

1 Crebrolysin for acute ischaemic stroke^{1,2,3}

2 Lilia E. Ziganshina*, Tatyana Abakumova and Alexandra Kuchaeva

3 Department of Clinical Pharmacology and Pharmacotherapy, Kazan State Medical Academy, Kazan,
4 Russian Federation

5 **Abstract.** *Background:* Cerebrolysin is a mixture of low-molecular-weight peptides and amino acids derived from pigs' brain
6 tissue which has proposed neuroprotective and neurotrophic properties. It is widely used in the treatment of acute ischaemic
7 stroke in Russia and China.

8 *Objectives:* To assess the benefits and risks of cerebrolysin for treating acute ischaemic stroke.

9 *Search strategy:* We searched the Cochrane Stroke Group Trials Register (February 2009), the Cochrane Central Register of
10 Controlled Trials (CENTRAL) (*The Cochrane Library* Issue 1, 2009), MEDLINE (1966 to February 2009), EMBASE (1974 to
11 February 2009), LILACS (1982 to February 2009), Science Citation Index (1940 to February 2009), SIGLE Archive (1980 to
12 March 2005), and a number of relevant Russian Databases (1988 to February 2009). We also searched reference lists, ongoing
13 trials registers and conference proceedings.

14 *Selection criteria:* Randomised controlled trials comparing cerebrolysin with placebo or no treatment in patients with acute
15 ischaemic stroke.

16 *Data collection and analysis:* Three review authors independently applied the inclusion criteria, assessed trial quality and
17 extracted the data.

18 *Main results:* We included one trial involving 146 participants. There was no difference in death (6/78 in the cerebrolysin
19 group versus 6/68 in the placebo group; risk ratio (RR) 0.87, 95% confidence interval (CI) 0.29 to 2.58) or in the total number
20 of adverse events (16.4% versus 10.3%; RR 1.62, 95% CI 0.69 to 3.82) between the treatment and control groups.

21 *Conclusions:* There is not enough evidence to evaluate the effect of cerebrolysin on survival and dependency in people with
22 acute ischaemic stroke. High-quality and large-scale randomised controlled trials may help to gain a better understanding of the
23 potential value of cerebrolysin in acute ischaemic stroke.

24 **Keywords:** Amino acids, neuroprotective agents, stroke

24 1. Background

25 Stroke is the brain equivalent of a heart attack, which occurs when the brain loses its blood and energy
26 supply resulting in damage to brain tissue. Stroke is one of the major causes of disability and mortality
27 all over the world [1, 13, 14]. More than 50% of survivors of acute stroke experience severe neurological

*Address for correspondence: Lilia E. Ziganshina, Department of Clinical Pharmacology and Pharmacotherapy, Kazan State Medical Academy, 11 Mushtari Street, 420012, 14-15 Malaya Krasnaya Street, 420015 Kazan, Tatarstan, Russian Federation. E-mail: lezign@mail.ru; lezign@gmail.com.

¹eThis paper is based on a Cochrane Review published in The Cochrane Library 2010, Issue 4 (see www.thecochranelibrary.com for information). Cochrane Reviews are regularly updated as new evidence emerges and in response to feedback, and The Cochrane Library should be consulted for the most recent version of the review. Permission for publication was obtained from John Wiley & Sons Ltd on behalf of the Cochrane Collaboration.

²Editorial group: Cochrane Stroke Group; Publication status and date: New, published in Issue 4, 2010; Review content assessed as up-to-date: 7 January 2010.

³Citation: Ziganshina LE, Abakumova T and Kuchaeva A, Cerebrolysin for acute ischaemic stroke, *Cochrane Database of Systematic Reviews* (4) (2010), [Art. No.: CD007026. DOI: 10.1002/14651858.CD007026.pub2].

disorders (loss of vision or speech or both, paralysis and confusion) and these are not restored in 30% to 66% of cases six months after a stroke [21]. Annually, 15 million people worldwide suffer a stroke. Of these, five million die and another five million are left permanently disabled, placing a burden on family and community [71]. There are 10,000 cases of acute stroke registered in the Russian Federation annually. In 2001, stroke morbidity reached 3.36 per 1000 population with a mortality rate of 40.37% (61.4% for haemorrhagic stroke and 21.8% for ischaemic stroke). The north-west regions had the highest morbidity of 7.43 per 1000, followed by some cities in middle areas (5.37 per 1000) and the far east (4.41 per 1000) [26, 65].

1.1. Pharmacological treatment options

Effective, simple and reliable treatment methods are urgently needed to decrease stroke mortality and disability. Many clinical trials and Cochrane reviews have addressed the question of benefits and risks of potential pharmacological treatment options for acute ischaemic stroke. However, such strategies with proven therapeutic effects and an acceptable benefit-to-risk ratio are still lacking. Potential strategies could be grouped according to the existing evidence of their benefits and harms.

1.2. Potential benefits

Aspirin appears to be the only treatment that has been shown to be effective when started within 48 hours of onset of ischaemic stroke for early secondary prevention [53] (Sandercock 2008a). Thrombolysis with intravenous recombinant tissue plasminogen activator presents a promising strategy, but only in experienced centres and in highly selected patients [70]. The evidence has been insufficient so far to identify a preferred thrombolytic agent, the dose, route of administration and the latest time window [42, 70]. Another Cochrane review of trials performed in the pre-controlled trial era suggested a favourable effect of glycerol treatment on short-term survival in ischaemic stroke patients [50]. Fibrinogen-depleting agents seem to be promising although more data are needed [39].

1.3. Potential harms

Tirilazad, an amino steroid inhibitor of lipid peroxidation, increased the combined end-point of 'death or disability' in patients with acute ischaemic stroke [64]. Lubeluzole, an ion channel modulator of glutamate release that has a benzothiazole structure with proposed neuroprotective properties, did not reduce death or dependency in acute ischaemic stroke patients. In contrast, it increased heart-conduction disorders (Q-T prolongation) [23].

1.4. Evidence of lack of benefit has accumulated for the following potential pharmacotherapeutic strategies

Calcium antagonists [31]; haemodilution [3]; excitatory amino acid antagonists, including ion channel modulators and N-methyl-D-aspartic acid (NMDA) antagonists [44]; anticoagulant therapy, which was not associated with net short or long-term benefits [25] and did not offer net advantages over antiplatelet agents [10]; piracetam [49]; and a free radical trapping agent NXY-059 [59].

63 *1.5. Evidence from randomised controlled trials is insufficient for conclusions of benefit*
64 *or harm in the following interventions*

65 Glycoprotein IIb-IIIa inhibitors [17]; ginkgo biloba [77]; naftidrofuryl, a 5-HT2 serotonergic antagonist
66 [38]; low-molecular-weight heparins or heparinoids [54]; theophylline or methylxanthine derivatives [6,
67 5]; mannitol [9]; nitric oxide donors [7]; blood pressure altering [11, 12]; prostacyclin and its analogues
68 [4]; vinpocetine [8]; corticosteroids [47] and gangliosides [15].

