
Automatic Generation of Random Step
Environment Models for Gazebo

Simulator

Ruslan Gabdrahmanov1, Tatyana Tsoy1, Yang Bai2, Mikhail Svinin2,
and Evgeni Magid1(B)

1 Laboratory of Intelligent Robotic Systems, Intelligent Robotics Department,
Kazan Federal University, 35 Kremlevskya Street, Kazan, Tatarstan Republic,

Russian Federation
ruslan3452364@yandex.ru, tt@it.kfu.ru dr.e.magid@ieee.org

2 Information Science and Engineering Department, College of Information Science
and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu,

Shiga 525-8577, Japan
{yangbai,svinin}@fc.ritsumei.ac.jp

http://robot.kpfu.ru/eng

Abstract. Negotiating rough terrain obstacles is a key task of a mobile
terrestrial robot. One of the most popular standards in rough terrain
modeling is the NIST Random Step Environment (RSE) or Random
Stepfield, which allows constructing a broad variety of debris-like envi-
ronments. This paper proposes a virtual RSE models’ automatic gener-
ator LIRS-RSEGen for the Gazebo simulator. We analyzed typical for
RSEs obstacles and structures, determined parameters that are required
in order to generate a RSE and implemented a generator, which con-
structs RSE Gazebo worlds that could be further edited or directly used
within the Gazebo. Constructed by our generator worlds were validated
in the Gazebo using virtual models of TurtleBot3 wheeled robot and
Servosila Engineer crawler robot.

Keywords: USAR · UGV · Modelling · Gazebo · Random step
environment

1 Introduction

An unmanned ground vehicle (UGV) is a mobile robot that locomotes on a
supporting surface of various types, including rough terrain. A UGV is the most
broadly used type of robots within a large variety of tasks, including Urban
Search and Rescue (USAR) robotics. A typical operational environment of USAR
contains heaps of trash and debris, formed by construction materials, pieces of
furniture, various equipment, home and office objects that complicate vision,
locomotion and SLAM applications [10,16].

Simulations are used in many areas of robotics, including design and con-
struction of a robot, development of control algorithms, offline programming,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Chugo et al. (Eds.): CLAWAR 2021, LNNS 324, pp. 408–420, 2022.
https://doi.org/10.1007/978-3-030-86294-7_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86294-7_36&domain=pdf
https://doi.org/10.1007/978-3-030-86294-7_36


Automatic Generation of RSE Models for Gazebo 409

demonstrations, etc. [24]. They allow creating a virtual model of a robot and an
environment [20,21], and a behavior of a virtual model attempts to approximate
a real robot and a real world environment as precise as possible [3]. Simulations
in robotics are widely used for multiple reasons, including cost of virtual errors
vs real world ones [17] and ease of test cases reproducing [22].

For our research we selected the Gazebo simulator [4] because of its compat-
ibility with robot operating system (ROS [15]) and high-quality physics. There
exist several tools for generating worlds in Gazebo, e.g., an automatic tool for
Gazebo world construction LIRS-WCT [1] that creates a 3D world from a 2D
gray-scale image. LIRS-WCT tool is easy to use and saves significant time for
constructing various mazes and rugged terrains. A similar tool was presented
in [8], but it had issues with a low real time factor (RTF) of the Gazebo simula-
tion due to the nature of objects’ models, which required the physics engine to
perform a large number of self-collision checks.

While both tools [1,8] could be successfully employed to create a 3D RSE,
which is described in details in Sect. 2, they would ignore a simplicity of a RSE
model and require a 2D image (for both tools) and a texture (for LIRS-WCT
tool) as an input. The new tool focuses on constructing 3D RSE worlds with
a minimal negative impact on the Gazebo RTF, CPU load and memory usage,
and does not require a prearranged 2D image input. The tool was with the
TurtleBot3 [2] and Servosila Engineer [12] UGVs, and created by the tool RSE
environments demonstrated good performance.

