-rings coincides with the class of regular mod-
retractable rings R such that every primitive image of R is Artinian. In the
papers [1] and [11], it is proved that the class of commutative mod-retractable
rings coincides with the class of commutative semi-Artinian rings.

A module M is said to be coretractable if HomR(M/N,M) 6= 0 for every
proper submodule N of the module M . If every module in the category
σ(M) is coretractable, then the moduleM is called a CC module. A ring R is
called a right CC ring if every right R-module is coretractable. Coretractable
modules are studied in the paper [5]. In the papers [1] and [18], right CC
rings are described.

If every simple module in the category σ(M) can be embedded in the
module M, then the module M is called a Kasch module. If every module
in the category σ(M) is a Kasch module, the the module M is called a fully
Kasch module. Kasch modules were introduced in the paper [4]. The same
paper contains the following open question: Describe fully Kasch rings and
modules.

A module M is called a CSL module if every module N in σ(M), such
that EndR(N) is a division ring, is a simple module. A ring R is called a
right CSL ring if the module RR is a CSL module. In the paper [15], it is
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proved that the class of commutative CSL rings coincides with the class of
commutative rings R such that the Krull dimension of R is equal to zero.
Perfect CSL rings are described in the paper [3]. Semi-Artinian CSL rings
are described in the paper [1].

In the presented paper, we study interrelations between the above-mentioned
classes of rings and modules. In Section 3, we consider mod-retractable rings
and modules. In Section 4, we study CC rings and fully Kasch rings. In Corol-
lary 4.6, we describe right fully Kasch rings. In Theorem 4.9, we prove that
the class of fully Kasch rings coincides with the class of CC rings. In Section
5, we consider CSL modules and their interrelations with mod-retractable
modules.

2. Preliminaries

For two modulesM and N , the module N is said to beM-subgenerated if
N is isomorphic to a submodule of a homomorphic image of some direct sum
of copies of M . In the category of all right R-modules, the full subcategory,
consisting of all M -subgenerated modules, is denoted by σ(M); it is called
the Wisbauer category of the module M .

Theorem 2.1 ([14, Proposition 2.2].) Let M be a right R-module and
let M =

⊕
i∈IMi. Then the following conditions are equivalent.

1) For any two distinct subscripts i, j in I, the modules Mi and Mj do not
have isomorphic nonzero subfactors.

2) For any two distinct subscripts i, j in I, we have the relation σ(Mi) ∩
σ(Mj) = 0.

3) For an arbitrary module N ∈ σ(M), there exist uniquely de�ned mod-
ules Ni ∈ σ(Mi), i ∈ I, such that N =

⊕
i∈I Ni.

Lemma 2.2. Let M be a right R-module and let S ∈ σ(M) be a simple
module. Then the module S is isomorphic to the socle of some factor module
of the module M.

Proof. The assertion directly follows from the property that the injective
hull of the module S in the category σ(M) is generated by the module M. �

For a module M , the Loewy series of M is the ascending chain

0 ⊂ Soc1(M) = Soc(M) ⊂ . . . ⊂ Socα(M) ⊂ Socα+1(M) ⊂ . . .,

where Socα(M)/ Socα−1(M) = Soc(M/ Socα−1(M)) for every nonlimit ordi-
nal number α and Socα(M) =

⋃
β<α

Socβ(M) for every limit ordinal number

α. We denote by L(M) the submodule of the form Socξ(M), where ξ is
the the least ordinal number with Socξ(M) = Socξ+1(M). A module M is
semi-Artinian if and only if M = L(M). In this case, ξ is called the Loewy
length of the module M ; it is denoted by Loewy(M). A ring R is said to
be right semi-Artinian if the module RR is semi-Artinian. For any ring R,
we denote by L(R) and Soc(R) the ideals L(RR) and Soc(RR), respectively.
A ring A is called a right V -ring if the following equivalent conditions hold:
1) all simple right A-modules are injective; 2) in A, every proper right ideal is



the intersection of maximal right ideals. A right semi-Artinian right V -ring
is called a right SV-ring.

Module M is called I0 � module, if every nonsmall submodule of module
M contains nonzero direct summand of M .

Lemma 2.3 ([2, Lemma 3].) Let M be a right R-module. If M is
an I0-module and N is a submodule in M such that (N + J(M))/J(M) is a
simple submodule in M/J(M), then N has a local direct summand mR of M
such that (N + J(M))/J(M) = (m+ J(M))R.