69 *1.6. Neuroprotection as a potential strategy*

70 The term 'neuroprotection' is used to describe the putative effect of interventions protecting the brain
71 from pathological damage. In ischaemic stroke the concept of neuroprotection includes inhibition of
72 pathological molecular events leading to calcium influx, activation of free radical reactions and cell
73 death. Knowledge of pathophysiology in acute ischaemic stroke stimulated development of a number of
74 potential neuroprotective agents. Many neuroprotective agents have proven to be efficacious in animal
75 studies. Demonstration of benefit in patients with acute ischaemic stroke on clinically relevant outcomes
76 continues to be a challenge. Cerebrolysin is a mixture of low-molecular-weight peptides (80%) and
77 free amino acids (20%) derived from pigs' brain tissue, with proposed neuroprotective and neurotrophic
78 properties similar to naturally occurring growth factors (nerve growth factor, brain-derived neurotrophic
79 factor) [2, 20].

80 Results of in vitro and animal studies of cerebrolysin suggest its potential for treating acute ischaemic
81 neuronal damage. For example, cerebrolysin was shown to be effective in tissue culture models of neuronal
82 ischaemia dose-dependently increasing neuronal survival [56]. In brain slices it counteracted necrotic and
83 apoptotic cell death induced by glutamate [51]. Cerebrolysin also demonstrated neuroprotective activity
84 in a rat model of haemorrhagic stroke [40] and spinal cord trauma [55].

85 Yet, despite the effectiveness of neuroprotective agents in animal models of stroke, clinical trials of
86 neuroprotective agents in humans have provided disappointing results [19]. More recent Cochrane reviews
87 of effects of individual neuroprotective agents and pharmacological groups confirmed this [23, 44, 49,
88 64]. Other means of neuroprotection are being sought. Some neuroprotective agents show beneficial
89 effects on post-hoc analyses, and some studies are still ongoing [68]. The potential of cerebrolysin for
90 Alzheimer's disease has been systematically reviewed [20]. Cerebrolysin is well accepted by Russian
91 physicians. It is widely used in the treatment of acute ischaemic stroke and other neurological disorders
92 [16, 24, 46]. Research data from observational studies and clinical trials of cerebrolysin in acute stroke
93 or head injury, with the majority of them carried out in Russia, have accumulated [16, 22, 24, 36, 63, 72].
94 There is a need for a systematic evaluation of these results.

95 The aim of this review is to verify whether the available evidence from controlled trials is in favour of
96 a beneficial effect of cerebrolysin for acute ischaemic stroke.

97 **2. Objectives**

98 1. To assess the benefits and risks of cerebrolysin for treating acute ischaemic stroke.
99 2. To estimate the effect of cerebrolysin on survival and disability.
100 3. To assess serious adverse events and adverse effects.

101 3. Methods**102 3.1. Criteria for considering studies for this review****103 3.1.1. Types of studies**

104 We included all randomised controlled trials (RCTs), published or unpublished, comparing cerebrolysin
105 with placebo or no treatment in patients with acute ischaemic stroke. We excluded uncontrolled studies,
106 as well as quasi-randomised controlled trials where allocation to treatment or control was not con-
107 cealed (e.g. allocation by alteration, open random number list, date of birth, day of the week or hospital
108 number).

109 3.1.2. Types of participants

110 People with acute ischaemic stroke, irrespective of age, gender, or social status, whose symptom onset
111 was less than 48 hours previously.

112 3.1.3. Types of interventions

113 We planned to compare cerebrolysin or newer peptide-mixtures, which we have named ‘cerebrolysin-
114 like agents’, with placebo or no treatment. We also planned to compare cerebrolysin or cerebrolysin-like
115 agents added to standard treatment versus standard treatment alone. Standard treatment is not defined
116 precisely and may differ between studies. Study medication must have been started within 48 hours
117 of stroke onset and must have continued for at least two weeks. If trials of cerebrolysin versus other
118 neuroprotective agents are identified in future we will add a separate analysis for this comparison.

119 3.1.4. Types of outcome measures**120 3.1.4.1. Primary**

- 121 1. Poor functional outcome defined as death or dependence at the end of the follow-up period.
- 122 2. Early death (within two weeks of stroke onset).

123 3.1.4.2. Secondary

- 124 1. Quality of life, if assessed in the included studies.
- 125 2. All-cause death.
- 126 3. Time to restoration of capacity for work.

127 3.1.4.3. Adverse events and effects

- 128 1. Serious adverse events: fatal, life threatening, requiring hospitalisation or change of treatment
129 regimen.
- 130 2. Adverse effects specifically associated with cerebrolysin, such as hypersensitivity reactions.
- 131 3. Total number of adverse events.

132 3.2. Search methods for identification of studies

133 See the ‘Specialized register’ section in the Cochrane Stroke Group module.

134 We searched the Cochrane Stroke Group Trials Register, which was last searched by the Managing Edi-
135 tor in February 2009, the Cochrane Central Register of Controlled Trials (CENTRAL) (*The Cochrane*

136 *Library*, Issue 1, 2009), MEDLINE (1966 to February 2009) (see Appendix 1), EMBASE (1974 to
137 February 2009), LILACS Database (Latin American and Caribbean Health Sciences Literature) (1982
138 to February 2009), Science Citation Index (1940 to February 2009), SIGLE (System for Information
139 on Grey Literature in Europe) (<http://opensigle.inist.fr/>) (1980 to March 2005), and the following Russian
140 Databases (1988 to February 2009): Rossiyskaya medicina (<http://www.scsml.rssi.ru>) and Otkritiy
141 medicinskiy club (<http://www.medart.tomsk.ru>).

142 In an effort to identify further published, unpublished and ongoing trials and obtain additional trial
143 information we:

144 1. checked the reference lists of all trials identified by the above methods;
145 2. searched the following neurology conference proceedings held in Russia: Chelovek i Lekarstvo
146 (2006 to 2009), National'niy congress cardiologov (2006 to 2009), Rossiyskiy Megdunarodniy
147 Congress Cerebrovascularnaya patologiya i insult (2008 to 2009);
148 3. searched the following ongoing trials and research registers: The Stroke Trials Registry
149 (<http://www.strokecenter.org/trials/>), ClinicalTrials.gov (<http://clinicaltrials.gov/>) and Current Controlled
150 Trials (<http://www.controlled-trials.com/>).

151 We attempted to identify all relevant studies regardless of language. We had planned to contact two
152 pharmaceutical companies but this was not done.