2 Random Step Environment or Random Stepfield

The Random Step Environment (RSE) or Random Stepfield is a simulation
of a cluttered debris environment proposed by the National Institute of Stan-
dards and Technology to evaluate the performance of USAR robots [5]. RSEs
are actively used for testing of algorithms related to overcoming rugged terrain.
In [9] the authors presented a classification of measuring a static balance of a
two-crawler robot and employed a RSE to simulate a rough terrain with the defi-
nitions of pose types that strongly corresponded to the robot posture on the RSE.
In [14] the authors performed robot simulation physics validation while having
RSE as one of the main elements of their test sites. In [18] the authors proposed
an algorithm for extraction of terrain features from range images. A RSE with
relatively small elevation differences was used for development and testing of a
machine learning based algorithm that substituted conventional controllers in
obstacles’ overcoming task [19]. Naturally, RSEs serve as mobility and auton-
omy test fields in RoboCup Rescue Robot League competitions [6], where at
least several arenas of different complexity are constructed in a form of a RSE.

A single RSE patch is a wooden frame with an external boundary that
contains a 10 × 10 size matrix. Each cell hosts a wooden block that forms
a single RSE “step”. While block sizes might slightly vary, one of the typical
conventions (used by our research groups of Kazan Federal University and Rit-
sumeikan University) employs 10 cm width and 10 cm depth blocks of a height H



410 R. Gabdrahmanov et al.

∈ {0, 10, 20, 30, 40} cm. The external boundary is 10 cm height, 10 cm depth and
120 cm width; since each of two adjacent blocks has a boundary, together they
always form a double-boundary in-between standard patches. Mixing these steps
in different combinations allows creating a broad variety of rough terrain testing
grounds, which can form typical for real world stable debris structures [14] that
may contain horizontal barriers (Fig. 1), diagonal barriers (Fig. 2), traversable or
non-traversable peaks (Fig. 3), or completely random profiles of a terrain (Fig. 4).
In RoboCup Rescue competitions RSEs might deviate from keeping the standard
{0, 10, 20, 30, 40} cm heights as well as from having a 10 × 10 blocks patches [6].

Fig. 1. A single horizontal barrier. Fig. 2. A single diagonal barrier.

Fig. 3. A single non-traversable peak. Fig. 4. A large-size random profile
RSE.

As a simulation of debris, RSE has a number of advantages, which include
ease of construction, availability and affordable costs of construction materials,
a high mobility and ease of storage of a testing field, a broad variety of possible
forms of an environment, and a possibility to rapidly rearrange the environment
in a real time in a course of an experiment. Moreover, since the construction is
modular, any damaged or destroyed block (“step”) could be easily replaced. From
a virtual simulation point of view, since RSE has a small number of polygons that
form at most 5 visible facets for each block, high performance and low memory
requirements could be achieved (if implemented correctly). Disadvantages of the



Automatic Generation of RSE Models for Gazebo 411

RSE approach include inability to construct some rather typical for real world
structures and obstacles (e.g., an inclined plane) and a simplicity of the model
compared to the real USAR environment [7]. These issues decrease the efficiency
of RSE-based testing of new approaches as a further transition to a real world
application might demonstrate an unexpectedly significant under-performance.

3 RSE Generation Tool

We studied various existing approaches of a RSE construction in terms of RSE
structure, identified typical obstacles, their formation on a RSE pallet and
parameters that affect a shape, a height and other characteristics of these obsta-
cles and RSE as an integral structure. We developed an algorithm that receives a
user-defined desired distribution of RSE blocks and settings to form a 2D matrix,
which represents heights of blocks in each entry of the matrix. Next, a versatile
module constructs a 3D RSE model from the matrix. Two basic 3D model for-
mation modules were created. The first module forms a single optimized model
of the .obj format from the matrix, which could be further imported as a stan-
dard Gazebo model. The second module generates a Gazebo world in which each
RSE block acts as a separate independent model. The later approach produces a
world, which is significantly less productive, but it allows further manual editing
of the world directly in the Gazebo.

The created modules were encapsulated in a single generator, named LIRS-
RSEGen, with a simple graphical user interface GUI (Fig. 5). The generator was
tested in various modes and settings, while evaluating suitability of constructed
models for testing rough terrain navigation and obstacle negotiation algorithms
for UGVs within typical USAR scenes. An impact of the created models perfor-
mance of the simulation was evaluated using RTF, FPS, system CPU and GPU
load and other qualitative parameters.