Lemma 2.4. For a semi-Artinian right R-module M , the following con-
ditions are equivalent

1) every nonsmall submodule of module M contains local direct summand
of M .

2) M is an I0-module.

Theorem 2.5. Let R be a ring and let P be a �nitely generated quasi-
projective semi-Artinian right R-module.

1) EndR(P ) is a right semi-Artinian ring.

2) P is a module with �nite exchange property.

3) P is an I0-module.

Proof. 1). We set α = Loewy(P ). It is clear that HomR(P, Socβ(P )) is
an ideal of the ring EndR(P ) for every ordinal number β 6 α. Since P is a
�nitely generated quasi-projective module,

HomR(P, Socβ+1(P ))/HomR(P, Socβ(P )) ∼= HomR(P, Socβ+1(P )/ Socβ(P ))

is a semisimple right EndR(P )-module for every ordinal number β 6 α. Since
P is �nitely generated, we have that for every limit ordinal number γ < α, we
have the relation HomR(P, Socγ(P )) =

⋃
β<γ HomR(P, Socβ(P )). Therefore,

it follows from [8, 3.12] that the ring EndR(P ) is right semi-artinian.
2). The assertion follows from 1) and [7, 11.17], [6, Theorem 1.4 ].
3). Let N be a nonsmall submodule of the module P. Since P is a �nitely

generated quasi-projective module, we have that for some homomorphism
f ∈ EndR(P ), which is not contained in J(EndR(P )), we have the inclusion
f(P ) ⊂ N. Since each right semi-Artinian ring is an I0-ring, it follows from
1) that EndR(P ) is an I0-ring. Therefore, for some homomorphism g ∈
EndR(P ), we have that fg is a nonzero idempotent of the ring EndR(P ) and
fg(P ) ⊂ N. �

Module M is called semilocal, if M/J(M) is semisimple module.
Corollary 2.6. If M is a �nitely generated, quasi-projective, semi-

Artinian, semilocal right R-module, then M is a �nite direct sum of local
modules.

3. mod-Retractable Modules

Lemma 3.1. For a semiprimitive I0-ring R, the following conditions are
equivalent.



1) Every nonsingular right R-module is retractable.

2) Every nonzero nonsingular right R-module contains a nonzero injective
submodule.

3) Every nonzero right ideal of the ring R contains a nonzero injective
submodule of the module RR.

4) Every nonzero submodule of any projective right R-module contains a
nonzero injective submodule.

Proof. The implications 2)⇒ 1) and 4)⇒ 3) are directly veri�ed.
3)⇒ 2). Let M be a nonzero nonsingular right R-module and let m be

a nonzero element of M . Since the right ideal Ann(m) of the ring R is
not essential, the submodule mR contains a nonzero submodule which is
isomorphic to some submodule of the module RR. Therefore, the module M
contains a nonzero injective submodule.

1)⇒ 4). Let P0 be a nonzero submodule of a projective right R-module P.
Since R is a semiprimitive I0-ring, E(P ) is a nonsingular module. Therefore,
there exists a nonzero homomorphism f ∈ HomR(E(P ), P0). It follows from
[10, Theorem 3.2] that Im f contains a nonzero direct summand A of the
module P. Let π be the projection from P onto A. Then the kernel of the ho-
momorphism π|P0f is a direct summand in E(P ). Therefore, the submodule
P0 contains a nonzero injective submodule. �

A module M is called a max-module if every nonzero module in the cat-
egory σ(M) has a maximal submodule.

Lemma 3.2. Let M be a mod-retractable module. Then we have the
following assertions.

1) M is a max-module.

2) M is a CSL module.

3) If M is quasi-projective, then M is a self-generated module.

Proof. 1) and 2). The assertions are directly veri�ed.
3). It follows from Lemma 2.2 that M generates every simple module

in the category σ(M). Therefore, it follows from [16, 18.5] that M is a self-
generated module.�

Theorem 3.3. Let M be a projective semiperfect module in the category
σ(M). If M is a semi-Artinian module, then the following conditions are
equivalent.

1) M is a mod-retractable module.

2) M = ⊕i∈IMi, where σ(Mi)∩σ(Mj) = 0 for i 6= j, all simple subfactors
of the module Mi are isomorphic to each other, and Mi is the direct
sum of pairwise isomorphic local max-modules for every i ∈ I.