153 3.3. Data collection and analysis

154 3.3.1. Study selection

155 At least two review authors independently examined all citations and their abstracts and established
156 their relevance and the need to acquire the full article. In cases of uncertainty we obtained the full article.
157 We independently applied the inclusion criteria and resolved disagreements through discussion with
158 all three review authors. All three authors examined the full text of study reports. We only included
159 those studies that met the pre-determined inclusion criteria. We excluded studies that did not meet the
160 inclusion criteria and explained the reason for exclusion in the Characteristics of excluded studies table
161 (Table 1).

162 3.3.2. Assessment of methodological quality

163 All three review authors independently evaluated methodological quality in terms of generation of
164 allocation sequence, allocation concealment, blinding, loss to follow-up of participants and other risks
165 of bias. We made judgments on generation of allocation sequence, allocation concealment, blinding and
166 other risks of bias as adequate (yes), inadequate (no), or unclear, and presented quotes to support our
167 judgments in the Risk of bias table partition in the Characteristics of the included study table (Table 2).
168 We considered loss to follow-up to be acceptable if it was less than 10%. We resolved any disagreements
169 arising at any stage by discussion or with a third party when necessary.

170 3.3.3. Data extraction

171 All three review authors independently extracted data using a standardised data extraction form. We
172 extracted data on the methods of studies, participants, interventions, and outcomes. We resolved any
173 differences in the extracted data by referring to the original articles and through discussion or by consulting
the third party. We extracted data to allow an intention-to-treat analysis (including all the participants

Table 1
Characteristics of excluded studies [ordered by study ID]

Study	Reason for exclusion
Cuparneucu 2001 [18]	Reported as an abstract only; no information on follow-up
Haffner 2001 [27, 28]	Reported as an abstract only; efficacy assessment with stroke scales; no information on death
Hong 2002 [29]	Cerebrolysin used in rehabilitation after ischaemic stroke
Hong 2005 [30]	Cerebrolysin used for 10 days (protocol specifies 14 days); efficacy assessment with stroke scales
Jin 1999 [32]	Cerebrolysin compared with xingnaojing
Kulchikov 2008 [33]	Reported as an abstract only
	Not a relevant research question: Viral complications of stroke
Kulchikov 2008a [34]	Reported as an abstract only
	Not a relevant research question: Infection complications of stroke (pneumonia)
Makarenko 2006 [41]	Reported as an abstract only
	Not a relevant research question: Cerebrolysin used to treat infection complications (pneumonia) in patients with stroke
Ren 2002 [48]	Confounded study: Disodium cytidine triphosphate or cerebrolysin used for 10 days
Sagatov 2008 [52]	Reported as an abstract only
Shamalov 2006 [57]	Not a relevant research question or comparison: Cerebrolysin plus emoxepine versus cerebrolysin
Shi 1990 [58]	Reported as abstract only; cerebrolysin used for 10 days
Skvortsova 2004, 2005 [62, 63]	Cerebrolysin used in patients with cerebral haemorrhage
Skvortsova 2008 [60, 61]	Cerebrolysin used for 10 days
Vilensky 2000 [66]	Reported as an abstract only
Vilensky 2006 [67]	MRI infarct volume as efficacy measure
Wang 1997 [69]	Cerebrolysin used for 5 days
	Reported as an abstract only
	Cerebrolysin compared with cerebrolysin administered via different routes
	Cerebrolysin in combination with nitrendipine, glucose and insulin compared with salvia miltiorrhiza in combination with low-molecular-weight dextran
Wu 1995 [73]	Reported as an abstract only
	Cerebrolysin used in combination with urokinase
Yavorskaya 2008 [74]	Reported as an abstract only
	Not a relevant research question: Participants with cognitive disorders
Zhang 1994 [76]	Too small (27 patients), probably a non-randomised trial
Zhang 1997 [75]	Not a relevant research question or comparison: Cerebrolysin used in combination with speaking training, mannitol and conventional therapy versus conventional therapy and mannitol
Zhu 2003 [78]	Cerebrolysin used in patients with stroke episode duration of 28 ± 7 days; efficacy assessment with stroke scales

MRI: Magnetic resonance imaging.

in the groups to which they were originally randomly allocated). We calculated the percentage loss to follow-up and presented it in the Risk of bias table partition in the Characteristics of the included study table (Table 2).

For binary outcomes, we extracted the number of participants with the event in each group. For continuous outcomes, we planned to use arithmetic means and standard deviations for each group.

Table 2
Characteristics of included studies Ladurner 2005 [36]

Methods	Multicentre, randomised, double-blind controlled trial 25 participants (17%) were lost to follow up Mean duration of follow-up: 90 days	
Participants	146 participants randomised, 121 evaluated Inclusion criteria: Men and women with their first acute ischaemic stroke with clinical symptoms of middle cerebral artery area, aged 45 to 85 years, admitted to hospital and started on medication within 24 hours after stroke onset, with a Glasgow Coma Score >10 and a Canadian Neurological Scale score between 4.5 and 8.0 at baseline Exclusion criteria: Haemorrhagic stroke, transient ischaemic attacks, uncontrollable hypertension, acute myocardial infarction, congestive heart failure, moderate to severe dementia prior to stroke, stupor or coma, severe concomitant diseases, impaired renal function, history of prior stroke	
Interventions	Intervention: Cerebrolysin 50 ml (mixed with 50 ml normal saline) by intravenous infusion over 20 minutes for 21 days after admission to the hospital in addition to basic therapy (78 participants) Control: Placebo (100 ml normal saline) by intravenous infusion over 20 minutes for 21 days after admission to hospital in addition to basic therapy (68 participants) Basic therapy: Pentoxifylline (300 mg/day intravenously) and acetylsalicylic acid (250 mg/day orally) for the first 21 days; pentoxifylline (2 × 400 mg/day orally) and acetylsalicylic acid (250 mg/day orally) from days 22 to 90	
Outcomes	1. Efficacy measures: Canadian Neurological Scale (CNS), Barthel Index (BI), Glasgow Coma Scale (GCS), Clinical Global Impression (CGI), Mini-Mental State Examination (MMSE), Syndrome Short Test (SST), Self Assessment Scale, and the Hamilton Rating Scale for Depression (HAMD) performed at baseline and at all subsequent study visits on days 1, 3, 7, 14, 21, and 90 2. Adverse events, including abnormal laboratory findings and changes in clinical laboratory tests, changes in vital signs and general physical and neurological examinations rated as mild, moderate and severe 3. All-cause mortality reported as serious adverse events	
Notes	Location: 8 sites in Austria, the Czech Republic and Hungary Cerebrolysin and the randomisation procedure was provided by the manufacturer of cerebrolysin, EBEWE Pharma	
Risk of bias		
Item	Authors' judgement	Description
Allocation concealment?	Yes	Quote: 'For each patient a sealed envelope with information on the actual treatment dispensed was provided to the investigator for emergency cases. All envelopes remained sealed throughout the study'
Blinding?	Yes	Quote: 'The investigators and all other study personnel were blind as to the random code assignment until the completion of the statistical analysis' Comment: Impossible to assess blinding by outcomes
Adequate sequence generation?	Yes	Quote: 'Patients who met all entry criteria were assigned to the treatment groups in a 1 : 1 ratio, according to a randomisation code generated by computer software (EBEWE Pharma, Unterach, Austria). The randomisation was carried out in blocks of 12 patients stratified by study centre'
Incomplete outcome data addressed?	Unclear	Comment: Not applicable because the information on the outcomes that are of interest in the review was available only for serious adverse events including death 25 participants out of 146 randomised were lost to follow up (17%)
Free of selective reporting?	Unclear	Comment: Not applicable because the information on the outcomes that are of interest in the review was available only for serious adverse events including death
Free of other bias?	No	17% lost to follow up Manufacturer of cerebrolysin provided the medication and randomisation codes (procedure)

