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Introduction

When G is an automorphism group of a ring R and P is a prime ideal of R, all
possible finite intersections of primes in the G-orbit of P produce a family of ideals
of R with the property that any prime minimal over an ideal in this family belongs
to the G-orbit of P . Conversely, any G-conjugate of P is a member of the above
family of ideals and is a prime minimal over itself. Let ZG denote the group algebra
of G over the ring of integers. If C is the subcoalgebra of ZG linearly spanned by a
finite subset X ⊂ G, then the ideal

⋂
g∈X g

−1P consists of all elements of R which
are sent inside P by all elements of C. Thus the above family of ideals and the
corresponding set of minimal primes, i.e. the G-orbit of P , can be characterized in
purely Hopf algebraic terms. This simple observation suggests a possible extension
of the notion of orbits to H-module algebras for a Hopf algebra H.

Throughout the paper the base ring k is an arbitrary commutative ring. We have
to make the following assumption about the Hopf algebra which will not be repeated
any more: H is the union of a directed family F of subcoalgebras such that each
C ∈ F is a finitely generated projective k-module. When k is a field this assumption
is clearly satisfied for any Hopf algebra. Let A be an H-module algebra. Given a
subcoalgebra C of H and an ideal I of A, the ideal IC of A is defined by the rule

IC = {a ∈ A | Ca ⊂ I}.

Definition. A subset O ⊂ SpecA is an H-orbit if for each P ∈ O and each P ′ ∈
SpecA one has P ′ ∈ O if and only if P ′ is a prime minimal over PC for some

C ∈ F .

There is an obvious flaw in the above definition. Given P ∈ SpecA, the definition
tells us which primes occur in the H-orbit of P , but the set of those primes does
not seem to satisfy the required condition when P is replaced by another prime in
this set. In other words, the existence of H-orbits appears to be questionable. This
paper will treat one class of H-module algebras.

For each ring R denote by Specf R the set of those prime ideals P of R for which
there exists no infinite strictly ascending chain P0 ⊂ P1 ⊂ · · · in SpecR starting at
P0 = P . In other words, P ∈ SpecR is in Specf R if and only if the factor ring R/P
satisfies ACC on prime ideals. For instance, Specf R = SpecR when R is either left
or right noetherian.
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Theorem 0.1. If A is an H-module algebra module-finite over its center, then the

set Specf A is a disjoint union of H-orbits. Thus there is an equivalence relation

∼H on Specf A such that for P, P ′ ∈ Specf A one has P ∼H P ′ if and only if P ′ is
a prime minimal over PC for some C ∈ F .

The proof of Theorem 0.1 is indirect. It will be shown that for P ∈ Specf A and
C ∈ F the factor algebra A/PC has an artinian classical quotient ring Q(A/PC).
The rings Q(A/PC) with C running over F form an inverse system. Define

LP (A) = lim
←−−

Q(A/PC).

The inverse limit of discrete topologies makes LP (A) into a linearly compact algebra.
There is also an H-module structure with respect to which LP (A) is an H-module
algebra. It turns out that P ′ ∈ Specf A is a prime minimal over PC for some C ∈ F
if and only if there exists a continuous homomorphism of H-module algebras

ψ : LP (A) → LP ′(A)

compatible with the canonical maps A→ LP (A) and A→ LP ′(A). The relation on
Specf A determined by the existence of such a homomorphism is obviously reflexive
and transitive. This relation is symmetric because ψ, if it exists, necessarily has a
continuous inverse. The trickiest part is to prove that Kerψ = 0, which follows from

Theorem 0.2. Let A be an H-module algebra module-finite over its center, and let

P ∈ Specf A. Then the linearly compact H-module algebra LP (A) is topologically
H-simple, that is, LP (A) has no H-stable closed ideals other than 0 and LP (A).

Restriction of the relation ∼H to only a part of SpecA is unavoidable in this
approach. As an example, suppose that P is a prime ideal of A properly containing
g−1P for some grouplike element g ∈ H. Here C = k + kg is a subcoalgebra such
that PC = g−1P ⊂ P . If A/PC has an artinian classical quotient ring, the latter
has to be simple since PC is prime. In this case the canonical map A/PC → A/P
does not extend to a homomorphism of quotient rings, and LP (A) is not defined.

The existence of quotient rings Q(A/PC) has another application concerned with
the H-semiprime version of Goldie’s Theorem. Recall that A is H-semiprime if A
has no nonzero nilpotent H-stable ideals. It was proved in [24, Th. 0.1] that, whenH
satisfies certain conditions, every H-semiprime right noetherian H-module algebra
has a quasi-Frobenius classical right quotient ring. However, it is not completely
understood what is the class of Hopf algebras for which that theorem is true. The
next result is valid without further restrictions on H. In fact even the bijectivity
of the antipode S : H → H is not needed. The proof is also quite different. In
particular, it makes use of Small’s criterion of the existence of artinian classical
quotient rings [25].

Theorem 0.3. Any noetherian H-semiprime H-module algebra A module-finite

over its center Z has a quasi-Frobenius classical quotient ring Q(A) isomorphic

with A⊗Z Q(Z) where Q(Z) is the total ring of fractions of Z.

By [24, Th. 2.2] Q(A) is an H-module algebra with respect to a module structure
extending that on A, and by [24, Lemma 4.2] Q(A) is H-semisimple. One may
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wonder whether the module-finiteness of A over its center can be weakened to the
assumption that A satisfies a polynomial identity. In fact quasi-Frobenius classical
quotient rings exist for finitely generated noetherian PI Hopf algebras [28, Th. 0.2].

Generalizing terminology used in the case of group actions (e.g. [6], [27]) let us
say that P, P ′ ∈ SpecA belong to the same H-stratum if PH = P ′H , i.e. if P and P ′

contain the same H-stable ideals of A. Stratification makes sense for an arbitrary
H-module algebra A, but it usually gives a coarser equivalence relation than the
orbit relation. The assignment P 7→ PH defines a map from SpecA to the set of
H-prime ideals of A which was considered by Montgomery and Schneider [20] in
the case when dimH < ∞. Even under that assumption the existence of H-orbits
is a nontrivial matter. Unless some finiteness assumptions about A are made, it is
even not clear whether any P ∈ SpecA is always a minimal prime over PH .

As was observed by Brown and Goodearl [5] the strata of a suitable torus action
on quantum function algebras give precisely the partition of the prime spectra that
appeared in the work of Hodges-Levasseur [11] and Joseph [12]. It was discovered
there that the primitive ideals in each of those strata constitute a single orbit. This
turns out to be a manifestation of a remarkable fact proved by Moeglin-Rentschler
[18] in characteristic 0 under some finiteness assumptions and by Vonessen [27]
without previous restrictions: the rational ideals in any G-stratum of a rational
action of an algebraic group G by automorphisms on an algebra A are G-conjugate
to each other. It would be very interesting to obtain analogs of this result for
coactions of noncommutative Hopf algebras.

Theorems 0.1–0.3 will be proved in section 4. The main ingredients of the proofs
are developed in the first three sections. Following a suggestion of the referee I added
section 5 with some examples of H-orbits.

1. The quasi-Frobenius property in the module-finite case

The final result of this section, Theorem 1.8, will be used to show that the quotient
ring Q(A) in Theorem 0.3 is quasi-Frobenius. This result should be compared with
[24, Th. 0.3]. For its proof we will need a strengthened version of [23, Th. 7.4] which
will be offered in Proposition 1.5. Recall that an H-module algebra is H-simple

(resp. H-semisimple) if it has no nonzero proper H-stable ideals (resp. if it is a finite
direct product of H-simple H-module algebras).

For an algebra A and a coalgebra C (over the base ring k), we consider Hom(C,A)
as an algebra with respect to the convolution multiplication (see [19] or [26]). Denote
by MA the category of right A-modules. If M ∈ MA, then Hom(C,M) is a right
module over Hom(C,A) with respect to the convolution action

(η ∗ ξ)(c) =
∑

(c)

η(c(1))ξ(c(2))

where ξ ∈ Hom(C,A), η ∈ Hom(C,M) and c ∈ C. Similarly, if M is a left B-module
where B is another algebra, then Hom(C,M) is a left module over Hom(C,B). When
M is a B,A-bimodule, the two module structures on Hom(C,M) commute.

Further on we assume that A is an H-module algebra (see [19] or [26]). So A has a
left H-module structure such that, when ã : H → A is given by the rule ã(h) = ha
for a ∈ A and h ∈ H, the assignment a 7→ ã defines an algebra homomorphism
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τ : A→ Hom(H,A). Given a subcoalgebra C of H and an ideal I of A, the inclusion
C → H and the projection A→ A/I give rise to an algebra homomorphism

Hom(H,A) → Hom(C,A/I).

Let τC,I : A → Hom(C,A/I) denote the composite of the latter with τ . It is
immediate that Ker τC,I = IC , the ideal defined in the introduction. When I = 0
we write τC instead of τC,I , and ã will often denote τC(a), i.e. a linear map C → A.

Note that IH is the largest H-stable ideal of A contained in I. If C,D are two
subcoalgebras with C ⊂ D then IC ⊃ ID. Since H is the union of subcoalgebras in
F , we have IH =

⋂
C∈F IC .

If M ∈ MA, then A operates on Hom(C,M) via τC . We call this action of A
twisted in order to distinguish it from the untwisted action which is implemented via
the elements â ∈ Hom(C,A) defined by the rule â(c) = ε(c)a for a ∈ A and c ∈ C
where ε : H → k is the counit. Note that (η ∗ â)(c) = η(c)a for any η ∈ Hom(C,M).

The assumption about F implies thatH has a flat underlying k-module. Therefore
we obtain as a special case of [24, Lemma 1.1(iii)]:

Lemma 1.1. If E is an injective in MA, then so too is Hom(H,E) with respect to

the twisted action of A.

Let M ∈ MA. A k-linear map H⊗M →M , denoted h⊗m 7→ hm, will be called
a quasi-measuring of H on M if

h(ma) =
∑

(h)

(h(1)m)(h(2)a)

for all h ∈ H,m ∈M , a ∈ A. We say that a quasi-measuring satisfies the Surjectivity

Condition if for each C ∈ F the linear transformation Φ of Hom(C,M) defined by
the rule

Φ(η)(c) =
∑

(c)

c(1)η(c(2)), η ∈ Hom(C,M) and c ∈ C,

is surjective. Define m̂, m̃ ∈ Hom(C,M) for each m ∈M by the formulas

m̂(c) = mε(c), m̃(c) = cm.

The identity in the definition of a quasi-measuring can be rewritten as m̃a = m̃ ∗ ã.
Thus the quasi-measurings of H on M are in a bijective correspondence with the
MA-morphisms M → Hom(H,M) where we consider the twisted action of A on
Hom(H,M).

Let C∗ = Hom(C, k). The canonical homomorphism k → A induces by functori-
ality a homomorphism of convolution algebras C∗ → Hom(C,A). The latter allows
us to view Hom(C,M) as a right C∗-module for M ∈ MA.

Lemma 1.2. For each C ∈ F the C∗-module Hom(C,M) is generated by the set

{m̂ | m ∈M}. When M is equipped with a quasi-measuring satisfying the surjectiv-

ity condition, the elements m̃ give another generating set.

Proof. There is a k-linear bijection Hom(C,M) ∼= M⊗C∗. Givenm ∈M and ξ ∈ C∗,
the map η : C →M corresponding to m⊗ ξ is defined by the rule η(c) = mξ(c) for
c ∈ C. Note that
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(m̂ ∗ ξ)(c) =
∑

(c)

mε(c(1))ξ(c(2)) = mξ(c).

Thus η = m̂ ∗ ξ. This proves the first part of the lemma. Since

Φ(η)(c) =
∑

(c)

c1
(
mξ(c(2))

)
=

∑

(c)

(c(1)m)ξ(c(2)) = (m̃ ∗ ξ)(c)

for all c ∈ C, we have Φ(η) = m̃∗ ξ. Therefore the second part of the lemma follows
from the surjectivity of Φ. �

Recall that a ring R is said to be weakly finite (e.g. [22]) if for each integer n > 0
every generating set for the free right R-module Rn containing exactly n elements
is a basis for Rn. This is equivalent to the condition that all one-sided invertible
n× n-matrices with entries in R are invertible on both sides.