3) The category σ(M) has a projective generator of the form ⊕i∈IPi, where
σ(Pi) ∩ σ(Pj) = 0 for i 6= j, and Pi is a local max-module such that all
simple subfactors of Pi are isomorphic to each other for every i ∈ I.



Proof. 1)⇒ 2). By [16, 42.5], the module M can be represented in
the form M = ⊕i∈IMi, where Mi is a direct sum of pairwise isomorphic
local modules and the modules Mi and Mj do not have pairwise isomor-
phic local direct summands for i 6= j. We assume that σ(Mi) ∩ σ(Mj) 6= 0.
Therefore, it follows from Lemma 2.2 that for some distinct subscripts i, j ∈
I and some local direct summands Li, Lj of the modules Mi,Mj, respec-
tively, we have the isomorphism Soc(Li/Ni) ∼= Soc(Lj/Nj), where Li/Ni and
Lj/Nj are uniform nonzero modules. Then either Li/J(Li) � Soc(Lj/Nj) or
Lj/J(Lj) � Soc(Lj/Nj). This contradicts to the assumption of 1). Therefore,
σ(Mi) ∩ σ(Mj) = 0. Finally, it is directly veri�ed that, all simple subfactors
of the module Mi are isomorphic to each other, for every i ∈ I.

2)⇒ 3). The implication follows from [16, 18.5].
3)⇒ 1). Let N ∈ σ(M) and let S be a simple submodule of the module

N. It follows from Theorem 2.1 that N = ⊕i∈INi, where Ni ∈ σ(Pi) for
every i ∈ I, and S ⊂ σ(Ni0) for some i0 ∈ I. Since all simple modules in the
category σ(Ni0) are isomorphic to each othe, and M is a max-module, we
have HomR(Ni0 , S) 6= 0. Therefore, HomR(N,S) 6= 0. �

Corollary 3.4. Let M be a projective semiperfect module in the category
σ(M). If M is a �nitely generated semi-Artinian module, then the following
conditions are equivalent.

1) M is a mod -retractable module.

2) M = ⊕i∈IMi, where σ(Mi)∩σ(Mj) = 0 for i 6= j, all simple subfactors
of the module Mi are isomorphic to each other, and Mi is the direct
sum of pairwise isomorphic local max-modules for every i ∈ I.

3) The category σ(M) is equivalent to the category of modules over a ring
R which is a �nite direct product of full matrix rings over perfect local
rings.

Corollary 3.5. For a left perfect ring R, the following conditions are
equivalent.

1) R is a right mod-retractable ring.

2) The ring R is a �nite direct product of full matrix rings over perfect
local rings.

For a ring R, an indecomposable factor ring R/B is called a maximal
indecomposable factor of R if for every ideal B′ which is properly contained
in the ideal B, the factor ring R/B′ is not an indecomposable ring. A module
M is said to be regular if every cyclic submodule of M is a direct summand
in M . A ring R is said to be strongly regular if a ∈ a2R for each element
a ∈ R. A ring R with Jacobson radical J is said to be semiregular if R/J is
a regular ring and all idempotents of R/J can be lifted to idempotents of R.

Theorem 3.6. If R is a semiregular ring and every primitive image of
R is Artinian, then the following conditions are equivalent.

1) R is a mod-retractable ring.

2) R is a semi-Artinian CSL ring.



3) R is a semi-Artinian ring and every maximal indecomposable factor of
R is a full matrix ring over a perfect local ring.

Proof. The implications 2)⇒ 3) and 3)⇒ 1) follow from [1, Theorem
3.3].

1)⇒ 2). It is clear that each mod-retractable ring is a CSL-ring. We
prove that the ring R is semi-Artinian. It follows from [1, Theorem 3.5]
that R/J(R) is a SV-ring. Since the ring R is a max-ring by Lemma 3.2,
it follows from [13, Lemma 26.2] that J(R) is a t-nilpotent ideal. By [13,
Remark 21.3]. the ring R is a semi-Artinian ring. �

Theorem 3.7. Let P be a �nitely generated quasi-projective module such
that every primitive image of the ring EndR(P ) is Artinian. Then the fol-
lowing conditions are equivalent.

1) P is a mod-retractable regular module.

2) P is an SV-module.