179 3.3.4. Data analysis

180 We undertook analysis according to the intention-to-treat principle. We planned to use the Review
181 Manager software to analyse the data (RevMan 2008) [45]. We planned to use relative risk as a measure
182 of effect for binary outcomes. For continuous data, we planned to use the mean difference (MD). If appro-
183 priate, we planned to calculate a summary statistic for each outcome. We planned to test for homogeneity
184 of effect sizes between studies using the I^2 test for heterogeneity. If heterogeneity was present ($P < 0.1$),
185 and the number of studies permitted, we planned to investigate it using the following subgroups:

186 1. dose of cerebrolysin;
187 2. length of treatment.

188 In cases where it was appropriate to pool data and heterogeneity was detected, we planned to use the
189 random-effects model.

190 We planned to perform a sensitivity analysis to test the robustness of the results. We planned to
191 investigate the effect of methodological study quality (low, moderate, or high risk of bias) using a sensi-
192 tivity analysis. We planned to use funnel plots to examine asymmetry, which may have been caused by
193 publication bias or heterogeneity.

194 4. Results

195 4.1. Description of studies

196 The searches identified 23 RCTs for possible inclusion. We excluded 22 of these studies because: (1)
197 the outcomes reported were only either impairment scales or the number of participants with neurological
198 improvement without any of the predefined outcome measures, (2) the study medication was not started
199 within 48 hours of stroke onset and had not been continued for at least 14 days, (3) the research questions
200 were not relevant, (4) the studies used different comparisons, or (5) the studies were reported as abstracts
201 only [18, 27–30, 32–34, 41, 48, 52, 57, 58, 60–63, 66, 67, 69, 73–76, 78]. We have presented the reasons
202 for exclusion in the Characteristics of excluded studies table (Table 1).

203 Only one trial met the inclusion criteria [36]. This was a multicentre placebo-controlled study conducted
204 in Austria, the Czech Republic and Hungary supported by the manufacturer of cerebrolysin, EBEWE
205 Pharma. The trial described the distinct inclusion and exclusion criteria. The average age of participants in
206 the two comparison groups was 65 years. The trial randomised 146 participants within 24 hours of stroke
207 onset to either the treatment group (cerebrolysin plus basic therapy; 78 participants) or to the control
208 group (placebo plus basic therapy; 68 participants). There were no significant differences between the
209 two groups in terms of baseline characteristics. In the treatment group, cerebrolysin was administered
210 intravenously once a day in a dose of 50 ml over a period of 20 minutes for 21 days. Cerebrolysin was
211 provided to the study centres by EBEWE Pharma. Placebo consisted of 100 ml normal saline. The same
212 basic therapy was used in the treatment group and the control group (pentoxifylline and acetylsalicylic
213 acid).

214 The outcome measures used were the Canadian Neurological Scale (CNS), the Barthel Index (BI), the
215 Glasgow Coma Scale (GCS), the Clinical Global Impression (CGI), the Mini-Mental State Examination
216 (MMSE), the Syndrome Short Test (SST), the Self Assessment Scale, and the Hamilton Rating Scale for
217 Depression (HAMD) – performed at baseline and at subsequent visits on days one, three, seven, 14, 21,
218 and 90. Adverse effects included abnormal laboratory findings and changes in clinical laboratory tests,

219 changes in vital signs, and general physical and neurological examinations rated as mild, moderate and
 220 severe. The numbers of participants who died during the study period in both the cerebrolysin group
 221 and the placebo group were reported in the safety section of the paper. We used these numbers to assess
 222 all-cause death. The duration of follow-up was 90 days; 25 participants (17%) were lost to follow up, nine
 223 of which were in the treatment group and the remaining sixteen were in the control group. We present
 224 details of the included trial in the Characteristics of included study table (Table 2).

225 There are no trials awaiting assessment and we are not aware of any ongoing trials.

226 4.2. Risk of bias in included studies

227 Only one RCT met the inclusion criteria. The manufacturer of cerebrolysin, EBEWE Pharma, pro-
 228 vided the randomisation method: Computer-generated randomisation code. Sealed envelopes allowed for
 229 allocation concealment and remained sealed throughout the study. Investigators and all study personnel
 230 were blinded. However, it was impossible to assess blinding by outcome. Twenty-five participants out of
 231 146 randomised were lost to follow up (17%). We compared by intention-to-treat principle the number of
 232 deaths extracted from the safety section of the trial report and presented data as all-cause death without
 233 performing any analysis [36].

234 4.3. Effects of interventions

235 The study did not report on the primary outcome measures, such as poor functional outcome (defined
 236 as death or dependence at the end of the follow-up period) and early death (within two weeks of stroke
 237 onset). It did not report on any of the secondary outcomes measures: Quality of life, all-cause death and
 238 time to restoration of capacity for work. We used the data on the number of deaths in both groups to
 239 generate the secondary outcome of all-cause death. Six participants (six of 78 randomised) died in the
 240 cerebrolysin group and six participants died in the placebo group (six of 68 randomised). We calculated
 241 the risk ratio for the extracted outcome all-cause death: RR 0.87, 95% CI 0.29 to 2.58 (Fig. 1, Table 3).
 242 The trialists reported on the following causes of death: Cerebral infarct (four in the cerebrolysin group
 243 and two in the placebo group), heart failure (two in the cerebrolysin group and one in the placebo group),
 244 pulmonary embolism (two in the placebo group), pneumonia (one in the placebo group). The trialists did
 245 not report on the time when those deaths occurred.