Lemma 1.3. Let C ∈ F and M ∈ MA. Suppose that I is an ideal of A such

that A/I is weakly finite, M/MI ∼= (A/I)n in MA and the A-module M/MIC is

n-generated. If M admits a quasi-measuring of H satisfying the surjectivity condi-

tion, then M/MIC ∼= (A/IC)n in MA. More precisely, any set of n generators for

M/MIC is a basis over A/IC .

Proof. Let v1, . . . , vn generate M modulo MIC . Each element of M can be written
as m =

∑
viai + u for some a1, . . . , an ∈ A and u ∈MIC . Then m̃ =

∑
ṽi ∗ ãi + ũ

in Hom(C,M). Note that

c(MIC) ⊂
∑

(c)

(c(1)M)(c(2)IC) ⊂MI

for all c ∈ C. In particular, ũ(c) = cu ∈ MI for all c ∈ C. So ũ is contained in the
kernel of the Hom(C,A)-linear map

π : Hom(C,M) → Hom(C,M/MI)

induced by the projection M → M/MI, and π(m̃) is a Hom(C,A)-linear combi-
nation of π(ṽ1), . . . , π(ṽn). The projectivity of C as a k-module ensures that π is
onto, whence π(ṽ1), . . . , π(ṽn) generate the Hom(C,A)-module Hom(C,M/MI) by
Lemma 1.2. On the other hand, Hom(C,A) operates on the latter via the algebra
homomorphism

π′ : Hom(C,A) → Hom(C,A/I).

induced by the projection A → A/I. Since M/MI is a direct sum of n copies of
A/I, we deduce that Hom(C,M/MI) is a free Hom(C,A/I)-module of rank n.

There is an algebra isomorphism Hom(C,A/I) ∼= A/I ⊗ C∗. In general, if S is a
weakly finite ring and S → R is a ring homomorphism such that the right S-module
RS is finitely generated projective, then R is weakly finite too. This follows, e.g.,
from [23, Lemma 2.1] since S is isomorphic with a subring of the endomorphism
ring EndSR. This observation applied with S = A/I and R = Hom(C,A/I) shows
that Hom(C,A/I) is weakly finite. It follows that π(ṽ1), . . . , π(ṽn) are in fact a basis
for Hom(C,M/MI) over Hom(C,A/I).
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Note that ã ∈ Kerπ′ for a ∈ A if and only if Ca ⊂ I, i.e. a ∈ IC . Suppose that
a1, . . . , an ∈ A are any elements such that

∑
viai ∈ MIC . Then

∑
ṽi ∗ ãi ∈ Kerπ,

and therefore
∑
π(ṽi) ∗ π

′(ãi) = 0. It follows that π′(ãi) = 0, i.e. ai ∈ IC for each
i. Hence the cosets of v1, . . . , vn modulo MIC are linearly independent over A/IC .
�

Corollary 1.4. Let I be an ideal of A such that A/I is weakly finite and IH = 0.
Suppose that M ∈ MA admits a quasi-measuring of H satisfying the surjectivity

condition. If M/MI ∼= (A/I)n and M is generated by n elements v1, . . . , vn, then

v1, . . . , vn are a basis for M over A.

Proof. Suppose that
∑
viai = 0 for some a1, . . . , an ∈ A. Since for each C ∈ F

the images of v1, . . . , vn in M/MIC give a basis for that A/IC-module, we have
ai ∈

⋂
C∈F IC = IH = 0 for all i. �

If P is a maximal ideal of A such that A/P is artinian, then we put

rP (M) =
lengthM/MP

lengthA/P

where length stands for the composition series length in MA. If A is semilocal then
A has finitely many maximal ideals and A/P is artinian for each of those. The
artinian rings are known to be weakly finite.

Proposition 1.5. Suppose that M is a finitely generated right A-module which

admits a quasi-measuring of H satisfying the surjectivity condition. If A is semilocal

and H-simple, then M l is a free A-module for a suitable integer l > 0.

Proof. Pick a maximal ideal P of A with the maximum value of rP (M). Let rP (M) =
n/l for some integers n ≥ 0 and l > 0. Then (M/MP )l ∼= (A/P )n since the two
A/P -modules here have equal length. Since rP ′(M) ≤ n/l for any other maximal
ideal P ′ of A, the A-module (M/MP ′)l is n-generated. By Nakayama’s Lemma M l

is n-generated. Since PH is a proper H-stable ideal of A, we must have PH = 0.
Corollary 1.4 applied with I = P shows that M l ∼= An. �

Denote by HMA the class of A-modules M equipped with a quasi-measuring
H ⊗M → M defining a left H-module structure on M . The H-module structure
on A is a quasi-measuring, if we regard A as a module over itself with respect to
right multiplications. Therefore A ∈ HMA.

Lemma 1.6. Let M ∈ HMA. Then the quasi-measuring of H on M satisfies the

surjectivity condition. Moreover, it extends to a quasi-measuring on the injective

hull E = E(M) of M in MA, and the latter also satisfies the surjectivity condition.

Proof. Define ϕ, ϕ′ : H → EndkM by the formulas

ϕ(h)v = hv, ϕ′(h)v = S(h)v (†)

for h ∈ H and v ∈ M . Then ϕ′ is a right inverse (actually two-sided inverse) of ϕ
in the convolution algebra Hom(H,EndkM) since

(ϕ ∗ ϕ′)(h)v =
∑

(h)

h(1)

(
S(h(2))v

)
= ε(h)v
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for all h and v. For each C ∈ F we may regard Hom(C,M) as a left module
over Hom(C,EndkM). In terms of this module structure the transformation Φ of
Hom(C,M) is nothing else but η 7→ ϕ|C ∗ η. Since ϕ′|C is a right inverse of ϕ|C in
Hom(C,EndkM), we have ϕ|C ∗ ϕ′|C ∗ η = η for all η ∈ Hom(C,M). Hence Φ is
surjective, as required.

Let θM : M → Hom(H,M) denote the MA-morphism such that v 7→ ṽ for v ∈M .
Since Hom(H,E) with the twisted action of A is injective in MA by Lemma 1.1,
there exists an MA-morphism θE rendering commutative the diagram

M
θM−−−→ Hom(H,M)

can.
y ycan.

E
θE−−−→ Hom(H,E)

This θE corresponds to a quasi-measuring of H on E extending that on M . Define
now ϕ, ϕ′ : H → Endk E by formulas (†), taking v ∈ E. We don’t know whether ϕ′

is a right inverse of ϕ any longer. However, ϕ ∗ ϕ′ ∈ Hom(H,EndA E) since

(ϕ ∗ ϕ′)(h)(va) =
∑

(h)

h(1)

(
S(h(2))(va)

)

=
∑

(h)

(
h(1)(S(h(4))v)

)
·
(
h(2)S(h(3))a

)

=
∑

(h)

(
h(1)(S(h(2))v)

)
· a

for all h ∈ H, v ∈ E and a ∈ A. Let C ∈ F , and let Φ,Φ′ be the transformations
of Hom(C,E) given by the assignments η 7→ ϕ|C ∗ η and η 7→ ϕ′|C ∗ η, respectively.
Then

(ΦΦ′)(η) = ϕ|C ∗ ϕ′|C ∗ η

for all η ∈ Hom(C,E). Since ϕ|C ∗ϕ′|C ∈ Hom(C,EndA E), the transformation ΦΦ′

is Hom(C,A)-linear. In particular, ΦΦ′ commutes with the untwisted action of A.
Since C is finitely generated projective as a k-module, so too is C∗, and there is
a k-linear bijection Hom(C,E) ∼= E ⊗ C∗ under which the untwisted action of A
corresponds to the A-module structure on the first tensorand. The right A-module
E⊗X is an injective hull of M ⊗X for each finitely generated projective k-module
X since both E⊗X and M⊗X are additive functors inX . In particular, Hom(C,E)
with the untwisted action of A is an injective hull of Hom(C,M) in MA. But we
have checked at the beginning of the proof that ΦΦ′ is identity on Hom(C,M).
Then ΦΦ′ has to be a bijective transformation of Hom(C,E). It follows again that
Φ is surjective. �

Proposition 1.7. Let A be a semilocal left or right noetherian H-simple H-module

algebra. If there exists 0 6= M ∈ HMA with a finitely generated injective hull in

MA, then A is quasi-Frobenius.

Proof. By Lemma 1.6 and Proposition 1.5 E(M)l ∼= An in MA for some integers
l, n > 0. It follows that A is right selfinjective, and the conclusion is a classical fact
[8, Th. 18] (also [13, Th. 13.2.1]). �
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In particular, A is quasi-Frobenius when the injective hull E(A) of A in MA is
finitely generated. As is well known, not every artinian ring R has the property
that the class of finitely generated right R-modules is closed under injective hulls.
However, R does enjoy this property whenever R is a finitely generated module over
its center [21] (also [1, Ch. II, Cor. 3.4]).

Theorem 1.8. Let A be an artinianH-semiprimeH-module algebra. If A is module-

finite over its center, then A is quasi-Frobenius and H-semisimple.

Proof. The H-semisimplicity of A is proved in [24, Lemma 4.2] (this easily follows
also from Theorem 0.1 whose proof does not depend on Theorem 1.8). Thus A is
isomorphic to A1 × · · · ×An where each Ai is an H-simple H-module algebra. The
module-finiteness over center passes to all factors in this decomposition. Therefore
E(Ai) is a finitely generated Ai-module and Ai is quasi-Frobenius by Proposition
1.7, for each i. Hence A is quasi-Frobenius. �

2. Linearly compact module algebras

Let R be a ring. A topology on an R-module M is linear if the open submodules of
M form a neighbourhood base of 0. A linearly topologized R-module M is linearly

compact ifM is separated and for each set B of closed submodules directed by inverse
inclusion the canonical mapM → lim

←−−N∈B
M/N is surjective. A topological ring R is

right linearly compact if R is a linearly compact R-module via right multiplications.
The general theory of linearly compact rings and modules was developed by Zelinsky
[29] and Leptin [15]. The three properties below are standard (see also exercises in
[3, Ch. III, §2]):

(LC1) Any continuous homomorphism from a linearly compact module to a sepa-

rated linearly topologized module has a linearly compact closed image.

(LC2) Inverse limits of linearly compact modules are linearly compact.

(LC3) Let M be the inverse limit of an inverse system (Mα, ψαβ) of linearly compact

modules indexed by a directed set. The canonical map M →Mα is surjective

for each α provided that all ψαβ are surjective.

Lemma 2.1. Let M be a linearly compact R-module, (Nα) an indexed collection of

closed submodules. Denote by Iα the annihilator of M/Nα in R. If Iα + Iβ = R for

each pair of indices α 6= β, then the canonical map M →
∏
M/Nα is surjective.

Proof. By the Chinese Remainder Theorem

M/(Nα1
∩ · · · ∩Nαn

) ∼= M/Nα1
× · · · ×M/Nαn

for each finite subset of indices {α1, · · · , αn}. It follows that
∏
M/Nα is isomorphic

with lim
←−−N∈B

M/N where B is the set of all finite intersections of submodules Nα.

The definition of linear compactness yields the conclusion. �

Lemma 2.2. Let (Rα, ϕαβ) be an inverse system of right linearly compact rings

indexed by a directed set. If all ϕαβ are surjective then the ring R = lim
←−−

Rα is right

linearly compact and the canonical map R → Rα is surjective for each α.

Proof. The surjectivity of R → Rα follows from [4, Ch. I, Appendix, Th. 1] which
can be applied by considering for each α the set Sα of cosets of closed right ideals
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of Rα. Now (Rα, ϕαβ) may be regarded as an inverse system of linearly compact
right R-modules. So R is right linear compact by (LC2). �

Any artinian module is linearly compact with respect to the discrete topology.
Therefore Lemma 2.2 can be applied in the case where all rings Rα are right artinian.