Proof. The implication 2)⇒ 1) follows from [1, Theorem 3.10].
1)⇒ 2). It follows from [1, Theorem 3.10], [1, Lemma 1.10], and [16, 46.2]

that the category σ(P ) is equivalent to the category of all right modules over
the regular ring EndR(P ). Therefore, it follows from [1, Theorem 3.5] that
EndR(P ) is a SV-ring. Therefore, P is an SV-module. �

4. Kasch Rings and CC Rings

Lemma 4.1. If M is a generator in σ(M), then the following conditions
are equivalent.

1) M is a fully Kasch module.

2) For every submoduleM0 of the moduleM , the moduleM/M0 is a Kasch
module.

3) For every fully invariant submodule M0 of the module M , the module
M/M0 is a Kasch module.

Proof. The implications 1)⇒ 2) and 2)⇒ 3) are directly veri�ed.
3)⇒ 1). Let N ∈ σ(M) and let M0 =

⋂
f∈HomR(M,N)Ker(f). It is easy

to see that M0 is a fully invariant submodule of the module M. Since N =
HomR(M,N)M, we have N = HomR(M/M0, N)(M/M0). Therefore, σ(N) ⊂
σ(M/M0). Let S ∈ σ(N) be a simple module. Then there exists an element
m ∈ M such that (m +M0)R is a simple submodule of the module M/M0

which is isomorphic to the module S. Since the element m is not contained
in the submodule M0, there exists a homomorphism f ∈ HomR(M,N) such
that f(m) 6= 0. Since M0 ⊂ Ker(f), the homomorphism f induces the
homomorphism f ∈ HomR(M/M0, N) with f((m +M0)R) 6= 0. Therefore,
the module S is isomorphic to some simple submodule of the module N. �

Lemma 4.2. For an arbitrary right R-module M , we have the following
assertions.

1) If M is a �nitely generated Kasch module, then M is a coretractable
module.



2) If M is a self-generated, quasi-projective, coretractable module, then M
is a Kasch module.

Proof. 1). The assertion is directly veri�ed.
2). Let S be an arbitrary simple module in the category σ(M). Then

S ∼= A/B, where A is a �nite direct sum of isomorphic copies of the module
M and B is a submodule of the module A. It follows from [5, Proposition
2.6] that HomR(A/B,A) 6= 0. Therefore, HomR(S,M) 6= 0. �

Lemma 4.3. For an arbitrary right R-moduleM , the following assertions
are true.

1) If M is a fully Kasch module, then M is a semi-Artinian module.

2) If M is a �nitely generated, quasi-projective, fully Kasch module, then
M is a semiperfect module in the category σ(M).

Proof. 1). The assertion is directly veri�ed.
2). By [16, 18.2], the module M/J(M) is quasi-projective. If N is a

maximal and essential submodule of the module M/J(M), then it follows
from the assumption that (M/J(M))/N is an M/J(M)-projective simple
module; it is clear that this is impossible. Therefore,M/J(M) is a semisimple
�nitely generated module. Now, it follows from 1) and Corollary 2.6 2.3 that
M is a �nite direct sum of local modules. Therefore, it follows from [16, 42.5]
that M is a semiperfect module in the category σ(M). �

Proposition 4.4. If M is a projective semiperfect module in the category
σ(M), then the following conditions are equivalent.

1) M is a fully Kasch module.

2) In the category σ(M), every cyclic module is coretractable.

3) In the category σ(M), every �nitely generated module is coretractable.

4) M = ⊕i∈IMi, where σ(Mi) ∩ σ(Mj) = 0 if i 6= j, all simple subfactors
of the module Mi are isomorphic to each other, and Mi is a direct sum
of pairwise isomorphic local semi-Artinian modules for every i ∈ I.

5) The category σ(M) has a projective generator of the form ⊕i∈IPi, where
σ(Pi)∩σ(Pj) = 0 for i 6= j, and Pi is a local semi-Artinian module such
that all simple subfactors of Pi are isomorphic to each other for every
i ∈ I.

Proof. The proof of the implication 1)⇒ 4) is similar to the proof of the
implication 1)⇒ 2) in Theorem 3.3.

The implications 3)⇒ 2) and 1)⇒ 3) are directly veri�ed.
4)⇒ 5). The implication directly follows from [16, 18.5].
5)⇒ 1). Let N ∈ σ(M) and let S ∈ σ(N) be a simple module. By

Theorem 2.1, N = ⊕i∈INi, where Ni ∈ σ(Pi) for every i ∈ I. It follows from
Lemma 2.2 that S ∼= Ai0/Bi0 , where Ai0 , Bi0 are submodules of the module
Ni0 for some i0 ∈ I. Since all simple modules in σ(Pi0) are isomorphic to each
other and Soc(Ni0) 6= 0, the module S is isomorphic to some submodule of
the module N.