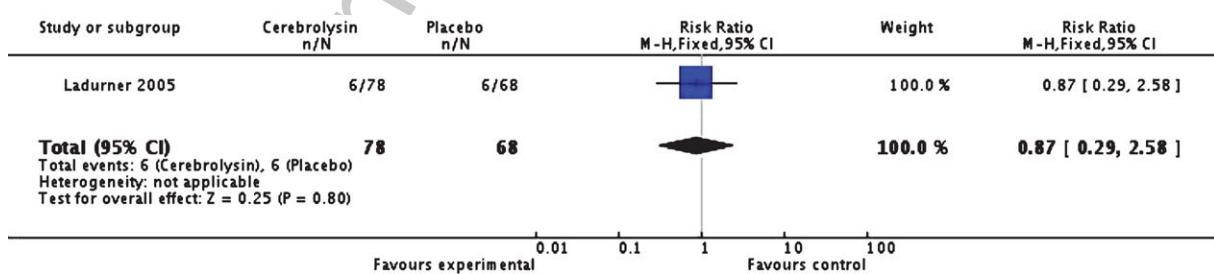


Fig. 1. Cerebrolysin versus placebo, Outcome 1 All-cause death.

Fig. 2. Cerebrolysin versus placebo, Outcome 2 Total number of adverse events.

246 4.3.1. Adverse events and effects

247 The trialists reported the overall incidence of adverse events: 16.4% in the cerebrolysin group and 10.3%
 248 in the placebo group. We calculated the risk ratio for the outcome total number of adverse events: RR
 249 1.62, 95% CI 0.69 to 3.82 (Fig. 2, Table 3). The trialists reported only one serious non-fatal adverse event
 250 in the placebo group: Haematemesis. They did not report on any adverse effects specifically associated
 251 with cerebrolysin, for example, hypersensitivity reactions.

252 4.3.2. Sensitivity analyses

253 As we only included one study, we did not perform the planned sensitivity analyses.

254 5. Discussion

255 The only included trial, supported by the manufacturer of cerebrolysin, EBEWE Pharma, did not
 256 provide sufficient evidence of the effects of cerebrolysin on clinically relevant outcome measures for
 257 acute ischaemic stroke. In terms of all-cause death, cerebrolysin performed no better than placebo.
 258 Despite the lack of evidence of efficacy in acute ischaemic stroke cerebrolysin is widely used in Russia
 259 and China. The methodological quality of clinical trials of cerebrolysin was not sufficient for inclusion
 260 in this review. It is worth mentioning that among the excluded studies, the Skvortsova 2004 trial [63] of
 261 cerebrolysin 10 ml and 50 ml versus placebo for 10 days reported no difference in the all-cause death
 262 between cerebrolysin and placebo by day 30 after stroke onset. Therefore, the routine use of cerebrolysin
 263 in patients with acute ischaemic stroke is not supported by any evidence from the existing clinical trials.
 264 Any further studies conducted in this area must be well-designed RCTs assessing clinical outcome
 265 measures rather than stroke scale parameters or other surrogate outcomes such as infarct volume. The
 266 studies should be reported in full to allow the wider scientific community to gain a better understanding
 267 of the potential value of cerebrolysin in acute ischaemic stroke. The potential benefit of neuroprotection
 268 for clinical outcomes in acute ischaemic stroke needs to be re-assessed.

269 6. Authors' conclusions

270 6.1. Implications for practice

271 The only randomised controlled trial (RCT) that evaluated cerebrolysin for treating acute ischaemic
 272 stroke was not designed to enable assessment of clinical outcome measures of efficacy and, thus, does

not support the potential clinical benefits of this intervention. The use of cerebrolysin is not supported by reliable evidence. Based on this trial, the routine administration of cerebrolysin to patients with acute ischaemic stroke is not recommended until its effects are tested in larger RCTs.

6.2. Implications for research

Future research, if any, needs to focus on well-designed RCTs to assess the potential benefits of cerebrolysin for acute ischaemic stroke. The trialists must ensure that they use pragmatic clinical outcome measures, including as a minimum, early death, dependency, all-cause death and adverse events. The trialists must provide a detailed description of any basic or routine therapy used concurrently with cerebrolysin (these should be the same in both the intervention and control groups). The trials should be reported in full and preferably conform to the Consolidated Standards of Reporting Trials (CONSORT) statement [43].

Acknowledgements

The review was developed with support from the Cochrane Stroke Group.

Contributions of authors

Lilia Ziganshina prepared the protocol. Tatyana Abakumovs and Alexandra Kuchaeva performed literature searches of the Russian language studies. Lilia Ziganshina, Alexandra Kuchaeva and Tatyana Abakumova assessed citations, abstracts and full texts of trial reports for eligibility, and extracted data. Lilia Ziganshina drafted the text of the review.

Declarations of interest

None known.

Sources of support

Internal sources

- Kazan State Medical Academy, Russian Federation.
- Cochrane Stroke Group, UK.
- Liverpool School of Tropical Medicine, UK.

External sources

- No sources of external support supplied

299 **Appendix 1.**

300 **MEDLINE search strategy**

301 We used the following search strategy based on a combination of controlled vocabulary (/) and free
 302 text terms (.tw) for MEDLINE (Ovid), and modified it for the other databases.

303 1. cerebrovascular disorders/or basal ganglia cerebrovascular disease/or exp brain ischemia/or carotid
 304 artery diseases/or carotid artery thrombosis/or cerebrovascular accident/or exp brain infarction/or
 305 exp hypoxia-ischemia, brain/or intracranial arterial diseases/or cerebral arterial diseases/or exp
 306 “intracranial embolism and thrombosis”.

307 2. ((brain or cerebr\$ or cerebell\$ or vertebrobasil\$ or hemispher\$ or intracran\$ or intracerebral or
 308 infratentorial or supratentorial or middle cerebr\$ or mca\$ or anterior circulation) adj5 (isch?emi\$
 309 or infarct\$ or thrombo\$ or emboli\$ or occlus\$ or hypoxi\$)).tw.

310 3. (isch?emi\$ adj6 (stroke\$ or apoplex\$ or cerebral vasc\$ or cerebrovasc\$ or cva or attack\$)).tw.

311 4. 1 or 2 or 3.

312 5. (crebrolysin\$ or CERE or FPF-1070 or FPF1070 or cortexin\$ or CORT or N-PEP-12).tw

313 6. 4 and 5.

314 7. limit 6 to humans.

315 **References**

316 [1] AHA, American Heart Association, Heart and Stroke Disease Statistics, 2007, Available at <http://www.americanheart.org/presenter.jhtml?> (accessed April 2007).

317 [2] X.A. Alvarez, V.R. Lombardi, L. Corzo, P. Perez, V. Pichel, M. Laredo, et al., Oral cerebrolysin enhances brain alpha
 318 activity and improves cognitive performance in elderly control subjects, *Journal of Neural Transmission* **59**(Suppl) (2000),
 319 315–328.