The generator GUI has a large number of settings (Fig. 5) to determine two
types of parameters. The first six listed below parameters have a global nature
and are set for the entire RSE world (for all obstacles). The rest of the parameters
have a local nature and are set for each obstacle independently. In the following
list the parameters are arranged in order of their appearance, from the top
toward the bottom of the GUI, from left to right:

1. Number of maps to generate: a number of generated RSE Gazebo worlds.
2. Single chunk size: a length of a single chunk edge LC in RSE blocks. Each

chunk is a LC × LC square.
3. Map size in chunks: a length of a map edge MC in chunks, i.e., currently only

square maps could be generated. For example, a selection of MC = 2 and
LC = 10 generates a map of 20 × 20 RSE cells size (or 24 × 24 including
boundaries if Chunk boundary parameter is set to “yes”; in this case two
rows and columns correspond to outer boundaries of the entire RSE and two
others - to the inner double-boundary between two adjacent chunks).

4. Height discretization step: a height of a single height step HDS in cm. For
example, a selection of Max obstacle height as 5 units and HDS = 10 cm
give possible heights of the RSE blocks within {0, 10, 20, 30, 40} cm set.



412 R. Gabdrahmanov et al.

Fig. 5. GUI of LIRS-RSEGen tool with a peak positioning input settings, which cor-
respond to ID 5 obstacle in the table (in the right bottom corner of the GUI).

5. Chunk boundary: defines whether to create a single external boundary and
double internal boundaries between chunks (value “yes(divided)”) or not
(value “no”). Figures 1–3 demonstrate examples of 10 × 10 RSE cells’ chunks;
while for Fig. 1 and Fig. 2 boundaries are selected and this automatically
increases the chunk total size to 12 × 12 RSE cells (the one-cell boundary is
highlighted in red color in Fig. 2), Fig. 3 shows a peak without boundaries of
a chunk keeping the original 10 × 10 RSE cells’ size of the chunk.

6. Model mesh type: a “single model” creates a single large model within the
Gazebo world that contains all blocks of the RSE; a multi model creates a one
independent model per each RSE block. The later has a lower performance,
but allows easy editing of the world.

7. Obstacle type: a type of a new obstacle pattern, which is a selection from a
list {diagonal barrier, horizontal barrier, peak, random, normal random}.

8. Max obstacle height: a maximal height of a generated obstacle in units (where
each unit has a height of HDS cm).

9. Obstacle softness: a value s that could be selected in [0..100]; large values
create blocks that are closer to a flat environment appearance, while s=0
generates a vertical obstacle. The calculations are performed relatively to the
current chunk.

10. X first, Y first, X last and Y last coordinate sliders (the right top side of the
GUI) allow setting a position of a new obstacle. For example, for a diagonal
barrier obstacle they define vertices that serve as endpoints of the diagonal



Automatic Generation of RSE Models for Gazebo 413

barrier, which is embedded in a square with this diagonal. For a peak, they
similarly define a square that circumscribes the new peak location. In in order
to allow the user verifying the selected values, the selected number appears
under a central part of each slider.

After the parameters’ settings are completed, the information about the cur-
rent obstacle is stored within the generator. Next, a new obstacle could be added
with “+” button (Fig. 5, central bottom part), and the three local parameters
and the four coordinate sliders should be set. The information about all currently
scheduled obstacles within the RSE is available in the table, in the bottom right
part of the GUI. The table provides obstacle unique ID number, type, height,
softness and (X, Y) coordinates. The user can remove a last planned obstacle
by pushing − button or remove all obstacles with C (“Clear all”) button.

Button Start in the left bottom corner launches the generator with the
planned obstacles, which are generated iteratively in the order of their appear-
ance in the list, and a progress bar to the right of the button shows the progress
of the generation process. Finally, button Help in the left top corner provides a
user with a brief manual for the tool.

The LIRS-RSEGen creates RSE models and worlds suitable for importing
into or directly running in the Gazebo simulator. The Gazebo 3D engine for
simulating robots and their environment enables working with the simulation
world at a run time and allows to recreate and import RSE models on the fly.
The generator operates in two stages: the first (a 2D matrix construction) is
performed by a block height matrix generator and the second (a Gazebo 3D
world construction) is performed by a tool for forming 3D blocks from the given
matrix entries. Currently, the matrix generator of LIRS-RSEGen supports five
generation modes, each using a different algorithm of a matrix construction:

1. Random - a random distribution of blocks is generated throughout an entire
RSE (Fig. 4).

2. Random Gaussian - generates a random Gaussian distribution of blocks
throughout the RSE, which is slightly smoother than the Random.