2)⇒ 1). Let N ∈ σ(M) and let S ∈ σ(N) be a simple module. It follows
from Lemma 2.2 that S ∼= A/B, where A, B are submodules of the module
N. Without loss of generality, we can assume that A is a cyclic module.
Since A is a coretractable module, the simple module S is isomorphic to
some submodule of the module N. �

The following assertion directly follows from Lemma 4.3, Proposition 4.4,
and [16, 46.2].

Corollary 4.5. If P is a �nitely generated quasi-projective module, then
the following conditions are equivalent.

1) P is a fully Kasch module.

2) In the category σ(P ), every cyclic module is coretractable.

3) In the category σ(P ), every �nitely generated module is coretractable.

4) The category σ(P ) is equivalent to the category of right modules over a
ring which is a �nite direct product of full matrix rings over left perfect
local rings.

The following assertion directly follows from Lemma 4.1 and Corollary
4.5.

Corollary 4.6. For a ring R, the following conditions are equivalent.

1) R is a right fully Kasch ring.

2) Over the ring R, every right �nitely generated module is coretractable.

3) Over the ring R, every cyclic right module is coretractable.

4) Every factor ring of R is a right Kasch ring.

5) The ring R is isomorphic to the �nite direct product of full matrix rings
over left perfect local rings.

Corollary 4.7. For a ring R, the following conditions are equivalent.

1) R is a right semi-Artinian ring and all simple right R-modules are
isomorphic to each other.

2) R is a right fully Kasch ring and all simple right modules are isomorphic
to each other.

3) Every nonzero injective right R-module is a generator in the category
of all all right R-modules.

4) The ring R is isomorphic to a matrix ring over a local, left perfect ring.

Proof. The implications 1)⇒ 2) and 4)⇒ 3) are directly veri�ed.
The implication 2)⇒ 4) follows from Corollary 4.6.
3)⇒ 1). Let S be a simple right R-module. We consider an arbitrary

nonzero right R-module M. It follows from the assumption that the module
S is isomorphic to some simple submodule of the module E(M). Therefore,



R is a right semi-Artinian ring such that all simple right R-modules are
isomorphic to the module S. �

The proof of the following assertion is similar to the proof of [5, Proposi-
tion 3.2].

Lemma 4.8. If R is a ring and every free right R-module is coretractable,
then the following conditions are equivalent.

1) R is a max-ring.

2) Every submodule of the module RR has a maximal submodule.

Theorem 4.9. For a ring R, the following conditions are equivalent.

1) For every ideal I of the ring R, each free right module over the ring
R/I is coretractable.

2) The ring R is isomorphic to the �nite direct product of full matrix rings
over perfect local rings.

Proof. The implication 2)⇒ 1) is directly veri�ed.
1)⇒ 2). It is clear that every factor ring of the ring R is a right Kasch

ring. Therefore, it follows from Corollary 4.6 and Lemma 4.1 that the ring R
is isomorphic to the �nite direct product of full matrix rings over left perfect
local rings. Therefore, it is su�cient to prove that R is a right max ring. Let
I be the sum of all radical submodules of the module RR. We assume that
I 6= 0. It is clear that I is an ideal. Since R is a right semi-Artinian ring,
then it follows from [6, Theorem 3.1] that I2 6= I. Then I/I2 is a nonzero
radical right R/I-module. Let A/I be a nonzero submodule of the module
R/IR/I . Then A contains a maximal submodule M . Since AJ(R) = J(A)
and I = IJ(R), we have I ⊂ J(A). Therefore, I ⊂ M. Therefore, every
nonzero submodule of the module R/IR/I contains a maximal submodule.
Therefore, it follows from Lemma 4.8 that R/I is a max-ring. On the other
hand, the right R/I-module I/I2 is a nonzero radical module. It follows from
this contradiction that I = 0. Therefore, it follows from Lemma 4.8 that R
is a right max ring. �

The following assertion directly follows from the previous results and [1],
[18].

Theorem 4.10. For a ring R, the following conditions are equivalent.

1) R is a fully Kasch ring.

2) For every ideal I of the ring R, the factor ring R/I is a Kasch ring.

3) Over the ring R, every �nitely generated right or left module is core-
tractable.