320 [3] K. Asplund, Haemodilution for acute ischaemic stroke, *Cochrane Database of Systematic Reviews* (4) (2002), [Art. No.:
 321 CD000103. DOI:10.1002/14651858.CD000103].

322 [4] P.M.W. Bath, Prostacyclin and analogues for acute ischaemic stroke, *Cochrane Database of Systematic Reviews* (3) (2004),
 323 [Art. No.: CD000177.pub2. DOI:10.1002/14651858.CD000177.pub2].

324 [5] P.M.W. Bath, Theophylline, aminophylline, caffeine and analogues for acute ischaemic stroke, *Cochrane Database of
 325 Systematic Reviews* (3) (2004), [Art. No.: CD000211.pub2. DOI:10.1002/14651858.CD000211.pub2].

326 [6] P.M.W. Bath and F.J. Bath-Hextall, Pentoxifylline, propentofylline and pentifylline for acute ischaemic stroke, *Cochrane
 327 Database of Systematic Reviews* (3) (2004), [Art. No.: CD000162.pub2. DOI: 10.1002/14651858.CD000162.pub2].

328 [7] P.M.W. Bath, M. Willmot, J. Leonardi-Bee and F.J. Bath-Hextall, Nitric oxide donors (nitrates), L-arginine, or nitric oxide
 329 synthase inhibitors for acute stroke, *Cochrane Database of Systematic Reviews* (4) (2002), [Art. No.: CD000398. DOI:
 330 10.1002/14651858.CD000398].

331 [8] D. Bereczki and I. Fekete, Vinpocetine for acute ischaemic stroke, *Cochrane Database of Systematic Reviews* (4) (1997),
 332 [Art. No.: CD000480. DOI: 10.1002/14651858.CD000480].

333 [9] D. Bereczki, I. Fekete, G.F. Prado and M. Liu, Mannitol for acute stroke, *Cochrane Database of Systematic Reviews* (3)
 334 (2007), [Art. No.: CD001153. DOI: 10.1002/14651858.CD001153.pub2].

335 [10] E. Berge and P. Sandercock, Anticoagulants versus antiplatelet agents for acute ischaemic stroke, *Cochrane Database of
 336 Systematic Reviews* (4) (2002), [Art. No.: CD003242. DOI: 10.1002/14651858.CD003242].

337 [11] Blood Pressure in Acute Stroke Collaboration (BASC), Vasoactive drugs for acute stroke, *Cochrane Database of Systematic
 338 Reviews* (4) (2000), [Art. No.: CD002839. DOI: 10.1002/14651858.CD002839].

339 [12] Blood Pressure in Acute Stroke Collaboration (BASC), Interventions for deliberately altering blood pressure in acute
 340 stroke, *Cochrane Database of Systematic Reviews* (3) (2001), [Art.No.: CD000039. DOI: 10.1002/14651858.CD000039].

341 [13] R. Bonita, Epidemiology of stroke, *Lancet* **339** (1992), 342–344.

342 [14] R. Bonita, A. Stewart and R. Beaglehole, International trends in stroke mortality: 1970–1985, *Stroke* **21** (1990), 989–992.

[15] L. Candelise and A. Ciccone, Gangliosides for acute ischaemic stroke, *Cochrane Database of Systematic Reviews* (4) (2001), [Art. No.: CD000094. DOI: 10.1002/14651858.CD000094].

[16] E.L. Chukanova, The effect of cerebrolysin on the clinical symptoms and the course of ischemic encephalopathy, *Zhurnal Nevrologii i Psichiatrii Imeni S.S. Korsakova* **105**(1) (2005), 42–45.

[17] A. Ciccone and I. Santilli, Glycoprotein IIb-IIIa inhibitors for acute ischaemic stroke, *Cochrane Database of Systematic Reviews* (4) (2006), [Art. No.: CD005208. DOI: 10.1002/14651858.CD005208.pub2].

[18] B. Cuparneuc, Efficacy of cerebrolysin in patients with ischaemic stroke of the middle cerebral artery, *Pharmacology and Toxicology* **89**(Suppl 1) (2001), 136.

[19] European Ad Hoc Consensus Group, Neuroprotection as initial therapy in acute stroke, Third report of an Ad Hoc Consensus Group Meeting, *Cerebrovascular Diseases* **8** (1998), 59–72.

[20] Y. Fragoso and D.C. Dantas, Cerebrolysin for Alzheimer's disease, *Cochrane Database of Systematic Reviews* (3) (2002), [Art. No.: CD003801. DOI: 10.1002/14651858.CD003801].

[21] B. French, A. Forster, P. Langhorne, M.J. Leathley, J. McAdam, C.I.M. Price, et al., Repetitive task training for improving functional ability after stroke, *Cochrane Database of Systematic Reviews* (3) (2006), [Art. No.: CD006073. DOI: 10.1002/14651858.CD006073].

[22] B.G. Gafurov and N.A. Alikulova, Clinical and pathogenetical peculiarities and treatment policy in ischemic stroke of elderly and old age, *Zhurnal Nevrologii i Psichiatrii Imeni S.S. Korsakova* **104**(Suppl 11) (2004), 44–46.

[23] C. Gandolfo, P. Sandercock and M. Conti, Lubeluzole for acute ischaemic stroke, *Cochrane Database of Systematic Reviews* (1) (2002), [Art. No.: CD001924. DOI: 10.1002/14651858.CD001924].

[24] O.A. Gromova, V.E. Tret'jakov, S.A. Moshkovskii, E.I. Gusev, A.A. Nikonorov, L.A. Val'kova, et al., An oligopeptide membrane fraction of cerebrolysin, *Zhurnal Nevrologii i Psichiatrii Imeni S.S. Korsakova* **106**(7) (2006), 68–70.

[25] G. Gubitz, P. Sandercock and C. Counsell, Anticoagulants for acute ischaemic stroke, *Cochrane Database of Systematic Reviews* (3) (2004), [Art. No.: CD000024.pub2. DOI: 10.1002/14651858.CD000024.pub2].

[26] E.I. Gusev, V.I. Skvortsova and L.V. Stakhovskaia, Epidemiology of stroke in Russia, *Zhurnal Nevrologii i Psichiatrii Imeni S.S. Korsakova* **8** (2003), 4–9.

[27] Z. Haffner, Cerebrolysin in acute ischemic stroke, Stroke Trials Directory, Internet Stroke Center, 2001, Available at www.strokecenter.org/trials/

[28] Z. Haffner, R. Gmeinbauer and H. Moessler, A randomized, doubleblind, placebo-controlled trial with cerebrolysin in acute ischaemic stroke, *Cerebrovascular Diseases* **11**(Suppl 4) (2001), 76.

