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Abstract

We research boundary properties of the Cauchy transform of cer-
tain distributions with supports on non-rectifiable curves and apply
these results for solution of the Riemann boundary value problem.

Introduction.

A number of recent publications (see, for instance, [1, 2, 3]) is dealing with
various properties of the Cauchy transforms of measures. If µ is a finite
measure on the complex plane, then its Cauchy transform is integral

Cµ :=
1

2πi

∫
dµ(ζ)

ζ − z
.

In particular, if support S of the measure µ is rectifiable curve, dµ = f(ζ)dζ
and f(ζ) is integrable (with regard to the length of S) function, then we
obtain the Cauchy integral

C(f(ζ)dζ) = 1

2πi

∫
Γ

f(ζ)dζ

ζ − z
. (1)

On the other hand, if φ is a distribution with compact support S on the
complex plane, then its Cauchy transform is defined by equality

Cφ :=
1

2πi
⟨φ, 1

ζ − z
⟩,
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