When we consider a linearly compact right module M over a right linearly com-
pact ring R, we assume tacitly thatM is a topological R-module, so that the module
structure comes from a continuous map M ×R→M .

Lemma 2.3. Let R be a right linearly compact ring, M a linearly compact right

R-module. Suppose that for each maximal open submodule W of M there exists a

maximal ideal P of R such that MP ⊂ W and the ring R/P is artinian. If n ≥ 0
is an integer such that the R-module M/V is n-generated for each open submodule

V of M , then M is n-generated.

Proof. Denote by Ω the set of all maximal ideals of R which annihilate a factor mod-
ule M/W for some maximal open submodule W of M . For P ∈ Ω the ring R/P is
simple artinian. Hence lengthM/V ≤ n lengthR/P for any open submodule V of
M such that P annihilates M/V . It follows that R satisfies DCC on submodules of
this type. Any closed submodule N of M is an intersection of open submodules. If
P annihilates M/N then N itself has to be open. In particular, this is valid when
N is the closure of MP . The R-module M/MP is therefore n-generated by the
hypothesis. By Lemma 2.1 the map M →

∏
P∈ΩM/MP is surjective. Hence there

exist elements v1, . . . , vn ∈M which generate M modulo MP for each P . The sub-
module M ′ of M generated by v1, . . . , vn is the image of a module homomorphism
θ : Rn → M . Since Rn is linearly compact and θ is necessarily continuous, M ′

is closed in M by (LC1). Then M ′ is an intersection of open submodules of M .
Suppose that M ′ ⊂ V for some open submodule V 6= M . Since M/V is finitely
generated, V is contained in a maximal submodule W of M . In this case M/W is
annihilated by some P ∈ Ω, and so M ′ +MP ⊂ W . However, this contradicts the
equality M ′ +MP = M . Thus the only possibility is M ′ = M , so that v1, . . . , vn
generate M . �

Corollary 2.4. Let (Rα, ϕαβ) be an inverse system of semilocal right linearly com-

pact rings indexed by a directed set and (Mα, ψαβ) an inverse system with the same

index set in which each Mα is an n-generated linearly compact right Rα-module and

ψαβ : Mβ → Mα is an Rβ-linear continuous map for each pair of indices α ≤ β.

Put R = lim
←−−

Rα and M = lim
←−−

Mα. Suppose that all ϕαβ and all ψαβ are surjective.

Then the right R-module M is n-generated.

Proof. We know already that R and M are linearly compact and the canonical maps
ϕα : R → Rα and ψα : M → Mα are surjective. If V is an open submodule of M
then ψ−1

α (Vα) ⊂ V for some α and an open submodule Vα of Mα. The R-module
M/V is n-generated since it is an epimorphic image of M/ψ−1

α (Vα) ∼= Mα/Vα. Note
that Kerϕα annihilates M/V . If V is a maximal submodule then M/V is a simple
Rα-module; denoting P = ϕ−1

α (Pα) where Pα is the annihilator of M/V in Rα, we
see that MP ⊂ V and the ring R/P ∼= Rα/Pα is artinian. Thus the hypothesis of
Lemma 2.3 is satisfied. �

A right linearly compact H-module algebra is an H-module algebra A equipped
with a topology with respect to which A is a right linearly compact ring and all
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elements of H operate on A as continuous transformations. If I is a closed ideal
of such an A, then IC is a closed ideal for any subcoalgebra C of H; in particular
IH is an H-stable closed ideal. We say that A is topologically H-simple if A has
no H-stable closed ideals other than 0 and A. Denote by Ω(A) the set of all open
maximal ideals of A.

Proposition 2.5. Let A be a right linearly compact H-module algebra. Suppose

that A has a neighbourhood base of 0 consisting of ideals K such that A/K is right

artinian. Suppose also that PH = 0 for at least one P ∈ Ω(A). If there exist integers

s, t ≥ 0 such that

(a) lengthA/P ≤ s for each P ∈ Ω(A),

(b) for each open ideal K of A any idempotent ideal of A/K is generated as a right

ideal by at most t elements,

then A is topologically H-simple.

Proof. Let X be the collection of all nonzero H-stable closed ideals of A. Denote
Ω1 = {P ∈ Ω(A) | PH = 0} and Ω2 = {P ∈ Ω(A) | PH 6= 0}. By the hypothesis
Ω1 6= ∅. If P ∈ Ω1 then I + P = A for each I ∈ X . It follows that IJ 6= 0, and in
particular I ∩J ∈ X , for any I, J ∈ X . Let K be any open ideal of A. Since A/K is
right artinian, the set of ideals of A of the form I+K for some I ∈ X has a smallest
element which we denote by K†. Denote by M the intersection of all I ∈ X , and by
N the intersection of all K† for different K. Let I ∈ X . Since I is closed, we have
I =

⋂
K (I +K). The inclusions K† ⊂ I +K show that N ⊂ I. Since this is valid

for any I, we deduce N ⊂M . On the other hand, each K† contains some ideal from
X , and therefore M ⊂ N . Thus M = N .

The linear compactness of A ensures that A ∼= lim
←−−

A/K, and thenM ∼= lim
←−−

K†/K.

Suppose that K,L are any two open ideals of A. Then K† = I +K and L† = J +L
for some I, J ∈ X . The same equalities remain valid if we replace both I and J
with I ∩ J . Therefore L† = K† + L whenever K ⊂ L. This shows that all maps in
the inverse system of right A-modules K†/K are surjective. Each of these modules
is artinian, hence linearly compact. By (LC3) the canonical maps M → K†/K are
surjective, i.e. K† = M+K for each K. If P ∈ Ω1 then P † = A, so that M+P = A.
In particular M 6= 0. Since M is a closed H-stable ideal, M is a smallest element
of X . We have then M2 = M . It follows that each K†/K is an idempotent ideal
of A/K, and so K†/K is generated as a right ideal by t elements. Corollary 2.4
ensures that M is a finitely generated right ideal of A.

Recall that rP (M) denotes (lengthM/MP )/(lengthA/P ) where the lengths are
computed in MA. We have MI = M for each I ∈ X . In particular MPH = M ,
and therefore MP = P , for each P ∈ Ω2. The last equality shows that rP (M) = 0
when P ∈ Ω2. For each P ∈ Ω(A) we have 0 ≤ rP (M) ≤ t; moreover, rP (M) is
a fraction whose denominator is bounded by s in view of (a). There exist finitely
many rational numbers with those properties. Therefore rP (M) attains a maximum
value m at some P ; clearly such a P can be taken in Ω1.

Let m = n/l for some integers n ≥ 0 and l > 0. Then rP (M l) ≤ n for each
P ∈ Ω(A). These inequalities together with Nakayama’s Lemma ensure that the
right A-module M l/M lK is n-generated for each open ideal K of A since the ring
A/K is semilocal. Suppose that V is any open submodule of M l. Since the action
M l × A → M l is continuous, for each u ∈ M l there exists an open ideal Ku of A
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such that uKu ⊂ V . As M l is finitely generated, M lK ⊂ V for some open ideal K
of A. It follows that the right A-module M l/V is n-generated. If V is a maximal
submodule, then M l/V is a simple A/K-module; hence M l/V is annihilated by
some P ∈ Ω(A). Thus Lemma 2.3 can be applied. It shows that the right A-module
M l is n-generated.

There exists P ∈ Ω1 for which rP (M l) = n, and then M l/M lP ∼= (A/P )n in
MA. Since M l ∈ HMA, Lemma 1.6 and Corollary 1.4 yield M l ∼= An in MA. But
then rP (M) = m for all P ∈ Ω(A). Since M 6= 0, we have n > 0, i.e. m > 0, and it
follows that Ω2 = ∅.

Let I ∈ X . If I 6= A, then I is contained in an open ideal K 6= A; hence I is
contained in some P ∈ Ω(A). However, the last inclusion implies that I ⊂ PH , so
that PH 6= 0, and P ∈ Ω2. This contradiction entails X = {A}. �

Conditions (a) and (b) in Proposition 2.5 are easily verified in the case when
for each open ideal K of A the ring A/K is generated as a module over its center
Z(A/K) by t elements. In fact (a) holds with s = t since Z(A/P ) is a field for
P ∈ Ω(A). The assumption that A/K is right artinian implies that Z(A/K) is
artinian by [2], and then (b) follows from the next lemma:

Lemma 2.6. Let R be a Z-algebra where Z is a semiprimary commutative ring.

Suppose that R is generated as a Z-module by t elements. Then any idempotent

ideal I of R is a t-generated right ideal.

Proof. Consider first a special case where Z ∼= K1 × · · · ×Kn is a direct product of
fields. Here R ∼= R1 × · · ·×Rn where Ri is a Ki-algebra with dimKi

Ri ≤ t for each
i = 1, . . . , n. Each right ideal of R is generated by t elements since this holds for
right ideals of R1, . . . , Rn.

In general let n denote the Jacobson radical of Z. Then Z/n is a direct product
of fields and R/nR is a Z/n-algebra generated as a Z/n-module by t elements. By
the previous step (I + nR)/nR is a t-generated right ideal of R/nR. There exists a
t-generated right ideal J of R such that J ⊂ I ⊂ J + nR. By induction

Im ⊂ J + nmR

for all integers m > 0. Indeed, if this inclusion holds for some m, then we obtain
Im+1 ⊂ (J + nmR)I ⊂ J + I nm ⊂ J + nm+1R. When m is sufficiently large, we
have nm = 0 since Z is semiprimary. However Im = I since I is idempotent. Hence
I = J . �

The next result presents a linearly compact version of Proposition 1.5. The as-
sumption about the lengths of rings A/P is needed only to ensure that the function
P 7→ rP (M) attains the maximum value. The assumption that A is topologically
H-simple can be weakened to the assumption that there exists P ∈ Ω(A) such that
PH = 0 and rP ′(M) ≤ rP (M) for all P ′ ∈ Ω(A).

Theorem 2.7. Let A be a topologically H-simple right linearly compact H-module

algebra, and let M be a finitely generated right A-module which admits a quasi-

measuring of H satisfying the surjectivity condition (e.g. M ∈ HMA). Suppose that

A has a neighbourhood base of 0 consisting of ideals K such that A/K is semilocal.

Suppose also that the lengths of the artinian rings A/P with P ∈ Ω(A) are bounded.

Denote M0 =
⋂
MK, the intersection over all open ideals K of A. Then:

11



(i) The rank function P 7→ rP (M), P ∈ Ω(A), has a constant value, say r(M).

(ii) (M/M0)
l ∼= An in MA for any integers n ≥ 0 and l > 0 such that r(M) = n/l.

(iii) If gcd{lengthA/P | P ∈ Ω(A)} = 1 then M/M0 is a free A-module.

Proof. Consider the linear topology on M whose neighbourhood base of 0 is given
by the submodules MK with K an open ideal of A. If C ∈ F , then for each open
ideal K there exists another open ideal L such that CL ⊂ K; this inclusion implies
that C(ML) ⊂ MK. It follows that CM0 ⊂ M0. Furthermore, each k-linear map
C → M/M0 can be lifted to a k-linear map C → M . Hence HM0 ⊂ M0 and
the induced quasi-measuring on M/M0 satisfies the surjectivity condition. Now we
can replace M with M/M0, and so assume that the topology on M is separated.
There exists an epimorphism θ : At → M in MA for some integer t ≥ 0. Since
θ is necessarily continuous and At is a linearly compact A-module, so too is M
by (LC1). As in the proof of Proposition 2.6 we find P ∈ Ω(A) for which rP (M)
attains a maximum value and show that the A-module M l is n-generated when
n/l = rP (M). Finally, M l ∼= An by Corollary 1.4, whence rP ′(M) = n/l for each
P ′ ∈ Ω(A).

Note that r(M) · lengthA/P is an integer for each P ∈ Ω(A). Hence so too is
r(M)d where d = gcd{lengthA/P | P ∈ Ω(A)}. If d = 1 then r(M) is an integer,
and we may take l = 1. �

Corollary 2.8. Let A be as in Theorem 2.7. Then any H-stable closed right ideal

I of A is generated by an idempotent. If gcd{lengthA/P | P ∈ Ω(A)} = 1 then

necessarily either I = 0 or I = A.