[29] Z. Hong, X.W. Li, Q.T. Chen, B.Z. Zhang and B.H. Su, Re-evaluation of cerebrolysin in treatment of early rehabilitation after ischemic stroke, *Chinese Journal of New Drugs and Clinical Remedies/Zhongguo Xinyao Yu Linchuang Zaz* **21**(3) (2002), 133–136.

[30] Z. Hong, G. Zhu and H. Chen, The clinical efficacy of cerebrolysin in the treatment of acute ischemic stroke, *Chinese Journal of Geriatric Heart Brain and Vessel Diseases* **7**(5) (2005), 331–333.

[31] J. Horn and M. Limburg, Calcium antagonists for acute ischemic stroke, *Cochrane Database of Systematic Reviews* (1) (2000), [Art. No.: CD001928. DOI: 10.1002/14651858.CD001928].

[32] J.B. Jin, Efficacy of treating cerebral apoplexy with xingnaojing compared with cerebrolysin, a report of 96 cases, *Clinical Medicine/Lin chuang yi xue* **19**(9) (1999), 53–54.

[33] A.E. Kulchikov and A.N. Makarenko, Neuroimmunocorrective activity is a future for neuroprotective agent cerebrolysin, *International Journal of Stroke* **3**(Suppl 1) (2008), 324–325.

[34] A.E. Kulchikov and A.N. Makarenko, The use of neuropeptides as neuroimmunocorrection agents in stroke induced viral complications, *International Journal of Stroke* **3**(Suppl 1) (2008), 456.

[35] G. Ladurner, R. Gmeinbauer and H. Moessler, Cerebrolysin in acute ischaemic stroke: A randomized, placebo-controlled trial with a neuroprotective agent, *Cerebrovascular Diseases* **11** (2001), 75.

[36] G. Ladurner, P. Kalvach and H. Moessler, The Cerebrolysin Study Group, Neuroprotective treatment with cerebrolysin in patients with acute stroke: A randomised controlled trial, *Journal of Neural Transmission* **112** (2005), 415–428.

[37] G. Ladurner, Neuroprotection in acute ischaemic stroke, *Stroke* **32** (2001), 323.

[38] J. Leonardi-Bee, T. Steiner and F. Bath-Hextall, Naftidrofuryl for acute stroke, *Cochrane Database of Systematic Reviews* (2) (2007), [Art.No.: CD005478. DOI: 10.1002/14651858.CD005478.pub2].

[39] M. Liu, C. Counsell, X.L. Zhao and J. Wardlaw, Fibrinogen depleting agents for acute ischaemic stroke, *Cochrane Database of Systematic Reviews* (3) (2003), [Art. No.: CD000091. DOI: 10.1002/14651858.CD000091].

397 [40] A.N. Makarenko, N.S. Kositsin, I.V. Nazimov, M.M. Svinov, E.V. Goloborod'ko and N.V. Pasikova, A comparative study
398 of antistroke activity of the new drug "cerebral" and its fractions in rats, *Eksperimental'naia i Klinicheskaiia Farmakologiia*
399 **68**(2) (2005), 15–20.

400 [41] A.N. Makarenko and A.E. Kulchikov, Treatment of infection complications of the acute stroke by cerebrolysin, *International*
401 *Journal of Stroke* **1**(Suppl 1) (2006), 81.

402 [42] M. Mielke, J. Wardlaw and M. Liu, Thrombolysis (different doses, routes of administration and agents) for
403 acute ischaemic stroke, *Cochrane Database of Systematic Reviews* (4) (2004), [Art. No.: CD000514.pub2. DOI:
404 10.1002/14651858.CD000514.pub2].

405 [43] D. Moher, K.F. Schulz and D.G. Altman, The CONSORT statement: Revised recommendations for improving the quality
406 of reports of parallel-group randomised trials, *Lancet* **357** (2001), 1191–1194.

407 [44] K.W. Muir and K.R. Lees, Excitatory amino acid antagonists for acute stroke, *Cochrane Database of Systematic Reviews*
408 (3) (2003), [Art.No.: CD001244. DOI: 10.1002/14651858.CD001244].

409 [45] Nordic Cochrane Centre, The Cochrane Collaboration, Review Manager (RevMan). 5.0, The Nordic Cochrane Centre,
410 The Cochrane Collaboration, Copenhagen, 2008.

411 [46] L.S. Onishchenko, O.N. Gaikova and S.N. Ianishevskii, Changes in the focus of experimental ischemic stroke under the
412 influence of neuroprotective drugs, *Morfologiiia* **130**(6) (2006), 40–46.

413 [47] N. Qizilbash, S.L. Lewington and J.M. Lopez-Arrieta, Corticosteroids for acute ischaemic stroke, *Cochrane Database of*
414 *Systematic Reviews* (3) (2002), [Art. No.: CD000064. DOI: 10.1002/14651858.CD000064].

415 [48] J. Ren, Z. Qiu, Z. Du and L. Fan, Effect comparison of injection disodium cytidine triphosphate and cerebrolysin in
416 treatment of acute cerebral vascular disease, *China Pharmacist* **5**(1) (2002), 45–46.

417 [49] S. Ricci, M.G. Celani, A.T. Cantisani and E. Righetti, Piracetam for acute ischaemic stroke, *Cochrane Database of*
418 *Systematic Reviews* (2) (2006), [Art. No.: CD000419.pub2. DOI: 10.1002/14651858.CD000419.pub2].

419 [50] E. Righetti, M.G. Celani, T. Cantisani, R. Sterzi, G. Boysen and S. Ricci, Glycerol for acute stroke, *Cochrane Database*
420 *of Systematic Reviews* (2) (2004), [Art. No.: CD000096.pub2. DOI: 10.1002/14651858.CD000096.pub2].

421 [51] C. Riley, B. Hutter-Paier, M. Windisch, E. Doppler, H. Moessler and R. Wronska, A peptide preparation protects cells in
422 organotypic brain slices against cell death after glutamate intoxication, *Journal of Neural Transmission* **113**(1) (2006),
423 103–110.

424 [52] D.R. Sagatov, Use of emoxepin in the treatment of ischemic stroke in young adult patients, *International Journal of Stroke*
425 **3**(Suppl 1) (2008), 123.

426 [53] P.A.G. Sandercock, C. Counsell, G.J. Gubitz and M.C. Tseng, Antiplatelet therapy for acute ischaemic stroke, *Cochrane*
427 *Database of Systematic Reviews* (3) (2008), [Art. No.: CD000029. DOI: 10.1002/14651858.CD000029.pub2].

428 [54] P. Sandercock, C. Counsell and M.C. Tseng, Low-molecular-weight heparins or heparinoids versus standard unfractionated
429 heparin for acute ischaemic stroke, *Cochrane Database of Systematic Reviews* (3) (2008), [Art. No.: CD000119. DOI:
430 10.1002/14651858.CD000119.pub3].