4) Over the ring R every cyclic right or left module is coretractable.

5) R is a right CC ring.

6) R is a left CC ring.



7) The ring R is isomorphic to the �nite direct product of full matrix rings
over perfect local rings.

5. CSL Rings and Modules

Lemma 5.1. Let R be a ring and let M be a semi-Artinian right R-
module such that all simple subfactors of M are isomorphic to each other.
Then the following conditions are equivalent.

1) M is a CSL module which is a max-module.

2) M is a mod-retractable module.

Proof. 1)⇒ 2). Let N be a nonzero module in the category σ(M).
Since M is a max-module, we have the least non-limit ordinal number α
such that Socα(N) * J(N). Then Socα(N)/ Socα−1(N) * J(N)/ Socα−1(N).
Therefore, some simple submodule S of the module N/ Socα−1(N) is a direct
summand in N/ Socα−1(N). Therefore, HomR(N/ Socα−1(N), S) 6= 0. Since
all simple subfactors of the module N are isomorphic to each other, N is a
retractable module.

The implication 2)⇒ 1) is directly veri�ed. �
It is easy to see that for every prime integer p, the Z-module Cp∞ is a

CSL module, which is not mod-retractable.

Lemma 5.2. Let P be a �nitely generated quasi-projective semi-Artinian
max-module such that the following conditions hold.

1) For all pairwise nonisomorphic simple modules S1, S2 ∈ σ(P ), we have
the relation Ext1R(S1, S2) = 0.

2) P = P1⊕P2, where P1 is a direct sum of local modules, P2 is a submod-
ule of the module P, and the modules P1, P2 do not have isomorphic
nonzero direct summands.

Then HomR(P1, P2) = 0,HomR(P2, P1) = 0.
Proof. We assume that HomR(P2, P1) 6= 0. It follows from Theorem

2.3 that P0 = HomR(P2, P1)P2 ⊂ J(P1). Let M be a maximal submodule
of the module P0 and let P ′ be a ∩-complement of the module P0/M in
the module P1/M. Then L = (P1/M)/P ′ is a uniform module such that
Soc(L) ∼= P0/M and Soc(L) ⊂ J(L). Since P is quasi-projective, we have
that HomR(P2, L)P2 = Soc(L) and HomR(P2, L/ Soc(L))P2 = 0. Since P
is a semi-Artinian module, the module L contains a local submodule L0 of
length two. Since HomR(P2, Soc(L0)) 6= 0 and HomR(P2, L0/J(L0)) = 0,
the simple modules Soc(L0), L0/J(L0) are not isomorphic to each other,
and Ext1R(Soc(L0), L0/J(L0)) 6= 0. This contradicts to the assumption of the
lemma. The relation HomR(P1, P2) = 0 is similarly proved. �

Theorem 5.3. Let P be a �nitely generated semi-Artinian quasi-projective
module. If every primitive image of the ring End(P ) is Artinian, then the
following conditions are equivalent.

1) P is a self-generated CSL module which is a max-module.

2) P is a mod-retractable module.



3) P is a self-generated max-module and Ext1R(S1, S2) = 0 for any two
simple nonisomorphic modules S1, S2 ∈ σ(P ).

4) The category σ(P ) is equivalent to the category of right modules over
a semi-Artinian ring S such that every maximal indecomposable factor
of S is a full matrix ring over a perfect local ring.

Proof. 1)⇒ 3). The assertion is directly veri�ed.
2)⇒ 1). The implication follows from Lemma 3.2.
4)⇒ 2). The implication follows from [1, Theorem 3.3].
3)⇒ 4). By [16, 46.2], it is su�cient to prove that EndR(P ) is a semi-

Artinian ring such that every maximal indecomposable factor of this ring
is a full matrix ring over a perfect local ring. With the use of the trans-
�nite induction, for every ordinal number α, we construct a fully invariant
submodule Pα in the module P , as follows. For α = 0, we set P0 = 0. If
α = β+1, then Pβ+1/Pβ =

∑
π∈Iβ π(P/Pβ), where Iβ is the set of all nonzero

indecomposable central idempotents π ∈ End(P/Pβ) such that π(P/Pβ) is
a �nite direct sum of pairwise isomorphic local modules. If α is a limit or-
dinal number, we set Pα =