Proof. If M is a finitely generated linearly compact right A-module, then the sub-
modules MK with K an open ideal of A give a neighbourhood base of 0 in M . Since
the topology on M is separated, we have M0 = 0. When M ∈ HMA, Theorem 2.7
shows that M is projective in MA. In particular, this applies to M = A/I. We de-
duce that I is an MA-direct summand of A. Then also M = I satisfies the hypothe-
ses of Theorem 2.7. Since A ∼= I ⊕A/I in MA, we have r(I) + r(A/I) = r(A) = 1.
If gcd{lengthA/P | P ∈ Ω(A)} = 1 then both r(I) and r(A/I) are integers, whence
one of them have to equal 0. This means that either I or A/I is 0. �

Lemma 2.9. Let ϕ : R→ R′ be an injective continuous homomorphism where R is

a right linearly compact ring and R′ is a separated right linearly topologized ring. If

ϕ(R) is dense in R′ and R/K is an artinian R-module for each open right ideal K
of R, then ϕ is a bicontinuous isomorphism.

Proof. We may regard R′ as a separated linearly topologized right R-module. Hence
ϕ(R) is closed in R′ by (LC1). The density of ϕ(R) entails ϕ(R) = R′, which means
that ϕ is bijective. The artinian hypothesis ensures that the topology on R is a
coarsest separated right linear topology [15, Satz 4] (also [3, Ch. III, §2, Ex. 19]).
Hence ϕ−1 is continuous. �

3. Nice pairs and quotient rings

For each ring R let C(R) denote the set of regular elements, i.e. non-zero-divisors,
of R. When C(R) is a left and right denominator set, Q(R) will stand for the Ore
localization of R with respect to C(R). An arbitrary overring Q of R is isomorphic
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to Q(R) as an overring of R if and only if all elements of C(R) are invertible in Q
and for each x ∈ Q there exist s, t ∈ C(R) such that sx ∈ R and xt ∈ R; in this case
Q is called a classical quotient ring of R.

Assuming that both Q(R) and Q(R′) exist, a ring homomorphism ϕ : R′ → R
extends to a homomorphism Q(R′) → Q(R) if and only if ϕ maps C(R′) into C(R).
When R′ is a subring of R and C(R′) ⊂ C(R), the inclusion R′ → R extends to an
injective homomorphism Q(R′) → Q(R); we say in this case that Q(R′) is a subring
of Q(R). Note that Q(R), the total ring of fractions of R, always exists when R is
commutative.

An arbitrary ring Q is a quotient ring if all elements of C(Q) are invertible in Q.

Lemma 3.1. Let Q be a semilocal ring with a nil Jacobson radical J . Then:

(i) All factor rings of Q are quotient rings.

(ii) If Q = Q(R) and K is an ideal of Q, then Q/K ∼= Q(R/I) where I = R ∩K.

(iii) If x is in the center of Q, then Q = Qxn ⊕ AnnQ(xn) for some integer n > 0.

Proof. By [14, Ex. 3.10] each element of a semisimple artinian ring S is a product
of an invertible element and an idempotent (one says that S is unit regular). In
particular, this applies to S = Q/J . An element u ∈ Q is invertible if and only if
u+J is an invertible element of Q/J . Thus for any x ∈ Q there exists an invertible
element u ∈ Q such that ux is an idempotent modulo J , i.e. ux− (ux)2 ∈ J . Since
all elements of J are nilpotent, (ux)n(1 − ux)n = 0 for sufficiently large n.

(i) If x ∈ C(Q) and u is as in the previous paragraph, then ux ∈ C(Q). It follows
that y = 1 − ux is nilpotent, and ux = 1 − y is invertible. Then x is invertible too.
This shows that Q is a quotient ring. (This result, due to Asano, can be found in
[14, Ex. 21.23].) If K is any ideal of Q then the Jacobson radical of Q/K coincides
with (J +K)/K. Hence Q/K is semilocal with a nil Jacobson radical, and we may
replace Q with Q/K.

(ii) We may identify R/I with a subring of Q/K. Let π : R → R/I denote the
canonical map. If s ∈ C(R), then s is invertible in Q, whence π(s) is invertible in
Q/K. Each element of Q/K can be written as π(a)π(s)−1 and as π(s)−1π(a) for
some a ∈ R and s ∈ C(R). It is clear from this that each regular element of R/I
remains regular in Q/K; it is therefore invertible by (i).

(iii) If x ∈ Q is a central element, then the equality (ux)n(1 − ux)n = 0 entails
(ux)2n ∈ Qxn; hence Qx2n = Qxn since u is invertible. Then Q = Qxn+AnnQ(xn).
The sum is direct since xn and x2n must have equal annihilators. �

Lemma 3.2. Let ϕ : S → R′ and ι : R′ → R be ring homomorphisms. Suppose

that ι is injective and S,R′, R all have classical quotient rings. If ι and ι ◦ϕ extend

to homomorphisms of quotient rings, then so too does ϕ. Moreover, the extension

Q(S) → Q(R′) is surjective whenever ϕ is surjective and Q(S) is semilocal with a

nil Jacobson radical.

Proof. We may identify R′ with a subring of R via ι and Q(R′) with a subring
of Q(R). If s ∈ C(S), then ϕ(s) is invertible in Q(R); hence ϕ(s) ∈ C(R′), and
ϕ(s)−1 ∈ Q(R′). It follows that the extension ψ : Q(S) → Q(R) has image in Q(R′).
Thus ψ

(
Q(S)

)
is a subring of Q(R′) which contains R′ when ϕ(S) = R′. If Q(S) is

semilocal with a nil Jacobson radical, then ψ
(
Q(S)

)
is a quotient ring by Lemma
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3.1. In this case t−1 ∈ ψ
(
Q(S)

)
for any t ∈ C(R′), showing that ψ

(
Q(S)

)
= Q(R′).

�

Let R be a ring, Z a central subring of R. We say that R,Z are a nice pair if

(NP1) Z has finitely many minimal prime ideals, say q1, . . . , qn,

(NP2) C(Z) = Z r
⋃n
i=1 qi and C(Z) ⊂ C(R),

(NP3) there exists a faithful R-module V finitely generated over Z.

Recall that any minimal prime of a commutative ring consists of zero divisors,
e.g. by [3, Ch. II, §2, Prop. 12]. Therefore the inclusion C(Z) ⊂ Zr

⋃n
i=1 qi in (NP2)

is automatic. Condition (NP3) holds in the case when R is module-finite over Z,
which is of main interest to us. However, in the stated version (NP3) facilitates
passing to any subring S ⊂ R with Z ⊂ S: the pair S, Z is nice provided so is R,Z.
We will assume in the proofs that V is a left R-module, just to fix the notation.
Note also that (NP3) implies that all elements of R are integral over Z [3, Ch. V,
§1, Th. 1].

Lemma 3.3. If R,Z are a nice pair then R has a semilocal classical quotient ring

Q(R) ∼= R ⊗Z Q(Z). Moreover:

(i) All prime ideals of Q(R) are maximal.

(ii) The minimal primes of R are the ideals M ∩R with M ∈ SpecQ(R).

(iii) The minimal primes of Z are the ideals P ∩ Z with P a minimal prime of R.

(iv) P ∈ SpecR is a minimal prime if and only if the ring Q(R/P ) exists and the

projection R→ R/P extends to a homomorphism Q(R) → Q(R/P ).

Proof. The prime ideals of Q(Z) are precisely the ideals Q(Z)qi for i = 1, . . . , n.
Thus Q(Z) has finitely many prime ideals, and each of those is maximal. This means
thatQ(Z) is semilocal and the Jacobson radical J ofQ(Z) is nil. Put T = R⊗ZQ(Z)
and W = V ⊗Z Q(Z).

Since C(Z) ⊂ C(R), we may identify R with a subring of T . Each element of T
can be written as as−1 with a ∈ R and s ∈ C(Z). If as−1 annihilates W , then for
each v ∈ V there exists an element in C(Z) annihilating av. Since aV is a finitely
generated Z-module, it is annihilated by some t ∈ C(Z). The faithfulness of V yields
ta = 0, and so a = 0. This shows that W is a faithful T -module. Furthermore, W
is a finitely generated module over the central subring Q(Z) of T .

Denote by I the annihilator of the T -module W/JW . If x ∈ I, then xW is a
finitely generated Q(Z)-submodule of W contained in JW . Hence xW ⊂ JxW
where Jx ⊂ J is a finite subset. We have (Tx)nW ⊂ JnxW for each integer n > 0
by induction. Since all elements of J are nilpotent, Jnx = 0 for sufficiently large n.
Then (Tx)nW = 0, and so (Tx)n = 0. Thus TxT is a nilpotent ideal of T , so that
x is contained in the prime radical N of T . We conclude that I ⊂ N .

If w1, . . . , wm generate W over Q(Z), then I coincides with the annihilator in T
of the finite subset {w1 + J, . . . , wm + J} ⊂ W/JW . Therefore T/I embeds as a
Q(Z)-submodule into a direct sum of finitely many copies of W/JW . Since Q(Z)/J
is an artinian ring, the Q(Z)-module W/JW is artinian, whence so too are T/I and
T/N . It follows that T/N is a semiprime artinian ring. Hence N coincides with the
Jacobson radical of T , and T is semilocal with all prime ideals maximal.
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The prime radical is always a nil ideal. In particular, N is nil. By Lemma 3.1 T is
a quotient ring. Since Q(Z) is a flat Z-algebra, we have C(R) ⊂ C(T ). In particular,
all elements of C(R) are invertible in T . Since for each x ∈ T there exists s ∈ C(Z)
such that sx = xs ∈ R, we deduce that T is a classical quotient ring of R. Thus
Q(R) ∼= T , and (i) has been established.

(ii) We have M ∩R ∈ SpecR for each M ∈ Spec T . This is straightforward since
IT = TI ∼= I⊗ZQ(Z) for any ideal I of R, and therefore I1I2 ⊂M∩R for two ideals
I1, I2 of R if and only if I1T ·I2T ⊂M . Let M1, . . . ,Mn be all prime ideals of T and
Pj = Mj ∩R for j = 1, . . . , n. Then

⋂
Pj = N ∩R. Since N ∩R consists of strongly

nilpotent elements of R, it is contained in the prime radical of R [14, Ex. 10.18A].
Hence every prime of R contains

⋂
Pj and therefore one of the ideals P1, . . . , Pn.

On the other hand, each ideal of T is generated by elements in R, and in particular
Mj = PjT for each j. Therefore there are no inclusions between P1, . . . , Pn, which
shows that these ideals are precisely the minimal primes of R.

(iii) Each Mj ∩ Q(Z) is a prime ideal of Q(Z), and so Mj ∩ Q(Z) = qiQ(Z)
for some minimal prime qi of Z. Contracting further to Z, we get Pj ∩ Z = qi.
Conversely, any given qi can be obtained in this way. To show this first observe
that qiW 6= W since otherwise W would be annihilated by a nonzero element of
Q(Z) according to Nakayama’s Lemma, but we have checked the faithfulness of W
already. The finitely generated T -module W/qiW has a simple factor module. If Mj

is the annihilator of the latter, then qi ⊂Mj , and therefore Mj ∩Q(Z) = qiQ(Z).
(iv) If Q(R/P ) exists, then P coincides with the kernel of the canonical map

R→ Q(R/P ). Assuming that this map extends to a homomorphism T → Q(R/P ),
we get P = K ∩ R, where K is the kernel of the latter. Now K 6= T since P 6= R,
and therefore K ⊂Mj for some maximal ideal of T . It follows that P ⊂ Pj , whence
P = Pj by the minimality of Pj. On the other hand, Q(R/Pj) ∼= T/Mj for each
minimal prime of R by Lemma 3.1. �

Lemma 3.4. If R,Z are a nice pair then the following conditions are equivalent:

(a) Q(Z) is artinian, (b) Q(R) is artinian, (c) Q(R) satisfies ACC on ideals.

