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THEORETICAL-EXPERIMENTAL METHOD FOR DETERMINING 

THE PARAMETERS OF DAMPING BASED ON THE STUDY 

OF DAMPED FLEXURAL VIBRATIONS OF TEST SPECIMENS 

2. AERODYNAMIC COMPONENT OF DAMPING

A. G. Egorov,1* A. M. Kamalutdinov,1 A. N. Nuriev,1 and V. N. Paimushin2
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The aerodynamic component of damping of a vibrating plate in the range of parameters characteristic of damped 
flexural vibrations of test specimens is investigated. On the basis of a large series of numerical simulations in 
the dynamics of two-dimensional flow of gas around a plate, we managed to suggest a unified approximating 
equation for the damping constant in terms of dimensionless parameters of the process considered.

Introduction

Investigations into the forced and free mechanical vibrations of plates in a stationary viscous fluid (gas) have recently 
been of increased interest. One of their practical applications is connected with measurements of the damping properties of 
materials [1]. In addition, the results of these investigations can be employed in such areas as atomic force microscopy [2-5], 
sensors and drives of heads on micromechanical generators [6-9], cooling devices [10, 11], robotics [12-14], the stability of 
oil platforms [15], and damping the vibrations of liquids in fuel tanks [16, 17]. 

One of the primary goals in this class of problems is prediction of the forces acting on a vibrating plate on the fluid 
(gas) side. It is assumed that the aerodynamic interaction can be reduced to the inertial effect of an apparent mass and to the 
aerodynamic damping (see, for example, [18-20]). The inertial effect decreases the frequency, while the aerodynamic damping 
increases the decrement of vibrations of the plate compared with it in vacuum.
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In the general case, the problem on account of aerodynamic forces acting on a cantilever plate is extremely compli-
cated, mainly because of the complexity of three-dimensional gas flows caused by vibration of the plate. The known ap-
proaches [2, 18] to its solution are based on the assumption that the length L  of the plate considerably exceeds its width b  
and thickness h. In this case, at low structural vibration modes, the length of the vibrational wave is much greater than de-
viations of the plate, as a result of which it can be regarded as locally planar. In this case, the three-dimensional phenomena 
relating to gas flows along the plate length, including the separation of vortices from its butt end, are neglected, and the aero-
dynamic forces in each cross section of the beam are determined by examining the plane motion of gas caused by harmonic 
vibrations of a thin rigid plate. Such a plate, having a rectangular cross section, serves as a mobile boundary for the surround-
ing medium.

However, even in the plane approximation, the problem of determination of the aerodynamic forces acting on a har-
monically vibrating plate has not yet been solved in full. From a dimensional analysis it is known that, along with the geo-
metrical parameter ∆ = h b , the forces have to depend on two more dimensionless quantities, for which (see, for example, 
[21, 22]) the ratioκ = a b of vibration amplitude to width of the plate and the Stokes parameter β , playing the role of the 
vibrational Reynolds number, are usually assumed. In many studies, κ  is replaced by its analogue, the Keulegan–Carpenter 
number KC = 2πκ . Theoretically substantiated results are available only for vibrations with an infinitesimal amplitude 
(κ → 0 ). They date back to the original study by Stokes [23], who considered vibrations of an infinite cylinder in a viscous 
fluid. A similar analysis for a plate was carried out in [24, 25]. In these studies, the flow of fluid was described by linearized 
Navier–Stokes equations, with inertial terms being neglected. Therefore, the force per length unit of a body, described in terms 
of the drag coefficient, depends only on the Stokes parameter β . 

In many experimental [16, 26, 27], theoretical [17, 28, 29], and computational [11, 15, 20] studies, another limiting 
case was examined, namely great-amplitude vibrations, when the viscous dissipation of energy can be neglected compared 
with the energy of the vortices formed during the period of vibration on the lateral faces of the plate. In this case, the Stokes 
parameter is excluded from the number of determining parameters, and the drag coefficient depends solely on the dimension-
less vibration amplitude κ . 

The intermediate range of variations in the dimensionless vibration amplitude κ , where the viscous and inertial ef-
fects are commensurable, is investigated much more poorly. The experimental and numerical results available either cover a 
small part of the range examined or are distant from the region of values of the parameters realized in a laboratory to determine 
the damping properties of materials by investigating the free flexural vibrations of test specimens [1].