3. Horizontal - a horizontal barrier type obstacle (Fig. 1) that appears between
two opposite boundaries (or between two RSE cells that have the same X or
the same Y coordinate; these two cells define a central axis of the barrier) of
the RSE and follows particular user-provided settings, which define its length,
height and shape.

4. Diagonal - a diagonal barrier type obstacle (Fig. 2) that appears between two
opposite boundaries of the RSE and follows particular user-provided settings,
which define its length, height and shape.

5. Peak - a peak type obstacle (Fig. 3), whose length, height and shape are also
defined by a user’s particular settings.

At first, the program creates an initial square zero matrix M of K × K size,
where K is calculated using a number of user-defined parameters: a selected
size of a map edge in chunks, a chunk size and a chunk’s division selection (of
boundary). A chunk is defined as a single square RSE patch of N × N size,



414 R. Gabdrahmanov et al.

where N is a single chunk size. Each chunk is separated from other chunks by
a 10 cm height double-boundary if the chunk boundary parameter is set as “yes
(divided)” or it has no boundary if the chunk boundary parameter is set to
“no”. For example, if a user selects a map without boundaries, Map A with
size in chunks = 2 and chunk size = 10 will form exactly the same initial zero
matrix M20×20 as Map B with size in chunks = 1 and chunk size = 20.

A user specifies obstacles one by one to form a list of obstacles for the Gazebo
world; the list appears as a table in the right bottom part of the GUI (Fig. 5).
The obstacles are imposed on the initial matrix iteratively in the order they were
added to the list. This procedure could cause a situation where an obstacle that
is added at time t + 1 could rearrange an obstacle that has been added in time
t if they are co-located. This is a purposeful feature of the LIRS-RSEGen.

Fig. 6. Diagonal barrier (left) and peak (right) obstacle matrix generation algorithms.

Figure 6 presents algorithms of a diagonal (left) and a peak obstacle construc-
tion (right). Value K defines a size of matrix MK×K (an entire RSE) with entries
mij , where i, j ∈ [0,K − 1]. The array diag contains two endpoints xmn and ykf
(where m, k denote columns, and n, f denote rows of matrix M) that define a
random diagonal line between two opposite boundaries of the entire RSE. Func-
tion dist pd calculates a shortest distance between mij and the defined diag



Automatic Generation of RSE Models for Gazebo 415

line. Function dist calculates a distance between mij coordinate and a peak ori-
gin xmn. The parameter h1 denotes a selected in GUI height discretization step
in cm, which is global for the entire RSE; hmax denotes a maximum possible
height of the obstacle in cm (a multiplication of height discretization step in cm
and “Max obstacle height”, which a user defines in units independently for each
obstacle); s denotes “Obstacle softness”, which is a rate of change of a height
function for each matrix entry that reflects changes in height with distance from
the diagonal (or the peak origin respectfully). Function max(a, b) returns a
maximum value of the two input values a and b.

The second stage of the generation forms the Gazebo world of 3D blocks from
the constructed 2D matrix. The tool works differently depending on the setting
of the Model mesh type. The single model selection transforms the matrix, which
was created on the first stage, into a 3D RSE model and creates an empty world
with this single model. The multi model selection creates a world where each
block is a separate model. The multi model converter works quite simply: after
receiving height and position values, it creates new box models of the specified
height in the specified locations and stores it in the Gazebo world.

The single model mode is more complicated and works directly with .obj
models. This converter creates a set of 8 vertices and 6 polygons for each block,
constructing a block of a desired height at a given position and applies a single
set of vertex normals to all blocks. After the .obj file is generated, all additional
files and structures are generated, such as the .mtl file and others. This way,
the resulting model can be seamlessly imported directly into any Gazebo world
or into a running simulation on a fly and additionally an empty world with the
generated model will be created.

The generator was implemented in python 3.6 language, using numpy [13]
and PyQt5 [23] libraries. The LIRS-RSEGen follows the SDF model standard
for a world generation and the OBJ geometry file format for 3D models.

4 Validation of Virtual RSE Models

Two robot models were used for validating of virtual RSE models: Servosila
Engineer and Turtlebot3 Burger. The Servosila Engineer robot is a crawler UGV
designed by Russian company Servosila for operating in rough terrain environ-
ments (Fig. 7, left). The robot has a five DoF arm with a gripper, two main
tracks and two additional flippers with an adjustable angle, which are operated
by a single motor. On-board sensors include a laser range finder, three front RGB
cameras and a rear RGB camera. While visually the model is almost an exact
replica of the real robot and its main physical characteristics well correspond
to the real ones [11], the model causes a quite high load on a PC [12] (Table 1
presents the PC specifications); the RTF in an empty Gazebo world with a static
robot model was 0.28–0.3 on average.