Proof. Condition (NP3) implies that R, regarded as a Z-module, embeds into a
direct sum of finitely many copies of V . Hence Q(R) ∼= R ⊗Z Q(Z), regarded as a
Q(Z)-module, embeds into a direct sum of finitely many copies of W = V ⊗Z Q(Z).
If Q(Z) is artinian, then W is an artinian Q(Z)-module, whence Q(R) is artinian.

Thus (a)⇒(b). The implication (b)⇒(c) is a consequence of the Hopkins-Levitzki
Theorem. Finally, suppose that (c) holds. In this case W satisfies ACC on submod-
ules of the form IW where I is an ideal of Q(Z). In fact, if W0 ⊂ W1 ⊂ · · · is a
chain of submodules of this form, then Wi = IiW for a chain of ideals I0 ⊂ I1 ⊂ · · ·
of Q(Z) (we may take Ii = {a ∈ Q(Z) | aW ⊂ Wi}). There exists an integer p > 0
such that IiQ(R) = IpQ(R) for all i > p. Since W is a Q(R)-module in a natural
way, we have Wi = IiQ(R)W for each i, whence Wi = Wp for i > p. Formanek’s
generalization of the Eakin-Nagata Theorem [9] (also [17, Th. 3.6]) now shows that
Q(Z) is noetherian. Any noetherian ring with a nil Jacobson radical is artinian. So
(c)⇒(a). �

The height and the coheight of a prime ideal P of a ring R are the supremums
of the lengths, respectively, of strictly descending and strictly ascending chains in
SpecR starting at P . The (classical) Krull dimension of R, denoted KdimR in this
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paper, is the supremum of the lengths of arbitrary finite chains in SpecR. Thus
coheightP = KdimR/P . We allow nonnegative integers and +∞ as possible values
for those quantities. However, the equalities in Lemma 3.5 and further results are
valid also with the ordinal-valued refinements of height, coheight and Kdim.

Lemma 3.5. Let R be a ring and Z a central subring of R. Suppose that R is either

module-finite over Z or commutative and integral over Z. Let P ∈ SpecR, and let

p = P ∩ Z ∈ SpecZ. Then coheightP = coheight p and P ∈ Specf R if and only if

p ∈ Specf Z.

Proof. It is well-known that the going-up and the incomparability hold for the ring
extension Z ⊂ R under both assumptions. It follows that there exists a strictly
ascending chain in SpecR starting at P of any given finite or infinite length if and
only if there exists such a chain in SpecZ starting at p. �

Lemma 3.6. Let A be a commutative ring integral over subrings Z and Z ′. If p, q
are prime ideals of A satisfying p ∩ Z = q ∩ Z ∈ Specf Z and p ∩ Z ′ ⊂ q ∩ Z ′, then

p ∩ Z ′ = q ∩ Z ′ ∈ Specf Z
′.

Proof. Suppose p ∩ Z ′ 6= q ∩ Z ′. By the going-up property there exists p1 ∈ SpecA
such that p ⊂ p1 and p1 ∩ Z

′ = q ∩ Z ′. Then p1 6= p and p1 ∩ Z ⊃ p ∩ Z = q ∩ Z.
The inclusion here is proper by the incomparability. Another application of the
going-up gives q1 ∈ SpecA such that q ⊂ q1 and q1 ∩ Z = p1 ∩ Z. Now q1 6= q and
q1 ∩Z

′ ⊃ q∩Z ′ = p1 ∩Z
′ with proper inclusion. Repeating this process, we obtain

two infinite strictly ascending chains p = p0 ⊂ p1 ⊂ · · · and q = q0 ⊂ q1 ⊂ · · · in
SpecA. But this is impossible since p ∈ Specf A by Lemma 3.5 applied to the ring
extension Z ⊂ A. The same lemma applied to Z ′ ⊂ A yields p∩Z ′ ∈ Specf Z

′. �

Lemma 3.7. Suppose that R,Z are a nice pair where Z is a domain satisfying ACC

on prime ideals. Let R′ be a subring of R and Z ′ a central subring of R′. If there

exists a faithful R-module V ′ finitely generated over Z ′ then:

(i) Z ′ satisfies ACC on prime ideals.

(ii) coheight q = KdimZ for any minimal prime q of Z ′.

(iii) R′, Z ′ are a nice pair.

(iv) Q(R) and Q(R′) are both artinian, and Q(R′) is a subring of Q(R).

Proof. Denote A = ZZ ′, which is a commutative subring of R. Since R,Z are a
nice pair, A is an integral extension of Z. The hypothesis about V ′ implies that A
is integral over Z ′ as well.

Since Q(Z) is a field, by Lemmas 3.3, 3.4 R and A have artinian classical quotient
rings Q(R) ∼= R ⊗Z Q(Z) and Q(A) ∼= A ⊗Z Q(Z). Let m1, . . . ,mn be all maximal
ideals of Q(A) and pi = mi ∩A for i = 1, . . . , n. An element a ∈ A is regular if and
only if a is invertible in Q(A), i.e. a /∈ mi for each i. Thus C(A) = Ar

⋃n
i=1 pi. Since

mi ∩Q(Z) = 0, we have pi ∩ Z = 0 for each i.
Let qi = pi∩Z

′. Since the Jacobson radical
⋂

mi of Q(A) is nilpotent and qi ⊂ mi

for each i, the ideal
⋂

qi of Z ′ is nilpotent too. It follows that any prime ideal of Z ′

contains one of q1, . . . , qn. By Lemma 3.6 there are no proper inclusions between
q1, . . . , qn. Hence those ideals are precisely the minimal primes of Z ′. Lemma 3.6
shows also that q1, . . . , qn ∈ Specf Z

′. Then SpecZ ′ = Specf Z
′, yielding (i). Lemma

3.5 applied to the ring extensions Z ⊂ A and Z ′ ⊂ A proves the equalities
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coheight qi = coheight pi = coheight 0Z = KdimZ

where 0Z denotes the zero ideal of Z.
Clearly Z ′ r

⋃n
i=1 qi ⊂ C(A) by the explicit description of C(A). Since each qi

consists of zero divisors of Z ′, we must have C(Z ′) = Z ′r
⋃n
i=1 qi and C(Z ′) ⊂ C(A).

Since Q(A) is a subring of Q(R), we have also C(A) ⊂ C(R), whence C(Z ′) ⊂ C(R).
It is now clear that S, Z ′ are a nice pair for any subring S of R containing Z ′ in its
center. In particular this is valid for S = R′ and for S = A.

Lemma 3.4 applied to the extension Z ′ ⊂ A shows that Q(Z ′) is artinian. We
may also apply Lemmas 3.3, 3.4 to the extension Z ′ ⊂ R′ and conclude that Q(R′)
is artinian and Q(R′) ∼= R′⊗Z′ Q(Z ′). Consider also the subring S = R′Z of R. By
Lemma 3.3 Q(S) ∼= S ⊗Z Q(Z) and Q(S) ∼= S ⊗Z′ Q(Z ′). The first isomorphism
shows that Q(S) is a subring of Q(R), the second shows that Q(R′) is a subring of
Q(S). Hence Q(R′) is a subring of Q(R). �

The assumption that Z coincides with the center of R is essential in Lemma 3.8.

Lemma 3.8. Suppose that R is a ring module-finite over its center Z and Q is a

classical quotient ring of R. If Q is semilocal with a nil Jacobson radical, then R,Z
are a nice pair.

Proof. Clearly Z is a central subring of Q. Hence Z ∩ M is a prime ideal of Z
for each maximal ideal M of Q. Let q1, . . . , qn be all distinct primes of Z having
this form. Their intersection

⋂
qi is a nil ideal of Z since

⋂
qi is contained in the

Jacobson radical of Q. Therefore the set {q1, . . . , qn} contains all minimal primes
of Z. If z ∈ Z r

⋃
qi, then zQ is an ideal of Q contained in none of the maximal

ideals. This implies that zQ = Q, so that z is regular in R. To complete the proof
we have only to show that there are no proper inclusions between q1, . . . , qn, so that
all these ideals are minimal primes of Z.

Let q be any maximal element of the set {q1, . . . , qn} ordered by inclusion. We may
assume q = q1 after reindexing. Since q 6⊂ qi for each i 6= 1, we have q 6⊂

⋃
i6=1 qi.

Pick any element x ∈ q r
⋃
i6=1 qi. Replacing x with xn where n is as in Lemma

3.1(iii), we get Q = xQ⊕ AnnQ(x). Let I1 = R ∩ xQ and I2 = R ∩ AnnQ(x). Also
put R1 = R/I1 and Z1 = Z/(Z ∩ I1).

By Lemma 3.1(ii) Q/xQ ∼= Q(R1). The Jacobson radical of Q/xQ coincides with
J/xQ where J is the intersection of those maximal ideals M of Q for which x ∈M .
We have Z ∩M = q for each M appearing here by the choice of x. Hence Z ∩J = q.
The hypothesis about Q implies that J/xQ is nil. Hence qZ1 is a single minimal
prime ideal of Z1. If s ∈ Zrq, then s /∈M for any maximal idealM ofQ with x ∈M .
The coset s+xQ has to be invertible in the semilocal ring Q/xQ, which means that
s + I1 is a regular element of R1. By the hypothesis R1 is module-finite over Z1.
This shows that R1, Z1 are a nice pair. By Lemma 3.3 Q(R1) ∼= R1 ⊗Z1

Q(Z1).
We have I2Q = AnnQ(x), whence I2 ·Q(R1) = Q(R1). Each element of I2 ·Q(R1),

in particular 1, can be written as ϕ(u)ϕ(s)−1 for some u ∈ I2 and s ∈ Z r q where
ϕ : R → Q(R1) is the canonical map. Therefore we can find u and s such that
ϕ(u) = ϕ(s), i.e. u− s ∈ I1. Since s is central in R, we get

au− ua = a(u− s) − (u− s)a ∈ I2 ∩ I1 = 0

for all a ∈ R. Thus u ∈ Z. It follows that u ≡ s (mod q) since Z ∩ I1 ⊂ Z ∩ J = q.
In particular, u /∈ q. Since xu ∈ I1 ∩ I2 = 0, we have u ∈ p for each prime ideal p
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of Z with x /∈ p. This shows that u ∈ qi, and so qi 6⊂ q, whenever i 6= 1. In other
words, each maximal element in {q1, . . . , qn} is also a minimal element of this set.
�

4. Final results

Throughout the whole section we assume that A is an H-module algebra module-
finite over a central subring Z. If P ∈ SpecA, then p = P ∩Z is a prime ideal of Z
and A/P is a module-finite ring over its central subring Z/p. Since Z/p is a domain,
the pair A/P , Z/p is nice, whence A/P⊗Z/pQ(Z/p) is an artinian classical quotient
ring of A/P by Lemmas 3.3, 3.4.

Let C be a coalgebra and B an algebra. Suppose that C is finitely generated pro-
jective as a k-module. Then Hom(C,B) ∼= B ⊗C∗ as algebras. If B has an artinian
classical quotient ring Q(B), then Hom

(
C,Q(B)

)
is an artinian classical quotient

ring of Hom(C,B). This follows from the following observations. The homomor-
phism B ⊗ C∗ → Q(B) ⊗ C∗ induced by the canonical embedding B → Q(B) is
injective since C∗ is a projective k-module. Using the common denominator prop-
erty of Ore localizations it is easy to see that for each x ∈ Q(B) ⊗ C∗ there exist
s, t ∈ C(B) such that (s ⊗ 1)x and x(t ⊗ 1) are in B ⊗ C∗; clearly s ⊗ 1 and t ⊗ 1
are invertible in Q(B)⊗C∗ and regular in B ⊗C∗. Since C∗ is a finitely generated
k-module, Q(B) ⊗ C∗ is finitely generated as a right module and as a left module
over the artinian subring Q(B) ⊗ 1. Hence Q(B) ⊗ C∗ is artinian, and in particu-
lar it is a quotient ring. Therefore all regular elements of B ⊗ C∗ are invertible in
Q(B) ⊗ C∗ since they remain regular there. Thus Q(B) ⊗ C∗ is indeed a classical
quotient ring of B ⊗ C∗.