The dimensionless vibration amplitudes κ < 2  realized in laboratory investigations lie mostly in the intermediate range; 
the parameter β  takes values from several tens to several hundreds, while the dimensionless thickness D  of the plate — from 
several tenths to several hundredths. In this case, the Reynolds number Re = 2πβκ  does not exceed several thousands, and 
thus, a direct numerical simulation of plane aerodynamic fields around a vibrating plate does not require an excessively detailed 
discretization. The use of moderate meshes, with about several hundred thousand nodes, allows one to perform a great (more 
than 200) series of computational experiments on the dynamics of a two-dimensional flow of gas around a plate and to calcu-
late the complex drag coefficient over the entire region of the parameters κ β, ,  and D we are interested in.

1. Statement of the Problem

Let us consider an elastic plate of length L , width b , and thickness h  ( h b L<< << ) (Fig. 1). One of its ends is 
rigidly fixed, but the second is free. As soon as the plate is disturbed from the equilibrium, it starts to vibrate harmonically in 
the surrounding air. As experiments show, the frequency of these vibrations ω  weakly varies in the vicinity of the basic ei-
genfrequency ω0  of flexural vibrations of the plate, while the amplitude A  weakly decays with time t  because of air resistance 
and internal damping. The problem consists in determining the laws of slow variations in the amplitude and frequency. We 
will characterize the respective quantities by using the logarithmic decrement of vibrations d ( )A  and the relative variation in 
frequency Ω(A) as functions of the current amplitude A  of flexural vibrations of the plate:
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ω ω
ω

= − =
−2
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0
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The equation describing vibrations of a plate according to a cylindrical flexural mode has the form

	 Ebh w bhw H P
3

12
IV + = +ρ  . 	 (1)

Hereinafter, the primes designate differentiation with respect to x and dots — with respect to time t ; w  is the dis-
placement of middle line of the plate along the z  axis; H and P are the forces of internal friction and aerodynamic resistance; 
r and E are the effective density and Young’s modulus of plate material. The boundary conditions correspond to a rigid fixation 
at x = 0  and to a free end at x L= .

The drag forces are smaller than the elastic one. Therefore, to a first approximation, we may assume that H P= = 0 . 
In this case, as is known, the basic vibration mode takes the form 

	 w A t W x L= ( ) ( )cos / .ω0   	 (2)

The constants A  and ω0  represent the amplitude and eigenfrequency of the basic mode, and the profile W  of vibra-
tions [W 1 1( ) = ] is described by the formula

	 W x kx kx k k
k k

kx kx( ) = −( ) − ⋅
+
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sinh sin

sinh sin )). 	

The value of k = 1.8751 is the smallest positive root of the equation cos k k⋅ = −cosh 1 , and the frequency of natural 
vibrations is 

	 ω
ρ0

2
2 12

= k h
L

E . 	

Owing to the presence of small ( ~ ε ) forces in the right-hand side of Eq. (1), the vibration amplitude A  and fre-
quency ω0  in Eq. (2) do not remain constant, but slowly vary in time. An analysis of such a variation can be carried out by 
introducing, along with the fast time t , a slow time τ ε= t  and performing a two-scale asymptotic expansion. Omitting details 
of this procedure, we present the final result:

	 δ π
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Hereinafter, the angular brackets designate averaging over the spatial coordinate x , while the braces mean time av-
eraging.

In using Eqs. (3), assuming the flexuralе vibrations of form (2) with a constant value of � A , it is necessary
(1) to calculate the force of internal friction H t x A( , ; ), 
(2) to solve the aerodynamic problem and calculate the drag force P t x A, ;( ) , and
(3) having calculated the averages in Eqs. (3), to determine the required dependences δ A A( ) and �( )Ω .
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Fig. 1. Schematic of a plate for the problem on its vibration (a) and the schematic of a 2-dimensional 
hydrodynamic problem (b).
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It is obvious that, in view of linearity of the right-hand sides parts of Eqs. (3), the different components of drag forces 
can be calculated independently from each other. Leaving aside the question on the contribution of internal friction to the 
damping forces, we will pass to determination of the aerodynamic component.