The Turtlebot3 Burger is a simple differential drive UGV of a modular con-
struction, popular in education and research (Fig. 8). It consist of a base, two
powered wheels, a Raspberry PI microcomputer, an IMU and a lidar. Due to its
low cost and ease of operation, the robot is well suited for preliminary tests.



416 R. Gabdrahmanov et al.

Table 1. Testing computer specifications

Module Model Characteristics

CPU AMD Ryzen 7 2700 X 8 × 3.70 GHz

GPU Nvidia GeForce1660 6 GB 1830 MHz

RAM - 16 GB

To evaluate the generator’s performance, a single obstacle Gazebo world was
constructed, where an obstacle was a small (single chunk with LC = 10) RSE
of each type of obstacles (Fig. 1–3). Next, a number of more complicated and
large-size obstacles were constructed, including 20 × 20, 40 × 40, 60 × 60 and
80 × 80 size RSEs with HDS = 10 cm and each obstacle height of up to 5 or
10 units. The Servosila Engineer robot was placed into the constructed worlds
and the system load was studied using such parameters as RTF, CPU load and
memory load. We are interested in minimizing CPU load and memory load while
maximizing RTF: the closer this parameter to one, the faster is the simulation
speed within the Gazebo. The recommended minimally acceptable RTF level for
comfortable use of the Gazebo simulator should be at least 0.3 [1]. Since the
obtained with the Servosila Engineer robot RTFs were between 0.24 and 0.3,
in order to eliminate the possible negative influence of a non-optimal modelling
(having 0.27–0.3 RTF in the empty world clearly hinted on this issue) it was
decided to validate the generated worlds with other robots as well.

Fig. 7. The Servosila Engineer traverses RSE diagonal barrier in a real world at LIRS
(left) and in the Gazebo (right). LC = 10, boundaries are enabled, HDS = 10 cm.

Three TurtleBot3 Burger robots were spawned in the same type of RSE
worlds with HDS = 1 cm, which enabled the small wheels of the robots to
negotiate the RSE blocks (Fig. 8). The obtained RTF stayed within 0.92–1 being
accompanied with low CPU and memory load. Table 2 summarizes results of
all virtual experiments: CPU and memory load values were averaged for three
experiments for random paths; RTF value stored a minimal and a maximal
registered level that were obtained while monitoring the UGVs locomotion along
its path. Column “RSE max height” contains measurements of maximal obstacle



Automatic Generation of RSE Models for Gazebo 417

Fig. 8. The three Turtlebot3 robots on a RSE with height HDS = 1 cm in the Gazebo.

Table 2. Performance evaluation with various size and height settings

Robot Model ×
number

RSE Size
LC × LC

RSE max
height Units

RTF Min-Max CPU load % Memory
load Gb

Engineer Empty
world

N/A 0.27–0.30 26% 7.6

Engineer 10 × 10 5 0.26–0.29 26% 7.6

Engineer 20 × 20 5 0.25–0.28 26% 7.6

Engineer 40 × 40 10 0.25–0.28 26% 7.7

Engineer 60 × 60 10 0.25–0.28 26% 7.7

Engineer 80 × 80 10 0.24–0.28 26% 7.7

Turtlebot 3 × 3 Empty
world

N/A 0.98–1 8% 0.8

Turtlebot 3 × 3 10 × 10 5 0.97–1 8% 0.8

Turtlebot 3 × 3 20 × 20 5 0.97–1 8% 0.8

Turtlebot 3 × 3 40 × 40 5 0.96–1 8% 0.8

Turtlebot 3 × 3 60 × 60 5 0.95–1 8% 0.8

Turtlebot 3 × 3 80 × 80 5 0.92–1 8% 0.8

height in units while the unit height is different for the different robots: HDS = 10
cm for the Servosila Engineer and HDS = 1 cm for the TurtleBot3 Burgers. The
virtual experiments demonstrated a rather low impact of the RSE size on the
performance. The impact was clearly detected only for the RTF parameter for
both types of robots and in the memory load for the Servosila Engineer robot.