If B′ is another algebra with an artinian classical quotient ring and B → B′

is a homomorphism which extends to a homomorphism of quotient rings, then the
induced homomorphism Hom(C,B) → Hom(C,B′) also extends to quotient rings. If
C′ is another coalgebra with a finitely generated projective underlying k-module and
C′ → C is a coalgebra homomorphism, then the induced algebra homomorphism
Hom(C,B) → Hom(C′, B) extends to a homomorphism of quotient rings. This
follows from the functoriality of construction.

Let C ∈ F . As we have just observed, the convolution algebra R = Hom(C,A/P )
has an artinian classical quotient ring. In section 1 we defined a homomorphism
τC,P : A→ R with kernel PC . Let

ιC,P : A/PC → Hom(C,A/P )

be the injection induced by τC,P . Thus ιC,P is an isomorphism of A/PC onto the
subalgebra R′ = τC,P (A) of R.

Lemma 4.1. Let P ∈ Specf A and C ∈ F . Then:

(i) A/PC , Z/(Z ∩ PC) are a nice pair.

(ii) A/PC has an artinian classical quotient ring.

(iii) ιC,P extends to a homomorphism Q(A/PC) → Hom
(
C, Q(A/P )

)
.

(iv) P ′ ∈ Specf A for any P ′ ∈ SpecA with PC ⊂ P ′.

Proof. Let p, R, R′ be as above. Note that R ∼= A/P ⊗C∗ is module-finite over the
subring A/P ⊗ 1, and therefore over the central subring K = Z/p ⊗ 1. If s ∈ Z/p
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is nonzero, then s ∈ C(A/P ) since A/P is a prime ring, and therefore s⊗ 1 ∈ C(R)
since C∗ is a flat k-module. If s⊗ 1 = 0 for such an element s, we must have R = 0,
which entails PC = A (when k is a field, this happens only for C = 0). In this case
all conclusions of Lemma 4.1 are trivial statements about zero rings. Otherwise Z/p
is mapped isomorphically onto K. Since K r {0} ⊂ C(R), the pair R, K is nice.

Also,R′ is module-finite over its central subring Z ′ = τC,P (Z). Lemma 1.2 applied
to M = A shows that Hom(C,A) = τC(A) · C∗, whence Hom(C,A) is left module-
finite over τC(A). The canonical homomorphism Hom(C,A) → R takes τC(A) to
R′. Therefore R is left module-finite over R′, and then also over Z ′. By Lemma
3.5 p ∈ Specf Z, i.e. the domain K ∼= Z/p satisfies ACC on prime ideals. Thus we
meet all hypotheses of Lemma 3.7, and parts (i), (ii), (iii) are immediate. Lemma
3.7 shows also that Z ′ ∼= Z/(Z ∩ PC) satisfies ACC on prime ideals. Hence each
prime p′ of Z containing Z ∩ PC belongs to Specf Z. In particular, this holds for
p′ = Z ∩P ′ where P ′ is as in (iv), and Lemma 3.5 completes the proof of (iv). �

Lemma 4.2. Given P ∈ Specf A and C,D ∈ F with C ⊂ D, the canonical map

A/PD → A/PC extends to a surjective homomorphism Q(A/PD) → Q(A/PC).

Proof. Let S = Hom(D,A/P ) and S′ = τD,P (A) ∼= A/PD. By Lemma 4.1 Q(S′)
exists and is an artinian subring of Q(S). There is a ring homomorphism ϕ : S → R
obtained by restriction of linear maps D → A/P to C. By functoriality ϕ extends
to a homomorphism ψ : Q(S) → Q(R). Since the diagram

A
τD,P

−−−→ S

id
y yϕ
A

τC,P

−−−→ R

commutes, we have ϕ(S′) = R′. Lemma 3.2 applied to the surjective homomorphism
ϕ|S′ : S′ → R′ and the inclusion R′ →֒ R shows that ψ maps Q(S′) onto Q(R′).
�

Now we may define LP (A) = lim
←−−

Q(A/PC), C ∈ F . The artinian rings Q(A/PC)

are left and right linearly compact in the discrete topology. By Lemma 2.2 LP (A) is
left and right linearly compact in the inverse limit topology. Moreover, the canonical
maps LP (A) → Q(A/PC) are surjective. The kernels of these maps give a neigh-
bourhood base of 0 which consists of ideals of LP (A). We see also that LP (A)/K
is an artinian module for each open one-sided ideal K of LP (A).

The collection of canonical maps A → Q(A/PC) determines an algebra homo-
morphism αP : A→ LP (A). Clearly KerαP =

⋂
C∈F PC = PH .

For the purposes of the next lemma note that the earlier definition of the injection
ιC,J makes sense for an arbitrary ideal J of A, even if J is not prime.

Lemma 4.3. Let C,D,E ∈ F be such that CD ⊂ E. Then the composite map

λ : A/PE
can.
−−→ A/(PC)D

ιD,PC−−−−−→ Hom(D,A/PC)

extends to a ring homomorphism Q(A/PE) → Hom
(
D,Q(A/PC)

)
.

Proof. The ideal (PC)D consists of all elements x ∈ A such that CDx ⊂ P . Since
CD ⊂ E, we have PE ⊂ (PC)D, and so the canonical map A/PE → A/(PC)D is
defined. There is a commutative diagram
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A/PE
λ

−−−−−−−−−−−−−−−−−−−−−−−−→ Hom(D,A/PC)

ιE,P

y yHom(D, ιC,P )

Hom(E,A/P )
ν

−→ Hom(C ⊗D,A/P ) ∼= Hom
(
D,Hom(C,A/P )

)

where ν is dual to the multiplication map C ⊗ D → E which is a coalgebra ho-
momorphism. In view of Lemma 4.1 all rings in the diagram have artinian classical
quotient rings and both vertical arrows extend to homomorphisms of quotient rings.
By functoriality ν also extends to quotient rings. Since the map on the right is in-
jective, Lemma 3.2 yields the conclusion. �

Lemma 4.4. There is an H-module structure on LP (A) with respect to which LP (A)
is a linearly compact H-module algebra and αP : A → LP (A) is a homomorphism

of H-module algebras.

Proof. Consider the commutative diagram

Q(A/PE) −−−−−−→ Hom
(
D,Q(A/PC)

)
y y

Hom
(
E,Q(A/P )

)
−→ Hom

(
D,Hom(C,Q(A/P ))

)

obtained from the diagram in Lemma 4.3 by passing to quotient rings. For any fixed
D ∈ F the set ID = {(C,E) ∈ F × F | CD ⊂ E} is directed by componentwise
inclusion and both projections ID → F are cofinal maps. The above diagrams with
varying (C,E) form an inverse system. Passing to the inverse limit over ID, we
obtain a commutative diagram

LP (A) −−−−−−−−−−→ Hom
(
D,LP (A)

)
y y

Hom
(
H,Q(A/P )

)
−→ Hom

(
D,Hom(H,Q(A/P ))

)

where all maps are algebra homomorphisms, and the vertical ones are injections
since the inverse limit functors are left exact. By construction the map represented
by the bottom arrow is dual to the multiplication map H⊗D → H. Thus LP (A) is
isomorphic with anH-stable subalgebra of the H-module algebra Hom

(
H,Q(A/P )

)

on which the action of H is given by the rule (gξ)(h) = ξ(hg) for g, h ∈ H and
ξ ∈ Hom

(
H,Q(A/P )

)
.

For any C,D,E as above there is a commutative diagram

A
τD−−−−−−−→ Hom(D,A)y y

Q(A/PE) −→ Hom
(
D, Q(A/PC)

)
.

Passing to the inverse limit over ID, we deduce that αP commutes with the action
of D; since D ∈ F is arbitrary, αP is H-linear. �

The image of k in H is a subcoalgebra such that Pk = P . We may assume that
k ∈ F enlarging F if necessary. Hence there is a canonical surjective homomorphism
of algebras LP (A) → Q(A/P ). Its kernel, denoted VP further on, is an open maximal
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ideal of LP (A) since the prime artinian ring Q(A/P ) has to be simple. For each
subcoalgebra C ⊂ H put

VP,C = {x ∈ LP (A) | Cx ⊂ VP }.

Lemma 4.5. We have VP,D = Ker
(
LP (A) → Q(A/PD)

)
for each D ∈ F . In

particular, {VP,D | D ∈ F} is a neighbourhood base of 0 for the topology on LP (A)
and LP (A)/VP,D ∼= Q(A/PD) for each D. Furthermore, VP,H = 0.

Proof. For C,D,E ∈ F with CD ⊂ E there is a commutative diagram

LP (A)
τD−−−−→ Hom

(
D,LP (A)

)
y y

Q(A/PE) −−→ Hom
(
D,Q(A/PC)

)
.

In fact the map at the top defining the H-module structure on LP (A) was con-
structed in Lemma 4.4 as the inverse limit of the bottom maps for varying C,E.
Now take C = k and E = D. Clearly VP,D coincides with the kernel of the composite
map LP (A) → Hom

(
D,LP (A)

)
→ Hom

(
D,Q(A/P )

)
. Since the map at the bot-

tom of the diagram is injective, the first assertion is clear. Each nonzero element of
LP (A) has a nonzero image inQ(A/PD) for some D. Hence VP,H =

⋂
D∈F VP,D = 0.

�

Let t > 0 be an integer such that A is a t-generated Z-module. Then A/PC is a
t-generated module over its center, and so is Q(A/PC) by Lemmas 4.1(i) and 3.3,
for each C ∈ F . If K is any open ideal of LP (A), then VP,C ⊂ K for some C, and
therefore LP (A)/K is a factor ring of Q(A/PC). Hence LP (A)/K is a t-generated
module over its center. We see that LP (A) satisfies all hypotheses of Proposition 2.5.
Indeed, conditions (a) and (b) follow from Lemma 2.6. Thus LP (A) is topologically
H-simple, as claimed in Theorem 0.2.

Suppose that B is another H-module algebra module-finite over its center and
P ′ ∈ Specf B. Let αP ′ : B → LP ′(B) be the canonical map.

Lemma 4.6. Let ϕ : A → B be a homomorphism of H-module algebras. Sup-

pose that ϕ(PC) ⊂ P ′ for some C ∈ F and the map A/PC → B/P ′ induced by

ϕ extends to a homomorphism of quotient rings. Then there exists a continuous

homomorphism of H-module algebras ψ : LP (A) → LP ′(B) rendering commutative

the diagram
A

αP−−→ LP (A)

ϕ
y yψ
B

αP ′

−−→ LP ′(B)

Proof. Clearly ϕ maps (PC)D into P ′D for each D ∈ F . Hence ϕ(PE) ⊂ P ′D whenever
D,E ∈ F satisfy CD ⊂ E, in which case we obtain a commutative diagram

A/PE
λ

−−−→ Hom(D,A/PC)y y
B/P ′D

ιD,P ′

−−−→ Hom(D,B/P ′)
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where the vertical arrows are induced by ϕ, the top arrow represents the map
constructed in Lemma 4.3 and the bottom arrow is the injection induced by τD,P ′ .
We know already that the latter two maps extend to homomorphisms of quotient
rings. The hypothesis ensures that the same is valid for the map on the right of
the diagram. By Lemma 3.2 this holds then for the map A/PE → B/P ′D too. The
set JC = {(D,E) ∈ F × F | CD ⊂ E} is directed by componentwise inclusion
and both projections JC → F are cofinal maps. The above diagrams with varying
(D,E) form an inverse system. Passing first to quotient rings and then taking the
inverse limit over JC , we arrive at the commutative diagram

LP (A) −→ Hom
(
H,Q(A/PC)

)
y y

LP ′(B) −→ Hom
(
H,Q(B/P ′)

)

We thus obtain a continuous algebra homomorphism ψ : LP (A) → LP ′(B) satis-
fying ψ ◦ αP = αP ′ ◦ ϕ. It remains to verify that ψ commutes with the action of
H. The proof of Lemma 4.4 shows that LP ′(B) is mapped isomorphically onto an
H-stable subalgebra of Hom

(
H,Q(B/P ′)

)
; this is how the H-module structure on

LP ′(B) is obtained. The map on the right of the diagram is a homomorphism of
H-module algebras by functoriality. The proof will be completed once we check that
so too is the map on the top. Considering again the first diagram from the proof
of Lemma 4.4, but now fixing C and letting D,E vary, we may pass to the inverse
limit over JC . The resulting commutative diagram

LP (A) −−−−−−−−→ Hom
(
H,Q(A/PC)

)
y y

Hom
(
H,Q(A/P )

)
−→ Hom

(
H,Hom(C,Q(A/P ))

)

shows that the map on the top is H-linear since so are the remaining maps in the
diagram, while the map on the right is injective. �

Lemma 4.7. Let P, P ′ ∈ Specf A. Then the two conditions below are equivalent:

(i) P ′ is a prime minimal over PC for some C ∈ F ,

(ii) there exists a continuous homomorphism of linearly compact H-module algebras

ψ : LP (A) → LP ′(A) such that ψ ◦ αP = αP ′.