2. Aerodynamic Problem

The force P x t( , )  per unit length of the plate in Eq. (1) describes the action exerted on the plate by the environment, 
which is regarded as an incompressible Newtonian fluid. The density and kinematic viscosity of the fluid is designated by r0  
and n, respectively. We take into account the fact that the length of the plate is much greater than the other two its character-
istic dimensions, while the length of the vibration wave of the basic structural mode considerably exceeds its displacements. 
Therefore, the plate can be considered locally planar. The aerodynamic force P x t( , )  is found during solving the plane problem 
on fluid flow caused by vibrations of an infinitely extended thin rigid plate (Fig. 1b). Such a plate plays the role of a mobile 
solid boundary for the air surrounding it. In each given cross section x , the law of motion of this boundary is given as 
z a x t a AW x L= ( ) = ( )cos , / .ω0

Let us pass to a moving system of coordinates rigidly connected to the plate and introduce, in a standard way, a ficti-
tious pressure p  [25] equal to the sum of the true pressure and the inertial component ρ ω ω0 0

2
0az tcos . Normalizing the 

spatial coordinates to b , the time to ω0
1− , the flow rate v = ( )v vy z,  of fluid to aω0 , the fictitious pressure to ρ ω0

2
0
2a ,  and 

retaining the previous designations of dimensionless variables, we present the Navier–Stokes equations in the form

	 ∇⋅ =
∂
∂
+ ⋅∇ = − ∇ + ∆v v v v v0 1

2
,

t
pκ κ

πβ
. 	 (4)

The dimensionless quantities

	 β
ω
πν

κ= =
b a

b

2
0

2
, 	

determine the Stokes parameter and (accurate to the factor 2p) the Keulegan–Carpenter parameter, respectively. The dimen-
sionless frequency of vibrations β  is the squared ratio of plate width to the thickness of the nonstationary boundary layer, 
and the dimensionless amplitude of vibrations κ  is the ratio between the vibration amplitude and width of the plate. One more 
dimensionless parameter of the problem, D = h/b, specifies the shape of the plate. 

Equations (4) are supplemented with the boundary conditions of adhesion on the boundary Γ  of the plate 
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and with the flow rate of fluid assigned at infinity

	  v
Γ
= ( ) = ( ) =0 0, , sin .v v ty z∞ ∞  	 (5)

After solving the problem (4), (5), the aerodynamic force P acting on the plate is calculated as
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The first term is the Krylov–Froude force and the other two determine the normal and shear components of the aero-
dynamic force.

We should note that the problem (4), (5) also describes the flow of an oscillating fluid around a motionless plate. 
However, the pressure p  in Eqs.  (4) then has to be treated as the true and not fictitious pressure. Consequently, the aerody-
namic force acting on a motionless plate in an oscillating flow minus the Krylov–Froude force will coincide with the force 
acting on the vibrating plate on the part of gas motionless at infinity. Therefore, in our situation, the numerous theoretical and 
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experimental results on determination of the drag force of a motionless plate to an oscillating flow can be used. In such a case, 
the forces acting on a body are usually investigated by using the Morrison approximation [20, 26], according to which

	 P b C du
dt

bC u uM D= − −
π
ρ ρ

4
1
20

2
0 . 	

Here, u AW x L t= − ( )/ sinω ω0 0  is the flow rate at infinity, CM  is the factor of apparent masses, and CD �  is the drag 
coefficient. The factors CM  and �CD  are functions of the dimensionless parameters κ β, , and∆  of the problem, which, ac-
curate to constant multipliers, coincide with values of the basic harmonics P tcosω0{ } and P tsinω0{ }  of the hydrodynamic 
force [26]. In terms of these factors, formulas (3), determining the vibration decrement and the variation in vibration fre-
quency of the plate, can be written in the form 
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The presence of the additional term CM
KF = ∆−4 1π  is associated with existence of the Krylov–Froude forces.

Thus, to determine the decrement d and the relative frequency Ω of vibrations of the plate, we have first to calculate 
the hydrodynamic factors CD and CM  as functions of the dimensionless parameters s κ β, , and∆ . In the case considered, the 
dimensionless frequency β  varies from several tens to hundreds, the dimensionless thickness of the plate D — from several 
tenths to several hundredths, and the dimensionless vibration amplitude k lies in the range [0, 3]. 