431 [55] N.S. Sapronov, V.V. Bul' on, N.N. Kuznetsova and E.N. Selina, The neuroprotector effect of a new taurine derivative on a
432 model of compression spinal cord trauma in rats, *Eksperimental'naia i Klinicheskaiia Farmakologiia* **68**(6) (2005), 45–48.

433 [56] E. Schauer, R. Wronska, J. Patockova, H. Moessler, E. Doppler, B. Hutter-Paier, et al., Neuroprotection of cerebrolysin in
434 tissue culture models of brain ischemia: Post lesion application indicates a wide therapeutic window, *Journal of Neural*
435 *Transmission* **113**(7) (2006), 855–868.

436 [57] N.A. Shamalov, L.V. Stakhovskaya, L.V. Gubsky, I.V. Tikhonova, A.S. Smichkov, V.I. Skvortsova, et al., Effects of the
437 neuroprotective drug cerebrolysin on the infarct volume after acute ischemic stroke, *Cerebrovascular Diseases* **19**(Suppl 2)
438 (2005), 107.

439 [58] Y.-M. Shi, Cerebrolysin in acute cerebral hemorrhage, *Chinese Journal of Nervous and Mental Diseases* **16**(4) (1990),
440 228–230.

441 [59] A. Shuaib, K.R. Lees, P. Lyden, J. Grotta, A. Davalos, S.M. Davis, et al., NXY-059 for the treatment of acute ischemic
442 stroke, *New England Journal of Medicine* **357**(6) (2007), 562–571.

443 [60] V.I. Skvortsova, N.A. Shamalov, H. Moessler and P.H. Novak, Beneficial effects of the neurotrophic drug cerebrolysin on
444 the infarct volume after acute stroke, *Cerebrovascular Diseases* **25**(Suppl 2) (2008), 145.

445 [61] V.I. Skvortsova, N.A. Shamalov, H. Moessler and P.H. Novak, Positive impacts of the neurotrophic drug cerebrolysin on
446 the infarct volume after acute stroke, *International Journal of Stroke* **3**(Suppl 1) (2008), 137.

447 [62] V.I. Skvortsova, N.A. Shamalov, L.V. Stakhovskaya, L.V. Gubsky, I.V. Tikhonova and A.S. Smichkov, Cerebrolysin in
448 acute ischaemic stroke: Results of randomised, double blind, placebo-controlled study, *Cerebrovascular Diseases* **19**(Suppl
449 2) (2005), 76.

450 [63] V.I. Skvortsova, L.V. Stakhovskaya, L.V. Gubsky, N.A. Shamalov, I.V. Tikhonova and A.S. Smychkov, A randomised,
451 double-blind, placebo-controlled study of cerebrolysin safety and efficacy in the treatment of acute ischaemic stroke,
452 *Zhurnal Nevrologii I Psichiatrii Imeni S.S. Korsakova* **0**(11) (2004), 51–55.

453 [64] Tirlazad International Steering Committee, Tirlazad for acute ischaemic stroke, *Cochrane Database of Systematic Reviews*
454 (4) (2001), [Art. No.: CD002087. DOI: 10.1002/14651858.CD002087].

455 [65] B.S. Vilenskii and N.N. Iakhno, The problem of cerebral stroke: Its contemporary state, *Vestnik Rossiiskoi Akademii*
456 *Meditsinskikh Nauk* **9–10** (2006), 18–24.

457 [66] B.S. Vilensky, M.M. Odinak, E.A. Shirokov, I.A. Voznuk, G.M. Semenova and T.B. Grinevich, Experience with endolumbar
458 application of cerebrolysin in hemispheric ischemic stroke, *Zhurnal Nevrologii I Psichiatrii Imeni S.S. Korsakova* **100**(11)
459 (2000), 31–34.

460 [67] B. Vilensky, O. Vinogradov, A. Kuznetsov, S. Zimmermann-Meinzinger and O. Soloviev, Favorable influence of repeat
461 cerebrolysin application in stroke patient rehabilitation, *International Journal of Stroke* **1**(Suppl 1) (2006), 170.

462 [68] N.G. Wahlgren and N. Ahmed, Neuroprotection in cerebral ischaemia: Facts and fancies – the need for new approaches,
463 *Cerebrovascular Diseases* **17**(Suppl 1) (2004), 153–166.

464 [69] H.T. Wang, The analysis of the efficacy of insulin, cerebrolysin, nitrendipine in the treatment of cerebral infarction. *Practical*
465 *Geriatrics* **11** (1997), 135–136.

466 [70] J.M. Wardlaw, V. Murray, E. Berge and G.J. del Zoppo, Thrombolysis for acute ischaemic stroke, *Cochrane Database of*
467 *Systematic Reviews* (4) (2009), [Art. No.: CD000213. DOI: 10.1002/14651858.CD000213.pub2].

468 [71] World Health Organization, The Atlas of Heart Disease and Stroke, Available at <http://www.who.int/cardiovascular-diseases/resources/atlas/en/> (accessed April 2007).

470 [72] G.K. Wong, X.L. Zhu and W.S. Poon, Beneficial effect of cerebrolysin on moderate and severe head injury patients: Result
471 of a cohort study, *Acta Neurochirurgica Supplement* **95** (2005), 59–60.

472 [73] X. Wu, Urokinase therapy in acute ischemic stroke, Proceedings of the 4th Chinese Stroke Conference, China, Chengdu,
473 1995, pp. 149–150.

474 [74] V.A. Yavorskaya and O.B. Bondar, Clinical features of cerebrolysinum application in patients in acute period of ischemic
475 stroke, *International Journal of Stroke* **3**(Suppl 1) (2008), 141.

476 [75] S.H. Zhang and X.M. Lu, Nursing care of the patient with cerebral infarction and aphasia receiving carotid internal drug
477 injection and early speech training, *Journal of Nursing Science* **12**(1) (1997), 34–35.

478 [76] Q.Y. Zhang, J. Xiong and R. Wang, Study on the effectiveness of cerebrolysin in 27 patients with cerebral infarction,
479 *Chinese Journal of Pharmacoepidemiology* **3**(4) (1994), 181–182.

480 [77] X. Zeng, M. Liu, Y. Yang, Y. Li and K. Asplund, Ginkgo biloba for acute ischaemic stroke, *Cochrane Database of*
481 *Systematic Reviews* (4) (2005), [Art. No.: CD003691.pub2. DOI: 10.1002/14651858.CD003691.pub2].

482 [78] G.-X. Zhu, Z. Hong, J.-L. Yao and L.-Y. Yu, Double-blind and randomised placebo-controlled trial of cerebrolysin in
483 improvement of nerve function and living ability in patients with ischemic stroke, *Chinese Journal of Clinical Rehabilitation*
484 **7**(22) (2003), 3084–3085.