⋃
β<α Pβ. It follows from Theorem 2.3, Lemma

5.2, and [1, Lemma 1.2] that Pτ = P for some ordinal number τ . It is
easy to see that for an arbitrary ordinal number β and for every π ∈ Iβ
module π(P/Pβ) is a self-generated quasi-projective module. Since P is a
max-module, it follows from [16, 46.2] that EndR(π(P/Pβ)) is a full matrix
ring over a perfect local ring. Since P is a quasi-projective �nitely gener-
ated module, Hom(P, Pα+1)/Hom(P, Pα) is a direct sum of full matrix rings
over perfect local rings. Since EndR(P ) =

⋃
β6τ Hom(P, Pβ), we have that

EndR(P ) is a semi-Artinian ring such that every maximal indecomposable
factor of this ring is a full matrix ring over a perfect local ring. �

Corollary 5.4. Let P be a projective semiperfect module in the category
σ(P ). If P is a �nitely generated semi-Artinian module, then the following
conditions are equivalent.

1) P is a self-generated CSL module which is a max-module.

2) P is a mod-retractable module.

3) The category σ(P ) is equivalent to the category of modules over a ring
S which is a �nite direct product of full matrix rings over perfect local
rings.

Corollary 5.5. If R is a right semi-Artinian ring and every primitive
image of R is an Artinian ring, then the following conditions are equivalent.

1) R is a right CSL ring and a right max-ring.

2) R is a right mod-retractable ring.

3) R is a semi-Artinian ring such that every maximal indecomposable fac-
tor of R is a full matrix ring over a perfect local ring.

Theorem 5.6. For a right or left quasi-invariant ring R, the following
conditions are equivalent.



1) R is a mod-retractable ring.

2) R is a semi-Artinian CSL ring.

3) R is a semi-Artinian ring such that every maximal indecomposable fac-
tor of R is a local perfect ring.

Proof. 1)⇒ 2). It follows from [17, Corollary 2.4] that R/J(R) is a
reduced ring. Therefore, it follows from [12, Theorem 3.2] that R/J(R) is a
semi-Artinian strongly regular ring. Since R is a max-ring, it follows from
[13, Remark 21.3, Lemma 26.2] that the ring R is semi-Artinian. Therefore,
R is a semi-Artinian ring such that every primitive image of R is a division
ring. Now, it follows from Lemma 3.2 that R is an CSL-ring.

2)⇒ 3). Since the ring R is right quasi-invariant, the implication directly
follows from [1, Theorem 3.3].

3)⇒ 1). The implication follows from [1, Theorem 3.3]. �

Corollary 5.7.For a right (or left) invariant ring R, the following con-
ditions are equivalent.

1) R is a mod-retractable ring.

2) R is a semi-Artinian CSL ring.

3) R is a semi-Artinian ring.

Theorem 5.8. Let R be a ring and let M be a right R-module of �nite
length. Then the following conditions are equivalent.

1) Every module N of �nite length in the category σ(M), such that End(N)
is a division ring, is a simple module.

2) M is a CSL module.

3) Every module of �nite length in the category σ(M) is retractable.

4) M is a mod-retractable module.

5) Ext1R(S1, S2) = 0 for any two simple nonisomorphic modules S1, S2 ∈
σ(M).

6) M is a fully Kasch module.

7) M is a ÑÑ module.

8) In the category σ(M), all simple subfactors of every indecomposable
module of �nite length are isomorphic to each other.

9) In the category σ(M), all simple subfactors of every indecomposable
module are isomorphic to each other.

Proof. The implications 2)⇒ 1), 4)⇒ 3), 1)⇒ 5), 2)⇒ 5), 3)⇒ 5),
6)⇒ 7), 7)⇒ 1), 9)⇒ 1), 9)⇒ 2), 9)⇒ 8) are directly veri�ed.

The implications 9)⇒ 4), 9)⇒ 6), 8)⇒ 9) follow from Theorem 2.1.
5)⇒ 8). We assume that the category σ(M) has an indecomposable mod-

ule of �nite length which has nonisomorphic simple subfactors. Let N be an



indecomposable module of least length in the category σ(M) such that N
does not satisfy 8). Then J(N) = N1⊕ . . .⊕Nk, where σ(Ni)∩σ(Nj) = 0 for
i 6= j, Ni is a nonzero submodule of the module N , and all simple subfactors
of the module Ni are isomorphic to each other for every i.