3. Small and Large Vibration Amplitudes

Rigorous theoretical results for the hydrodynamic factors CD and CM �  are known only in the limiting case κ → 0  
of small-amplitude vibrations (the so-called Stokes approximation). At D < 0.3, we have [18, 25]

	 κ
κ β

→ = =0 4 61 1: . , .C CD M 	

Calculations according to Eqs. (6) give
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With growing dimensionless vibration amplitude, the flow pattern is determined by the separation of intense vortices 
from ends of the plate. The viscous effects play an auxiliary role (because it is only the geometry that determines the place of 
separation of the vortices). Accordingly, the only parameter considering the viscosity, β , ceases to be determining, and the 
hydrodynamic factors become functions of κ  and D . To find these dependences, we will consider the classical Keulegan–
Carpenter experiments [26]. According to these experiments, performed for small values of D , the drag coefficient in the 
range κ >1  can be approximated by the formula

	 κ
κ

> =1 6 2: . .CD 	

For the vibration decrement, we have from Eqs. (6)

	  κ δ
ρ
ρ

> =1 7 0: .Ab
h

	 (8)

According to [26], with increasing κ , the factor of apparent masses first grows, reaching its maximum value equal 
to about 2 at κ ≈1 , and then decreases. Assuming that CM < 2  and estimating the quantity Ω according to Eqs. (6), we find 
that, for typical values of parameters, the relative variation Ω in frequency does not exceed 0.001. Such small changes in 
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frequency cannot be measured on our experimental setup [1]. Therefore, we can presume that the aerodynamic interaction 
cannot change the vibration frequency of a plate.

The situation is quite different for the vibration decrement. Assuming for �CD  the Keulegan–Carpenter approximation 
and estimating the vibration decrement according to Eqs. (6), we find that, at typical values of parameters, the decrement d  
is a quantity of the order of hundredths. Exactly the values of d  of such an order were observed and registered with confidence 
in experiments [1] on the damping of flexural vibrations of test specimens.

It is interesting that, in the limit of small amplitudes [see Eqs. (7)], the aerodynamic component of vibration decrement 
no longer depends on the width of the plate, while at large amplitudes [see Eqs. (8)], it ceases to depend on the length of the 
plate and the elastic properties determining the vibration eigenfrequency ω0 .

4. Intermediate Vibration Amplitudes

The drag coefficient depends on all the three dimensionless parameters s κ β, , and∆  in a complex way. To determine 
the quantities CM  and CD  as functions of the parameters, it is necessary to carry out a direct numerical simulation (DNS) of 
flow around a two-dimensional vibrating plate by using solutions to the Navier–Stokes equations. The corresponding nu-
merical calculations were performed in the OpenFOAM (Open Field Operation and Manipulation) package of computational 
hydrodynamics (CFD), based on a finite-volume approach to the solution of equations of hydrodynamics.

In the calculations, we considered a rectangular 30 30b b×  region with a plate located at its center. On the input and 
output boundaries of the region, we assigned a zero tangential speed and problem-adapted conditions implying the assignment 
of pressure on a half-period of the inflow of fluid  through the boundary and of a pressure gradient on a half-period of outflow. 
Slippage conditions were set on the lateral boundaries of the region, and adhesion conditions were assumed on the plate.

To discretize the calculation domain, orthogonal block meshes created by using the blockMesh utility entering into the 
OpenFOAM package were employed. The resolution of the meshes near the plate was increased by condensing them in the 
horizontal and vertical directions. The numbers of cells neighboring with the end and the lateral face of the plate were 20 and 
80, respectively. The degree of condensation of the mesh varied in the range of 40-50 along the y  axis and of 15-20 along the 
z  axis. The number of nodes in the meshes did not exceed 3 105⋅ . In discretization, a combined arrangement of nodes was 
employed; the discrete values of speed and pressure were localized at the centers of calculation cells of the mesh. The volume 
integrals were calculated by using the general Gauss procedure, according to which transition from volume to surface integrals 
is carried out. Further, the surface integrals were presented as the sum of integrals over faces of the cell and calculated ap-
proximately by the formula of average rectangles. Values of the function and the normal derivatives on the cell surface for in-
ternal cells of the calculation domain were interpolated from those at the centers of neighboring cells. The pressure gradient was 
interpolated linearly. To interpolate variables in the convective terms, the nonlinear NVD “Gamma” scheme suggested in [31] 
was employed. The normal gradients of speed on surfaces of the cell, necessary for discretization of the Laplace operator, were 
calculated from the speed at the centers of neighboring cells according to the symmetric second-order scheme.

The time discretization of the system was carried out according to the implicit Euler scheme. The time step in all 
calculations was chosen such that the maximum Courant number did not exceed 0.1.

