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INTRODUCTION 

The present paper deals with the investigation of a certain spectral problem for the Helmholtz op- 
erator on a plane, which appears in the diffraction problem (problems on the eigenwaves of a weakly 
directing dielectric waveguide). Under specific assumptions (e.g., see [1, p. 525; 2, p. 48; 3; 4]), 
this problem can be reduced to finding the values of the parameter A for which the Helmholtz 
equation 

A u + ( q - A ) u = O ,  x e f ~ U ~ e ,  (1) 

has nontrivial solutions u(x) satisfying the conjugation conditions 

[u] = 0, [&/0.] = 0, . �9 r. (2) 

Here 
]q~(x) for x e f ~ i ,  q(x) 
L qe for x E 12e, 

qi(x) 2 2 2 2 = kon ~ (x), qe = kone, qi(x) > qe > O, x E ~ ,  n~(x) and n~ -- const are the refraction coeffi- 
cients of the waveguide and the ambient medium, Ou/Ou is the outward normal derivative on the 
boundary F of the bounded domain ~ on the plane R 2, 12e = R 2 \ ~ ,  [u] is the jump of the function 
u on the contour F, k02 = w2~0#0, co > 0 is a given frequency of electromagnetic oscillations, r is 
the dielectric constant, #0 is the magnetic constant, A = t32, and ~ is the longitudinal propagation 
constant. 

Following [5] (see also [6; 7, p. 228; 8, p. 31; 9]), we assume that the function u satisfies the 
partial condition at infinity, i.e., can be represented in the form 

o o  

u(x) = ~ a~H(~ 1) ( ~ r )  exp(in~) (3) 
n-~ -- O0 

for sufficiently large Ixl, where r and ~ are the polar coordinates of the point x and H~ (1) is the 
first-kind Hankel function of order n. Following [7, p. 228; 8, p. 31; 9], we can readily show that the 
eigenvalues of problem (1)-(3) must be sought on the Riemann surface A of the function In ~ -  A. 

The exact solution of this problem is well known (e.g., see [1, p. 258]) in the case of a homoge- 
neous waveguide with circular cross-section. In the case of some particular waveguide structures, 
approximate solutions were constructed, their asymptotic properties were analyzed, algorithms 
were developed for the computation of spectral characteristics of waveguides with cross-sections 
of special form and with a specific distribution of the refraction coefficient (e.g., see [1, p. 258; 
2, p. 68; 3; 4]). Karchevskii [10, 11] suggested and investigated a numerical method for the case of 
a piecewise constant refraction coefficient. 

In the present paper, we establish the localization domain of eigenvalues of problem (1)-(3) 
on the Riemann surface A and reduce problem (1)-(3) to the spectral problem for a Fredholm 
operator function holomorphic in A. Using the results of [12, p. 39], we show that the characteristic 
set of this operator function can consist only of isolated points, which are its characteristic values. 
On the basis of the method similar to [13], we show that problem (1)-(3) has at least one simple 
real positive eigenvalue corresponding to a positive eigenfunction. 
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1. LOCALIZATION OF EIGENVALUES 

We assume that q~ is a continuous function continuously differentiable in ~i and F is a Lipschitz 
contour. By U we denote the the space of continuous complex-valued functions continuously dif- 
ferentiable in ~i and ~ and twice continuously differentiable in R2\F. A nonzero function u E U 
is referred to as an eigenfunction of problem (1)-(3) corresponding to an eigenvalue )~ E A if the 
relations of problem (1)-(3) are valid. 

By A0 we denote the main (physical) leaf of the surface A, which is determined by the conditions 
-~r < arg vf~e - )~ < 2r  and Im v~e - )~ >__ 0. Let G be an interval of the real axis on the leaf A0, 
namely, G -- {)~ E A0 : Im)~ -- 0, q~ < )~ < qm}, and let qm = maxx~, q~(x). 

T h e o r e m  1. On A0, the eigenvalues of problem (1)-(3) can lie only in the interval G. 