Let k = 1 and let the module N be not local. Then the factor module
N/J(N) contains a simple submodule S such that S /∈ σ(J(N)). Let N0 be
a submodule of the module N with N0/J(N) = S. It is clear that lg (N0) <
lg (N). Consequently, the module N0 has a decomposition N0 = A1⊕ . . .⊕As
where for every i, we have that Ai is an indecomposable module such that
all simple subfactors of it are isomorphic to each other. Since Soc(N0) ⊂
Soc(N) ⊂ J(N), we have Soc(N0) ∈ σ(J(N)). Since N0/J(N) = S for some
subscript i0, the module Ai0 has a simple subfactor which is isomorphic to
the module S. Thus, the indecomposable module Ai0 has two nonisomorphic
simple subfactors; this contradicts to the choice of the module N.

It is easy to see that if N is a local module, then for some submodule N0 in
N , the module N/N0 is a local module of length two such that Soc(N/N0) �
N/ Soc(N/N0). Therefore, without loss of generality, we can assume that N
is a non-local module and k > 1. Let Ni be the closer of the module Ni

in the module N for every i and let S = N0/J(N) be an arbitrary simple
submodule of the semisimple module N/J(N). Since lg (N0) < lg (N), we
have that N0 = A1 ⊕ . . .⊕ As, where all simple subfactors of the module Ai
are isomorphic to each other for every i, σ(Ai)∩σ(Aj) = 0 for i 6= j, and every
simple subfactor of the module As is isomorphic to the module S. We take a
subscript i0 such that all simple subfactors of the module Ni0 are isomorphic
to the module S. Since lg (Ni0) < lg (N) and all simple submodules of the
module Ni0 are isomorphic to each other, it follows from the choice of the
module N that all simple subfactors of the module Ni0 are isomorphic to each
other. Then Ni0 +As is an essential extension of the module Ni0 . Therefore,
Ni0 + As = Ni0 and As ⊂ Ni0 . Since A1 ⊕ . . .⊕ As−1 ⊂ J(N), we have

N0 = A1 ⊕ . . .⊕ As ⊂ N1 ⊕ . . .⊕Nk.

It is clear that the moduleN can be represented in the formN = B1+. . .+Bt,
where J(N) ⊂ Bi and Bi/J(N) is a simple submodule for every i. Therefore,
we have N = N1⊕ . . .⊕Nk; this contradicts to the indecomposability of the
module N. �

Corollary 5.9. For artinian module M following conditions are equiva-
lent.

1) M is a mod-retractable module.

2) M is a CSL module which is a max-module.

3) M is module of �nite length and M = M1 ⊕ . . . ⊕ Mn, where Mi is
indecomposable module for every 1 6 i 6 n and all simple subfactors
of the module Mi are isomorphic to each other.

Proof. The implication 1)⇒ 2) follows from Lemma 3.2. The implication
3)⇒ 2) follows from Theorem 5.8.

2)⇒ 3). For every nonnegative integer n, we inductively dea�ne a sub-
module J (n)(M) of the module M such that J (0)(M) =M and J (n+1)(M) =



J(J (n)(M)). Since M is an Artinian max-module, there exists a nonnegative
integer n0 such that J (n0)(M) = 0 and J (n+1)(M)/J (n)(M) is a semisimple
module of �nite length for every nonnegative integer n. Thus,M is a module
of �nite length, and the implication follows from Theorem 5.8. �

The following assertion is similar to [9, Theorem 1.2]. We note that the
proof of the previous theorem and the proof of [9, Theorem 1.2] are distinct.

Corollary 5.10. Let R be a ring and let M be a right R-module. Then
the following conditions are equivalent.

1) Every module N in the category σ(M), such that N is of �nite length
and End(N) is a division ring, is a simple module.

2) In the category σ(M), every module N of �nite length is retractable.

3) Ext1R(S1, S2) = 0 for any two simple nonisomorphic modules S1, S2 in
σ(M).

4) In the category σ(M), for every indecomposable module N of �nite
length, all simple subfactors of N are isomorphic to each other.

Corollary 5.11. Let P be a quasi-projective module of �nite length.
Then the following conditions are equivalent.

1) P is a CSL module.

2) P is a mod-retractable module.

3) Ext1R(S1, S2) = 0 for any two simple nonisomorphic modules S1, S2 in
σ(P ).

4) The category σ(P ) is equivalent to the category of right modules over
a semi-Artinian ring S such that every maximal indecomposable factor
of S is a full matrix ring over a perfect local ring.
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