The solution of the discrete problem in the package is based on the “segregated approach” of a separate solution of 
speed and pressure equations. The problem was solved by using the icoFoam program realizing the PISO (Pressure Implicit 
Splitt Operator) algorithm [32-34]. The basic parameter of this algorithm — the number of corrections — for the meshes used 
here was equal to three. To solve the system of equations for pressure, the preconditioned conjugate gradient (PCG) method 
with a geometric-algebraic multigrid (GAMG) preconditioner was employed. In realizing the GAMG, for smoothing, we used 
the Gauss–Seidel method with one and two pre- and postrelaxations, respectively, and for agglomeration of mesh cells — the 
faceAreaPair algorithm [35]. The system of equations for speeds was solved by the method of biconjugate gradients (PBiCG) 
with a preconditioner based on an incomplete LU factorization. At all stages, the convergence was carried out up to the values 
of residual smaller than 10 8− . In more detail, the numerical scheme is described in [36].
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All calculations were distributed according to the MPI technology and performed by using the method of decomposi-
tion of the calculation region. For this purpose, the region was divided into several vertical subregions. The subproblems in 
each subregion were calculated on different cores of processor. 

The calculations were carried out for plates of dimensionless thicknesses D = 0.05, 0.1, 0.22, and 0.32 at the dimen-
sionless vibration frequencies β = 58.33, 103, 200, and 1000. The above-mentioned parameters cover the entire range of 
parameters used in experiments [1]. For each fixed β  and D, a series of calculations (15-20) were carried out at different 
values of the dimensionless vibration amplitude κ . The upper bound of κ  was determined by the condition Re = <2 4000πκβ ; 
this allowed us to use moderate meshes with 105  nodes. In total, 200 such calculations were performed. Each of them con-
sisted in determination of the aerodynamic fields and the forces acting on the plate during 40 periods of vibrations. In all 
cases, the initial conditions corresponded to the condition of rest. Leaving aside a detailed aerodynamic analysis of flow pat-
terns, let us pass to calculation of the drag coefficient CD ( , , )κ β D  and the vibration decrement d according to Eqs. (6). In 
dimensionless variables,

	 C
t t

P t tdtD
t

t

κ β κ β, , ; , , sin .
max min min

max

∆( ) =
−

∆( )∫
1 	

The averaging was carried out for all, except for the first, periods of vibrations: t Tmin = and t Tmax .= 40  Figure 2 
illustrates a typical behavior of the relations P t( )  with growing dimensionless vibration amplitude of the plate. As seen, at 
small values of κ , the aerodynamic response P t( )  is a harmonic function (see Fig. 2a). Further (see Fig. 2b), the response is 
still periodic, but vibrations distinct from the basic vibration harmonic increase in it. They are mainly the third-order harmon-
ics. With further growth in the parameter κ , the function P t( )  loses its strict periodicity (see Fig. 2c) and finally (see Fig. 2d) 
exhibits a chaotic behavior. 

25 26 27 28 29 30

20

10

0

10

20

�

�

P � = 0.12

t T/

� = 0.24

25 26 27 28 29 30

20

10

5

0

10

��

�

P

t T/

� = 0.31

25 26 27 28 29 30

15

10

5

0

5

10

�

�

���

P

t T/

� = 0.8

25 26 27 28 29 30

P

t T/

10

5

0

10

��

�

a b

dc

Fig. 2. Resistance force P vs time t T  at D = 1/10 and β =103 .
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The behavior of P t( ) mentioned directly affects the drag coefficient, as illustrated in Fig. 3. Along with the mean drag 
coefficient CD , this figure also shows the local C nD

loc ( )  and “accumulated” C nD
glob ( )  drag coefficients

	 C n
T

P t tdt C n
nT

P t tdtD D
nT

n T

D D
T

loc glob( ) = ( ) ( ) = ( )
+

∫
1 11

sin , sin
( ) (nn T+

∫
1)

. 	

As seen, at small κ , the transition to a periodic mode occurs on the second or third period of vibrations (see Fig. 3a), 
but with growing κ , this transition is delayed (see Fig. 3b). Further, aperiodic (see Fig. 3c) and chaotic (see Fig. 3d) flow 
modes are realized. But even in the latter case, as shown by the behavior of the “accumulated” drag coefficient, averaging over 
40 periods of vibrations, used in our calculations, proves to be sufficient for determining the average drag coefficient with an 
admissible accuracy.

The dependences CD ( )κ  calculated at D = 0.1 and different values of β  are shown in Fig. 4a, and those at fixed β
and different values of D — in Fig. 4b. 