We run several experiments in teleoperation mode to repeat virtual Ser-
vosila Engineer robot’s locomotion within a constructed by the generator RSE.
Figure 7 demonstrates that it was possible to construct exactly the same real



418 R. Gabdrahmanov et al.

world RSE at the Laboratory of Intelligent Robotic Systems (LIRS)1 using its
virtual Gazebo model as a source and to employ it for the robot locomotion
tests.

5 Conclusions

This paper presented an automatic generator of a virtual Random Step Environ-
ment (RSE) models for the Gazebo simulator that allows constructing typical
for RSEs obstacles as well as non-standard user-defined models. A convenient
GUI enables selecting various parameters of RSE model, including map size,
maximal height of obstacles, heights’ sampling, softness and model mesh type,
which permits to construct the entire RSE as a single model within the Gazebo
world (improves a performance) or to generate separate models for each block
of the RSE (allows a further model adjustment at a run time).

Constructed by LIRS-RSEGen worlds were validated in the Gazebo simulator
using a virtual model of the Servosila Engineer crawler robot and three simul-
taneously running wheeled TurtleBot3 UGVs. Tests demonstrated effectiveness
of constructed RSE worlds in terms of the Gazebo real time factor (RTF), CPU
and memory load, which had acceptable values even for a relatively large RSEs
of 80 × 80 block size. The tool is available for free academic use at Gitlab account
of our Laboratory of Intelligent Robotic Systems (LIRS)2.

Acknowledgment. This work was supported by the Russian Foundation for Basic
Research (RFBR), project ID 19–58-70002. The third and forth authors acknowledge
the support of the Japan Science and Technology Agency, the JST Strategic Interna-
tional Collaborative Research Program, Project No. 18065977.

References

1. Abbyasov, B., Lavrenov, R., Zakiev, A., Yakovlev, K., Svinin, M., Magid, E.:
Automatic tool for gazebo world construction: from a grayscale image to a 3D
solid model. In: 2020 IEEE International Conference on Robotics and Automation
(ICRA), pp. 7226–7232. IEEE (2020)

2. Amsters, R., Slaets, P.: Turtlebot 3 as a robotics education platform. In: Interna-
tional Conference on Robotics in Education (RiE), pp. 170–181. Springer (2019).
https://doi.org/10.1007/978-3-030-26945-6 16

3. Borisov, A., Kuznetsov, S., Mamaev, I., Tenenev, V.: Describing the motion of a
body with an elliptical cross section in a viscous uncompressible fluid by model
equations reconstructed from data processing. Tech. Phys. Lett. 42(9), 886–890
(2016)

4. OSR Foundation: Gazebo official site (2021). http://gazebosim.org/
5. Jacoff, A., Downs, A., Virts, A., Messina, E.: Stepfield pallets: repeatable terrain

for evaluating robot mobility. In: Proceedings of the 8th Workshop on Performance
Metrics for Intelligent Systems, pp. 29–34 (2008)

1 https://kpfu.ru/eng/itis/research/laboratory-of-intelligent-robotic-systems.
2 LIRS-RSEGen, GitLab, https://gitlab.com/LIRS Projects/LIRS-RSEGen.

https://doi.org/10.1007/978-3-030-26945-6_16
http://gazebosim.org/
https://kpfu.ru/eng/itis/research/laboratory-of-intelligent-robotic-systems
https://gitlab.com/LIRS_Projects/LIRS-RSEGen


Automatic Generation of RSE Models for Gazebo 419

6. Jacoff, A., et al.: Using competitions to advance the development of standard test
methods for response robots. In: Proceedings of the Workshop on Performance
Metrics for Intelligent Systems, pp. 182–189 (2012)

7. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation
in evolutionary robotics. In: European Conference on Artificial Life, pp. 704–720.
Springer (1995). https://doi.org/10.1007/3-540-59496-5 337

8. Lavrenov, R., Zakiev, A.: Tool for 3D gazebo map construction from arbitrary
images and laser scans. In: 2017 10th International Conference on Developments
in eSystems Engineering (DeSE), pp. 256–261. IEEE (2017)

9. Magid, E., Tsubouchi, T.: Static balance for rescue robot navigation: discretizing
rotational motion within random step environment. In: International Conference
on Simulation, Modeling, and Programming for Autonomous Robots, pp. 423–435.
Springer (2010). https://doi.org/10.1007/978-3-642-17319-6 39

