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Introduction. This paper is devoted to determining the complex propagation coeffi- 
cients of surface-wave and leaky-wave eigenmodes of arbitrary-shape optical fibers. The origi- 
nal physical problem is reduced to a nonlinear spectral problem for Fredholm system of integral 
equations. We propose Galerkin's method for the calculating of approximate values of the com- 
plex propagation coefficients. A practical efficiency of this method is been shown by comparing 
of solutions of some problems of the theory of electromagnetic waves with experimental data 
and the results obtained by other methods. 

Formulation of the Problem. The original physical problem of determining the com- 
plex propagation constants of surface-wave and leaky-wave eigenmodes of arbitrary-shape opti- 
cal fibers is reduced to the nonlinear problem for the system of Helmholtz equations on the 
plane [ 11,  with Reichardt conditions on infinity [2]: 

(4) 

Here, ~3 = kin: - p2 ; ki = w 2 ~ o p o  ; w is the frequency of electromagnetic oscilla- 

tions; go and ,U,, are the permittivity and permeability of vacuum, respectively; E, = Eon, ; n, 
and n, are the refractive indexes of the fiber and environment; RI  is a bounded domain with 

theboundary r =  M ~ R ' : r = r ( t ) , t ~ [ 0 , 2 n ] } ,  r ( t ) E C 2 ;  R, = R 2 \ f i 1 ;  d u l d n  isthede- 

rivative normal to the contour r ;  d u l d z  is the derivative tangential to the contour r ;  
f' (I-) is the limit value of the function f from the exterior (interior) of the contour r ; r 

and p are the polar coordinates of the point M ; HL1) is Hankel function of the first kind and 
n-th order; and u,v e C 2 ( R ,  U Q , ) n C 1 ( ~ l ) n C 1 ( ~ 2 ) .  

The axial propagation coefficient p is an unknown complex parameter, /3 E H ,  n H2 , 
Hi is Reimann surface of the function In xi (p) . The surface Hi has an infinite number of the 

complex sheets. The "proper" one ( H ! )  is specified by the conditions: 

- n / 2 < arg xi (p) < 3n l 2 ,  ImXj (p) 2 0 .  The propagation coefficients p at A, = HP n H," 

2 
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may belong only (see [3]) to G = (p  E Ao:Imp = 0, kon2 < 14 < konl]  and to 

A, \ ( (Rep=O)U(ImP=O}).  

Regularization of the Problem. We use the representation of the functions U and v in 
form of single-layer potentials: 

We obtain a nonlinear spectral problem for the following set of integral equation (see [4]): 

Spectral problem (1) - (4) is equivalent to the problem (5) for all p E A. . The operator- 

valued function A@): H -+ H ,  H = Co." x Cop" x Col" x Co." , is Fredholm holomorphic in 
A operator-valued function. Thus, the spectrum of the problem (1) - (4) may consists of only 
isolated points. 

Numerical Algorithm. For a numerical solution of the problem ( 5 ) ,  a discretized matrix 
equation is derived by Galerkin's method based on trigonometric basis functions. The singulari- 
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ties of the kernels of the integral operators are separated analytically. The singular operators 
L-1: C'," + CO." and S:Co," + Co." has a known spectrum: 

A:' = (1 / ln2, for k = 0; 2/k/, for k f 01, 

Ai  = {i, for k = 0; i sign(k), for k f O} 

with the trigonometric eigenfunctions 

exp(ikt), k = O,kl,f2, ..., t ~[0 ,2n] .  

Determinant zeros p,, of the matrix A,  (p) of this system ( n  being the number of basis func- 
tion) are assumed as the approximation values of the propagation coefficients p.  The conver- 
gence of this method has been studied in [5]. 

Numerical Results. In order to access the efficiency of the described method, we solved 
the problem (1) - (4) for waveguides of circular, elliptic, rectangular, and triangular cross- sec- 
tion. 

The dispersion characteristics of the complex EH,, modes of a circular cross-section 
dielectric fiber were constructed by the proposed method. It was found, that even for the number 
of basis functions n = 1, they coincided exactly with the dispersion characteristics [6] obtained 
by the eigenfunction expanded method. 

The dispersion characteristics of the fundamental modes of an elliptic cross-section 
waveguide with the ratio of semiaxes equal to 1.3 1 were constructed. It was found, that even for 
the number of basis function n = 2 ,  they coincided exactly with the dispersion characteristics 
[7] obtained by the method of separation of variables. A further increase in y1 did not improve 
the computational accuracy. 

The solution of the problem (1) - (4) for the waveguide of rectangular cross-section was 
based on the approximation of the contour by the curve 

2 N  2 N  - (2N) - '  

r(t)=[(y) +(s$t) ] , t €[oy2n]. 

As N + oc) , this curve tends to a rectangle with the sides 2a and 2b . 

As in [8], we obtained the dispersion characteristics: the dependence of h = ,8/ ko on 
p = 2b / A ,  1 = 2 n  / w , for the fixed values of zl , g 2 ,  and a / b .  The results of computations 
for = 2.08, = 1 , and a / b = 1.5 are shown in Fig. 1. by a solid curve for the fundamental 
modes and by a dashed curve for higher-order modes. The stars indicate the experimental data 
of [8]. The results demonstrated in Fig. 1 were obtained for n = 3.  The method exhibits a stable 
internal convergence. For instance, the modulus of the difference between the values of h ob- 
tained for n = k and n = k + 1 did not exceed A = for k = 2 , A = lo4 for k = 3 , and 
A NN for k = 4. All computations were carried out for N = 20.  A further increase in N 
did not influence the accuracy of the computations. 
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We also considered the problem (1) - (4) for a waveguide with a cross-section in the 
form of an equilateral triangle. The contour was approximated by a curvilinear triangle: 

\ 
\ 

V 
I I I I I I 

The results of calculations for the fundamental modes were compared with those ob- 
tained by the point-matching method in [9] ,  and by the constant field approximation method in 
[lo]. We obtained the dispersion characteristics: the dependence of q = (A2 - E ~ ) / ( E ~  - E ~ )  on 

v = 2 / & a k 0 ( ~ ,  - E ~ ) " ~ ,  for the fixed values of E,  = 2.3 1 , and = 2.25. The results of com- 
putations for n = 2 are shown in Fig. 2. by a solid curve. The stars indicate the point-matching 
solution [9].  The dashed curve indicate the constant field approximation solution [lo]. The in- 
ternal convergence of the method was the same as in the previous case. 

Fig. 1. Fig. 2. 
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