Moreover, the ψ in (ii) is necessarily a bicontinuous isomorphism.

Proof. (i)⇒(ii) This follows from Lemma 4.6 applied with B = A. Note that the
canonical map A/PC → A/P ′ extends to a homomorphism of quotient rings by
Lemmas 4.1(i), 3.3(iv).

(ii)⇒(i) The ideals VP ′,D = Ker
(
L′P (A) → Q(A/P ′D)

)
with D ∈ F give a neigh-

bourhood base of 0 for the topology on LP ′(A). Since ψ−1(VP ′,D) is open in LP (A),
by Lemma 4.5 VP,C ⊂ ψ−1(VP ′,D) for some C ∈ F , and therefore ψ gives rise to a
ring homomorphism Q(A/PC) → Q(A/P ′D) which maps a+ PC to a+ P ′D for each
a ∈ A. The latter homomorphism is surjective since its image is an artinian subring
of Q(A/P ′D) containing A/P ′D (see Lemma 3.2). Hence Imψ + VP ′,D = LP ′(A) for
each D, so that ψ has a dense image. Since Kerψ is an H-stable closed ideal of A,
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we get Kerψ = 0 from Theorem 0.2. Now Lemma 2.9 shows that ψ has a continuous
inverse.

If D = k, then P ′D = P ′. The existence of a homomorphism Q(A/PC) → Q(A/P ′)
sending a + PC to a + P ′ for a ∈ A shows that PC ⊂ P ′, and by Lemma 3.3(iv)
P ′/PC is a minimal prime of A/PC . �

Lemma 4.8. Suppose that P, P ′ ∈ Specf A and C,D ∈ F satisfy PC ⊂ P ′ and

C ⊂ D. Then P ′ is a prime minimal over PC if and only if P ′ is a prime minimal

over PD.

Proof. By Lemma 3.3(iv) P ′ is a prime minimal over PC if and only if the canonical
map A/PC → A/P ′ extends to a ring homomorphism Q(A/PC) → Q(A/P ′). Since
PD ⊂ PC ⊂ P ′, a similar characterization is valid with D replacing C. Any ideal
of Q(A/PD) is generated by elements in A/PD. In particular, the kernel K of the
surjective homomorphism Q(A/PD) → Q(A/PC) from Lemma 4.2 is an ideal of
Q(A/PD) generated by the kernel of the canonical map A/PD → A/PC , that is
by PC/PD. If ϕ : Q(A/PD) → Q(A/P ′) is a ring homomorphism extending the
canonical map A/PD → A/P ′, then K ⊂ Kerϕ, and therefore ϕ factors through
Q(A/PC). �

As was pointed out in the introduction Theorem 0.1 is an immediate consequence
of Lemma 4.7. Thus the equivalence relation ∼H is defined.

Lemma 4.9. Suppose that P, P ′, P1 ∈ Specf A satisfy P ∼H P ′ and P1 ⊂ P . Then

there exists P ′1 ∈ Specf A such that P1 ∼H P ′1 and P ′1 ⊂ P ′.

Proof. There exists C ∈ F such that P ′ is a prime minimal over PC . We have then
P ′ ⊃ PC ⊃ (P1)C . Hence P ′ contains a prime P ′1 minimal over (P1)C . �

I don’t know whether the going-up version of Lemma 4.9 is always true.

Proposition 4.10. Given P, P ′ ∈ Specf A satisfying P ∼H P ′, we have:

(i) coheightP = coheightP ′,

(ii) P is a maximal ideal of A if and only if so is P ′,

(iii) P 6⊂ P ′ unless P = P ′.

Assuming that Specf A = SpecA, we also have:

(iv) heightP = heightP ′,

(v) P is a minimal prime of A if and only if so is P ′.

Proof. (i) In view of Lemma 3.5 the equality of coheights can be rewritten as
coheight p = coheight p′ where p = Z ∩ P and p′ = Z ∩ P ′ are prime ideals of
Z. Let C ∈ F be such that P ′ is a prime minimal over PC . Since A/PC , Z/(Z∩PC)
are a nice pair, it follows from Lemma 3.3(iii) that p′ is a prime minimal over
Z∩PC . Lemma 3.7(ii) applied in the situation of Lemma 4.1 shows that KdimZ/p =
coheight q for each minimal prime of Z/(Z∩PC). Taking q = p′/(Z∩PC), we obtain
the desired equality.

(ii) A prime ideal is maximal if and only if its coheight equals 0.
(iii) There exist C,D ∈ F such that P ′ is a prime minimal over PC and P is a

prime minimal over PD. Since C +D is a finitely generated k-submodule of H, it
is contained in some E ∈ F . Then PE ⊂ PC ∩ PD. By Lemma 4.8 both P and P ′

are primes minimal over PE .
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(iv) Note that the equality P ′ = P ′1 in Lemma 4.9 entails P ∼H P1, and then
P = P1 by (iii). Hence for each chain in SpecA terminating at P there exists a
chain of the same length terminating at P ′.

(v) A prime ideal is minimal if and only if its height equals 0. �

Lemma 4.11. Suppose that SpecA = Specf A and
⋂
P∈SpecA PH = 0. Then any

element s ∈ A regular modulo each minimal prime of A is regular in A.

Proof. Let P be a minimal prime of A. If C ∈ F and P ′ ∈ SpecA is minimal over
PC , then P ′ is minimal in SpecA by Proposition 4.10, whence s is regular modulo
P ′. By Lemma 4.1 A/PC has an artinian classical quotient ring. The simple factor
rings of Q(A/PC) are isomorphic with Q(A/P ′) for primes P ′ minimal over PC (cf.
Lemma 3.3(ii)). Since the image of s in each Q(A/P ′) is invertible, so is the image
of s in Q(A/PC), whence s is regular modulo PC .

Suppose that a ∈ A satisfies as = 0 or sa = 0. Then a ∈
⋂
C∈F PC = PH for

any minimal prime P . Hence s lies in the intersection of the ideals PH for different
minimal P ∈ SpecA. This intersection is zero by the hypothesis. So s = 0. �

The intersection
⋂
P∈SpecA PH is an H-stable ideal of A contained in the prime

radical N of A. Suppose A is H-semiprime and noetherian. Then
⋂
P∈SpecA PH = 0

since N is nilpotent. By [10, Prop. 7.5] s ∈ A is regular modulo N if and only if s
is regular modulo each minimal prime of A. Now Lemma 4.11 enables us to apply
Small’s criterion [10, Cor. 11.10], according to which A has an artinian classical
quotient ring. By [24, Th. 2.2] Q(A) is an H-module algebra with respect to a
module structure extending that on A. If I is any H-stable nilpotent ideal of Q(A),
then I ∩A is an H-stable nilpotent ideal of A. It follows that I ∩A = 0, and I = 0.
Thus Q(A) is H-semiprime.

Recall that A is H-prime if IJ 6= 0 for any pair of nonzero H-stable ideals of
A. If PH = 0 for some P ∈ SpecA, then A is H-prime since none of the nonzero
H-stable ideals of A is contained in P .

Lemma 4.12. Suppose A is noetherian. Let P, P ′ be minimal primes of A. Then:

(i) PH = PC for some C ∈ F .

(ii) P ∼H P ′ if and only if PH ⊂ P ′, if and only if PH = P ′H .

Proof. Part (ii) follows from (i) and Theorem 0.1. To prove (i) we may replace A with
A/PH , and so assume that PH = 0. In this case A is H-prime, hence H-semiprime.
Therefore Q(A) exists and is an artinian H-module algebra. We may identify A
with an H-stable subalgebra of Q(A). Now M = P · Q(A) is a maximal ideal of
Q(A) and M ∩ A = P . Since MH ∩ A ⊂ PH = 0, we have MH = 0. The artinian
property ensures that the family of ideals MC with C ∈ F has a smallest member
which must coincide with MH . Hence MC = 0 for some C ∈ F . Since PC ⊂ MC ,
we get PC = 0. �

Corollary 4.13. If A is noetherian and H-prime, then the minimal primes of A
constitute a single ∼H -equivalence class and PH = 0 for each minimal prime P .

Proof. Let P1, . . . , Pn be all minimal primes of A. Since A is noetherian, a suitable
product of these ideals is zero, and then a suitable product of the H-stable ideals
(P1)H , . . . , (Pn)H is also zero. The H-primeness of A ensures that PH = 0 for at
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least one minimal prime P . But then PH ⊂ Pi for each i = 1, . . . , n, whence Pi ∼H P
and (Pi)H = 0 by Lemma 4.12. �

Lemma 4.14. Suppose that A is noetherian. The pair A,Z is nice if either (a) A
is H-prime or (b) A is H-semiprime and Z coincides with the center of A. Hence

Q(A) ∼= A⊗Z Q(Z) in both cases.

Proof. Under assumption (a) Lemma 4.12 and Corollary 4.13 show that PC = 0 for
any minimal prime P and a suitable C ∈ F . The conclusion then repeats Lemma
4.1(i). Under assumption (b) the conclusion follows from Lemma 3.8. �

If A is noetherian and H-semiprime, then Q(A) is module-finite over its center
by Lemma 4.14. Therefore Q(A) is quasi-Frobenius by Theorem 1.8. The proof of
Theorem 0.3 is now completed. I don’t know whether A,Z are necessarily a nice
pair when the noetherian hypothesis is dropped.

Both A and Z are equidimensional in the H-prime case:

Proposition 4.15. If A is noetherian and H-prime, then for each minimal prime

P of A and each minimal prime p of Z we have

coheightP = KdimA = KdimZ = coheight p.

Proof. The classical Krull dimension of a ring is the supremum of the coheights of
its prime ideals. Therefore the first equality follows from Proposition 4.10(i) and
Corollary 4.13. Since A,Z are a nice pair, by Lemma 3.3(iii) the minimal primes
of Z are precisely the contractions of the minimal primes of A. By Lemma 3.5 we
have coheightP = coheightP ∩ Z, whence the remaining equalities. �

5. Examples of orbits

For simplicity we will assume in this section that the base ring k is a field and F
is the family of finite dimensional subcoalgebras of the Hopf algebra H. Let A be
an arbitrary H-module algebra.

Lemma 5.1. Suppose that H ′ is a Hopf subalgebra of H containing the coradical

of H. Then each H ′-orbit in SpecA is an H-orbit, and vice versa.

Proof. Let C ∈ F . Consider the coradical filtration C0 ⊂ C1 ⊂ · · · ⊂ Cn = C, so
that C0 ⊂ H ′. An easy induction on i shows that PC0

PCi
⊂ PCi+1

for all i < n, and

therefore Pn+1
C0

⊂ PC (cf. [7, Lemma 2.2] and [20, Th. 3.7]). It follows that

{P ′ ∈ SpecA | PC ⊂ P ′} = {P ′ ∈ SpecA | PC0
⊂ P ′}.

In particular, P ′ is minimal over PC if and only if P ′ is minimal over PC0
. The rest

of proof is clear. �

Proposition 5.2. If H is pointed with the group G of grouplike elements then the

H-orbits in SpecA are precisely the G-orbits.