10. Malov, D., Edemskii, A., Saveliev, A.: Proactive localization system as a part of a
cyberphysical smart environment. In: 2019 International Conference on Industrial
Engineering, Applications and Manufacturing (ICIEAM), pp. 1–5. IEEE (2019)

11. Moskvin, I., Lavrenov, R.: Modeling tracks and controller for servosila engineer
robot. In: Proceedings of 14th International Conference on Electromechanics and
Robotics “Zavalishin’s Readings”, pp. 411–422. Springer (2020). https://doi.org/
10.1007/978-981-13-9267-2 33

12. Moskvin, I., Lavrenov, R., Magid, E., Svinin, M.: Modelling a crawler robot using
wheels as pseudo-tracks: model complexity vs performance. In: 2020 IEEE 7th
International Conference on Industrial Engineering and Applications (ICIEA),
pp. 1–5. IEEE (2020)

13. Oliphant, T.E.: A guide to NumPy, vol. 1. Trelgol Publishing USA (2006)
14. Pepper, C., Balakirsky, S., Scrapper, C.: Robot simulation physics validation. In:

Proceedings of the 2007 Workshop on Performance Metrics for Intelligent Systems,
pp. 97–104 (2007)

15. Quigley, M., et al.: Ros: an open-source robot operating system. In: ICRA Work-
shop on Open Source Software, vol. 3, p. 5. Kobe, Japan (2009)

16. Safin, R., Lavrenov, R., Mart́ınez-Garćıa, E.A.: Evaluation of visual slam methods
in usar applications using ros/gazebo simulation. In: Proceedings of 15th Interna-
tional Conference on Electromechanics and Robotics “Zavalishin’s Readings”, pp.
371–382. Springer (2021). https://doi.org/10.1007/978-981-15-5580-0 30

17. Shabalina, K., Sagitov, A., Su, K.L., Hsia, K.H., Magid, E.: Avrora unior car-like
robot in gazebo environment. In: International Conference on Artificial Life and
Robotics, pp. 116–119 (2019)

18. Sheh, R., Kadous, M., Sammut, C., Hengst, B.: Extracting terrain features from
range images for autonomous random stepfield traversal. In: IEEE International
Workshop on Safety, Security and Rescue Robotics, Rome (2007)

19. Sheh, R., Hengst, B., Sammut, C.: Behavioural cloning for driving robots over
rough terrain. In: 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 732–737. IEEE (2011)

20. Sheh, R., et al.: Advancing the state of urban search and rescue robotics through
the robocuprescue robot league competition. In: Field and service robotics, pp.
127–142. Springer (2014). https://doi.org/10.1007/978-3-642-40686-7 9

21. Simakov, N., Lavrenov, R., Zakiev, A., Safin, R., Mart́ınez-Garćıa, E.A.: Modeling
usar maps for the collection of information on the state of the environment. In: 2019
12th International Conference on Developments in eSystems Engineering (DeSE),
pp. 918–923. IEEE (2019)

https://doi.org/10.1007/3-540-59496-5_337
https://doi.org/10.1007/978-3-642-17319-6_39
https://doi.org/10.1007/978-981-13-9267-2_33
https://doi.org/10.1007/978-981-13-9267-2_33
https://doi.org/10.1007/978-981-15-5580-0_30
https://doi.org/10.1007/978-3-642-40686-7_9


420 R. Gabdrahmanov et al.

22. Timperley, C.S., Afzal, A., Katz, D.S., Hernandez, J.M., Le Goues, C.: Crashing
simulated planes is cheap: can simulation detect robotics bugs early? In: 2018 IEEE
11th International Conference on Software Testing, Verification and Validation
(ICST), pp. 331–342. IEEE (2018)

23. Willman, J.: Overview of pyqt5. In: Modern PyQt, pp. 1–42. Springer (2021).
https://doi.org/10.1007/978-1-4842-6603-8 1

24. Yakovlev, K., Baskin, E., Hramoin, I.: Grid-based angle-constrained path planning.
In: Joint German/Austrian Conference on Artificial Intelligence (Künstliche Intel-
ligenz), pp. 208–221. Springer (2015). https://doi.org/10.1007/978-3-319-24489-
1 16

https://doi.org/10.1007/978-1-4842-6603-8_1
https://doi.org/10.1007/978-3-319-24489-1_16
https://doi.org/10.1007/978-3-319-24489-1_16

	2022_Book_RoboticsForSustainableFuture.pdf