As can be seen, the CD ( )κ curves have a characteristic S shape. At small κ , they approach the Stokes asymptotics, 
while at great κ — the Keulegan–Carpenter experimental relationship. The greater the parameter β  and smaller the quantity 
D , the earlier (at smaller κ ) the deviation from the Stokes asymptotics occurs and the earlier the Keulegan–Carpenter ex-
perimental curve is reached. In general, at fixed κ > 0 1,  , the drag coefficient CD  grows with increasing dimensionless vibra-
tion frequency and decreasing dimensionless thickness of the plate.

The reliability of calculation results is confirmed by the fact that the calculated CD ( )κ  curves, at all values of the 
parameters β and D , approach the theoretically substantiated asymptotics at small κ  and the known experimental dependence 
at great κ . An additional argument is the quite satisfactory agreement between the calculated and experimental data [26] 
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regarding the relation between the factor of apparent masses CM and the dimensionless vibration amplitude κ  (Fig. 5) on the 
entire calculation range of parameters.

5. Analytical Approximation of Results

Following [22], for an analytical approximation of numerical results, let us present the quantity CD  as the sum of 
two — viscous and vortical — components. For the first of them, we take the Stokes dependence, while the second is assigned 
according to the Keulegan–Carpenter experiments with a correction factor K :

	 C C C C C KD D D D D= + = = ( )vis vort vis vort; . , . , , .4 61 6 2
κ β κ

β κD 	 (9)

It is obvious that the correction factor K  behaves similarly at all values of  β and D , monotonically increasing with 
growth in κ  from zero at κ = 0  to unity at κ = ∞ . Moreover, as the analysis of numerical results shows, the K κ( )  graphs 
are practically identical at any values of β and Δ if the abscissa axis is extended in an appropriate way (depending on β
and Δ):

	 K Kκ β ξ ξ κ β, , ( ), . ln . . ln ln .D D D( ) = = + − +[ ] 2 1 78 0 54 0 88  	 (10)
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Fig. 4. Drag coefficient CD vs κ  [ β = 58.33 (♦), 103 (▼), 200 (●), and 1000 (▲) (a) and D  = 0.05 (♦), 
0.1 (▼), 0.022 (●), and 0.32 (▲) (b)]. ■ — Keulegan–Carpenter experimental data and (――) — 
Stokes asymptotics.  
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Fig. 5. Factor of apparent masses CM as a function of κ  at different values of the parameters β and D : 
○ — calculation and ■ — experiment.
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This fact is illustrated by the data shown in Fig. 6, where the dots denote the correction factor

	 K C CD D= −( )κ
6 2.

vis 	

in relation to the parameter ξ  at different values of β andD . 
As seen, the results of numerical experiment are grouped around one curve. This curve can be approximated with an 

admissible accuracy, for example, by using the simple dependence

	 K ( )
.
.ξ

ξ
ξ

=
+

2

2 1 7
	 (11)

Having determined the value of CD  by formulas (9)-(11), we calculate the vibration decrement d  from Eqs. (6). 
Designating by A b  the ratio of the current vibration amplitude of end of the plate to its width, we obtain 

	 δ
ρ
ρ β

κ ξ= = +
b
h

F F f0
0 0

6 14, . ( ), 	

	 ξ κ β0 0 2 1 78 0 54 0 88= + − +[ ] . ln . . ln ln ,D D 	

	 f K W x W x u xξ ξ0 0
2 5

0
28 27( ) = ( ). ( ) ( ) ( ). . 	

(12)
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Fig. 6. Correction factor K  as a function of the parameter ξ  at different values of β andD : 
(□) — calculation and (––––) — approximation.
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Fig. 7. Value of f  as a function of the parameter ξ0 : (––––) — calculation and (– – –) — approximation. 
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The determining vortical component of vibration decrement — the function f  — is found from Eqs. (12) by simple 
integration (the solid line in Fig. 7). The asymptotic behavior of f ξ0( ) at small and great values of ξ0  is described by the 
formulas
	 ξ ξ0 0 7 0→∞ ( ): . ,f »   ξ ξ ξ0 0 0

20 2 73→ ( ): . .f » 	

Based on these asymptotics, we may suggest the following approximation formula for calculating f ξ0( ) : 

	 f ( )
.
.ξ

ξ
ξ0

0
2

0
27
3 2

=
+

	 (13)

As seen, this dependence well describes the behavior of f ξ0( )  on the whole range of the parameter ξ0 .
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