Proof. Since the coradical of H is isomorphic to the group algebra kG, Lemma 5.1
reduces the proof to the case where H = kG. Let P ∈ SpecA and C ∈ F . Clearly C
is spanned by a finite subset, say X ⊂ G, and PC =

⋂
g∈X g

−1P is an intersection
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of finitely many primes of A. Since PC contains the product of those primes taken
in any order, any prime P ′ with PC ⊂ P ′ satisfies g−1P ⊂ P ′ for some g ∈ X .
Therefore any P ′ minimal over PC coincides with one of g−1P . Conversely, if g ∈ G
is any element, then kg ∈ F and Pkg = g−1P . In particular, the prime g−1P is
minimal over Pkg. �

An H-stable ideal I of A is said to be H-prime if the H-module algebra A/I is
H-prime. For instance, PH is an H-prime ideal for any P ∈ SpecA. If dimH <∞,
then any H-prime ideal is equal to PH for some P [20, Lemma 2.2(2)].

Proposition 5.3. Assuming that A is right noetherian and dimH <∞, we have:

(i) A prime P of A is minimal over an H-prime I if and only if PH = I.

(ii) The H-orbits in SpecA coincide with the H-strata.

(iii)A/PC has an artinian classical right quotient ring for any prime P of A and

any subcoalgebra C of H.

(iv)The canonical map A/PH → A/PC extends to a surjective homomorphism of

right quotient rings.

Proof. (i) Replacing A with A/I, we may assume that A is H-prime and I = 0. By
[24, Th. 0.1] A has a quasi-Frobenius classical right quotient ring Q, and by [24,
Cor. 7.6] Q is an H-simple H-module algebra. We may identify A with an H-stable
subalgebra of Q. The assignments P 7→ PQ and M 7→M ∩A give mutually inverse
bijections between the minimal primes of A and the maximal ideals of Q. Hence, if P
is minimal, PH generates a proper H-stable ideal of Q, and therefore PH = 0 by the
H-simplicity of Q. Given any right regular element u ∈ A, [24, Lemma 5.5] shows
that {a ∈ A | Ha ⊂ uA} is an H-stable essential right ideal of A; in particular, uA
contains a nonzero H-stable subspace. Suppose now that P is any prime of A with
PH = 0. By the previous argument P cannot contain a regular element of A. Hence
PQ is a proper ideal of Q, and P must be minimal.

(ii) We have to check that for each H-prime ideal I of A the set

O = {P ∈ SpecA | PH = I}

is an H-orbit. Let P ∈ O and P ′ ∈ SpecA. If P ′ ∈ O, then P ′ is minimal over I by
(i), whence the required condition in the definition of H-orbits holds with C = H.
Suppose now that P ′ is a prime minimal over PC for some subcoalgebra C of H.
Let Q be the classical right quotient ring of A/I, as in (i), and let ϕ : A → Q be
the canonical homomorphism. Then P = ϕ−1(M) for some maximal ideal M of Q.
Since ϕ is H-equivariant, we get PC = ϕ−1(MC). Let M1, . . . ,Mt be all maximal
ideals of Q containing MC . Each Pi = ϕ−1(Mi) is a prime of A minimal over I.
Since a suitable product of M1, . . . ,Mt is contained in MC , a product of P1, . . . , Pt
is contained in PC . It follows that P ′ = Pi for some i. Hence P ′ ∈ O by (i).

If J is any ideal of Q, then Q/J is a classical right quotient ring of A/ϕ−1(J).
Taking J = MC , we arrive at (iii) and (iv). �

Proposition 5.4. If A is module-finite over its center and dimH < ∞, then each

H-orbit in Specf A coincides with an H-stratum.

Proof. The existence of H-orbits has been established in Theorem 0.1. Let P, P ′ ∈
Specf A. If P ′ is in the H-orbit of P , then PH ⊂ P ′; since P ′H ⊂ P by symmetry,
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we must have PH = P ′H . The opposite implication follows from the fact that P ′ is
a prime minimal over P ′H (see Lemma 4.8). �

Denote by Λ(A) the set of maximal ideals of finite codimension in A. If P ∈ Λ(A),
then dimA/PC <∞ for any C ∈ F since A/PC embeds in Hom(C,A/P ). Therefore
P ′ ∈ SpecA is minimal over PC if and only if PC ⊂ P ′, and in this case P ′ ∈ Λ(A).
Note that the set of all pairs (P, P ′) ∈ Λ(A) × Λ(A) for which there exists C ∈ F
with PC ⊂ P ′ is a transitive relation on Λ(A). Indeed, inclusions PC ⊂ P ′ and
P ′D ⊂ P ′′ with C,D ∈ F imply that CD ∈ F and PCD ⊂ P ′′. The problem is in
checking that the above relation is symmetric. The following lemma is immediate
from the transitivity:

Lemma 5.5. Let P ∈ Λ(A). In order that the set

O(P ) = {P ′ ∈ Λ(A) | PC ⊂ P ′ for some C ∈ F}

be an H-orbit, it is necessary and sufficient that for each P ′ ∈ O(P ) there exist

D ∈ F satisfying P ′D ⊂ P .

Since A/PC coincides with its own quotient ring for each C ∈ F , the linearly
compact H-module algebra LP (A) = lim

←−−
A/PC can be defined for any P ∈ Λ(A).

It is easy to check that the required property in Lemma 5.5 is satisfied if and only
if LP (A) is topologically H-simple. Unfortunately, the latter property was verified
in Proposition 2.5 under rather restrictive conditions.

Let us now change our earlier assumption about A and consider the dual situation
where A is a right H-comodule algebra. The comodule structure on A is given by
an algebra homomorphism ρ : A → A ⊗ H. We may regard A as an H◦-module
algebra where H◦ is the finite dual of H (see [19], [26]). Each finite dimensional
subcoalgebra of H◦ coincides with

K⊥ = {f ∈ H∗ | f(K) = 0}

where K is an ideal of finite codimension in H. The next lemma is verified straight-
forwardly.

Lemma 5.6. If P ∈ SpecA and C = K⊥, then PC = ρ−1(P ⊗H +A⊗K).

Now take A = H which we regard as a right H-comodule algebra with respect to
the comultiplication ∆ : H → H ⊗H. The corresponding action of H◦ on H is via
left hits.

Proposition 5.7. The set Λ(H) of maximal ideals of finite codimension in H is a

single H◦-orbit.

Proof. Let P = H+ be the augmentation ideal of H. Since

∆(h) ≡ 1 ⊗ h (modH+ ⊗H) for all h ∈ H,

we have ∆−1(H+⊗H+H⊗K) = K for any linear subspace K ⊂ H. Let K ∈ Λ(H).
It follows from Lemma 5.6 that PC = K with C = K⊥. Thus O(P ) = Λ(H), in the
notation of Lemma 5.5. Note that S−1(K) is an ideal of finite codimension in H.
Put D = S−1(K)⊥ and define a linear map ϕ : H ⊗H → H/K by the rule
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ϕ(x⊗ y) = xS(y) +K for x, y ∈ H.

Then ϕ vanishes on K ⊗H +H ⊗ S−1(K) and ϕ(∆h) = ε(h) +K for all h ∈ H.
Hence

∆−1
(
K ⊗H +H ⊗ S−1(K)

)
⊂ Ker(ϕ ◦ ∆) = H+.

In view of Lemma 5.6 this can be rewritten as KD ⊂ P . The conclusion follows now
from Lemma 5.5. �

Finally we will consider one concrete example. Suppose that k is an algebraically
closed field. Let A = Oq(k

2) be the quantum plane and H = Oq(SL2) the quantum
SL2 with parameter 0 6= q ∈ k [16]. So A is generated by two elements x, y satisfying
the relation xy = qyx, while H has generators a, b, c, d and defining relations

ab = qba, ac = qca, bc = cb,

bd = qdb, cd = qdc, ad− qbc = da− q−1bc = 1.

The structure of a right H-comodule algebra on A is given by

ρ : x 7→ x⊗ a+ y ⊗ c, y 7→ x⊗ b+ y ⊗ d.

For λ ∈ k, λ 6= 0, let tλ : H → k be the algebra homomorphism whose kernel is
the ideal of H generated by elements a − λ, b, c, d − λ−1. Then tλ is a grouplike
of H◦. Explicit formulas for the comultiplication in H show that T = {tλ} is a
one-dimensional torus. If q is not a root of unity, then each maximal ideal of H
coincides with Ker tλ for some λ (see [6, Diagram II.1.3]). This means that H◦ is
pointed with T being the whole group of grouplikes of H◦. By Proposition 5.2 the
H◦-orbits in SpecA are the orbits of T , as pictured in [6, Diagram II.1.2].

Suppose now that q is a primitive lth root of unity where l is an odd integer,
l > 1. The lth powers of a, b, c, d generate a central Hopf subalgebra of H which we
may identify with the function algebra O(G) on the algebraic group G = SL2(k).
Similarly, xl and yl generate a central subalgebra B of A which we may identify
with the function algebra O(k2) on the affine plane. Now ρ(B) ⊂ B ⊗ O(G), and
this comodule structure corresponds to the natural action of G on k2. Since H is
module-finite over O(G), the canonical map H◦ → O(G)◦ is surjective. Therefore
the H◦-orbits in SpecB coincide with the O(G)◦-orbits and, by Proposition 5.2,
with the G-orbits.

Consider now the sets Λ(A), Λ(B) of maximal ideals of A andB. There is a natural
G-equivariant bijection k2 ∼= Λ(B) under which a point (α, β) ∈ k2 corresponds to
the maximal ideal mα,β of B generated by xl−α and yl−β. Note that G permutes
transitively all points in k2

r {(0, 0)}. Each P ∈ Λ(A) lies above some m ∈ Λ(B).
It is clear that PC ∩ B = mC for each finite dimensional subcoalgebra C of H◦.
Let m′ be any maximal ideal of B. Since A/PC is module-finite over its central
subring B/mC , we deduce that mC ⊂ m′ if and only if there exists P ′ ∈ Λ(A) lying
above m′ such that PC ⊂ P ′. Thus, if m = mα,β with (α, β) 6= (0, 0), then for each
(α′, β′) ∈ k2 r {(0, 0)} there exists a subcoalgebra C and P ′ ∈ Λ(A) such that
PC ⊂ P ′ and P ′ lies above mα′,β′ . Note that the fibre of the map Λ(A) → Λ(B)
above mα′,β′ is a singleton unless either α′ = 0 or β′ = 0. In the latter case the
fibre contains l maximal ideals of A transitively permuted by the cyclic subgroup
〈tq〉 ⊂ T . The ideal P0 of A generated by x and y is a single element of Λ(A) lying
above m0,0. Combining this information, we conclude that {P0} and Λ(A) r {P0}
are the only two H◦-orbits in Λ(A).
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18. C. Moeglin and R. Rentschler, Idéaux G-rationnels, rang de Goldie, preprint, 1986.
19. S. Montgomery, Hopf algebras and Their Actions on Rings, CBMS Regional Conference

Series in Mathematics, Vol. 82, American Mathematical Society, 1993.
20. S. Montgomery and H.-J. Schneider, Prime ideals in Hopf Galois extensions, Isr. J.

Math. 112 (1999) 187–235.
21. A. Rosenberg and D. Zelinsky, Finiteness of the injective hull, Math. Z. 70 (1959)

372–380.
22. L.H. Rowen, Ring Theory, vol. I, Academic Press, 1988.
23. S. Skryabin, Projectivity and freeness over comodule algebras, Trans. Amer. Math. Soc.

359 (2007) 2597–2623.
24. S. Skryabin and F. Van Oystaeyen, The Goldie Theorem for H-semiprime algebras,

J. Algebra 305 (2006) 292–320.
25. L. Small, Orders in Artinian rings, J. Algebra 4 (1966) 13–41.
26. M.E. Sweedler, Hopf Algebras, Benjamin, 1969.
27. N. Vonessen, Actions of algebraic groups on the spectrum of rational ideals. II, J.

Algebra 208 (1998) 216–261.
28. Q.-S. Wu and J.J. Zhang, Noetherian PI Hopf algebras are Gorenstein, Trans. Amer.

Math. Soc. 355 (2003) 1043–1066.
29. D. Zelinsky, Linearly compact modules and rings, Amer. J. Math. 75 (1953) 79–90.

29