Proof .  IfA E A0 lies on the real axis in the domain )~ < q~, then the coefficient of Eq. (1) in 12~ is a 
positive real number. In this case, problem (1)-(3) has only the trivial solution (e.g., see [14, p. 72]). 
For the remaining values of A E h0, from the relations of problem (1)-(3) and from the asymptotic 
formula (e.g., see [15, p. 222 of the Russian translation]) 

H(~l)(z) = ~ e x p ( i ( z  - n~r/2 - r /4))(1 + O(1/z)), z ---+ oc, 

valid if -Tr < arg z < 2~r, we can readily obtain 

/ IVul2dx+ / (A-q)lul2dx=O. (4) 
~U~ ~'l~Un~ 

To this end, one must use the Green formula in ~ and ~R = {x E 12e : IxI < R} and let R tend 
to infinity. Only the zero function u satisfies inequality (4) for real values of A lying in the domain 
)~ _> qm. Taking the imaginary part of (4), we obtain 

ImA f lul2 dx -- O. 

Consequently, the eigenvalues of problem (1)-(3) on A0 cannot have a nonzero imaginary part, 
which completes the proof of the theorem. 

If )~ E G, then condition (3) is valid for functions exponentially decaying as Ix] ~ oc (surface 
waves); if A E A\A0, then the condition holds for exponentially growing functions (leaking waves). 

2. A NONLINEAR SPECTRAL PROBLEM FOR A FREDHOLM HOLOMORPHIC 
OPERATOR FUNCTION 

L e m m a .  Let u be the eigenfunction of problem (1)-(3) corresponding to an eigenvalue )~ E A. 
Then u(x) = (B()Ou)(x), x E R 2, where 

/ (I)()~; x, y)p(y)u(y)dy, p(y) -- q~(y) - q~, (B()Ou)(x) 

O()~;x,y)=(i/4)H(o') ( v / ~ - A l x - y l ) ,  x E R  2, y E a i .  

Proof .  The desired assertion can be proved with the use of the Green formula and the relation 
(e.g., see [8, p. 35; 6; 161) 

f ( ~ r  O~(A;x'Y) u(y)dy) =O, 
01yl I'R 

which is valid for any A E A, an arbitrary function u E U satisfying condition (3), and a circle I~R 
entirely lying in ~ .  
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For a given )~ E A, we set 

(K()~)v)(x) = f ~()~;x,y)pl/2(x)pl/2(y)v(y)dy. (5) 

We consider the operator K()~) treated as an operator acting in the space L2 (~2~) of complex- 
valued functions. We set A()~) = I - K(A), where I is the identity operator in L2 (f~). For any 
A E A, A()~) is a Fredholm operator. Following [8, p. 71], we can readily show that the operator 
function A (A) is holomorphic in A. A nonzero function v E L~ (ft~) is called an eigenfunction 
of the operator function A(A) corresponding to a characteristic value A0 E A if A ()~0)v = 0. 
The characteristic set of the operator function A()~) is defined as the set of numbers A E A such 
that the operator A(A) does not have a bounded inverse in L~ (ft~). 

T h e o r e m  2. I f  u E U is an eigenfunction of problem (1)-(3) corresponding to an eigenvalue 
A0 E A, then v = pl/2u E L2 ( ~ i )  is  an eigenfunction of the operator function A()~) corresponding 
to the characteristic value ,~o. I f  v E L2 ( ~ )  is an eigenfunction of the operator function A()~) 
corresponding to a characteristic value A0 E A, then u = B ()~o) (P-V2v) E U is an eigenfunction 
of problem (1)-(3) corresponding to the eigenvalue )~o. 

Proof .  The first assertion of the theorem readily follows from the lemma. Let v E L2 (ft~) be 
an eigenfunction of the operator function A(A) corresponding to the characteristic value )~0 E A. 
The kernel O(A; x, y) is weakly polar for any A E A. Consequently, the function u = B ()~0) (P-1/2v) 
is continuous on fti (e.g., see [17, p, 327]). By virtue of the well-known properties of the area 
potential [17, p. 463], the function u is continuous and continuously differentiable in R ~ and twice 
continuously differentiable in fti and fte. Furthermore, the number )~0 and the function u satisfy 
Eq. (1). Using the Graf addition theorem [18, p. 201], we can readily prove that the number A0 
and the function u satisfy condition (3). The proof of the theorem is complete. 

Theorems 1 and 2, together with the results of [12, p. 39], imply the following assertion. 

T h e o r e m  3. The characteristic set of the operator function A( )~ ) consists only of isolated points, 
which are its characteristic values. 

3. THE EXISTENCE OF AN EIGENVALUE 

Let the operator K()~) with given A E G be determined by (5) and act in the space L2 (~i) of 
real functions. For given )~ E G, we introduce the problem v = "TK()~)v. The solutions -y = "y(A) 
and v ~ 0 of this problem are referred to as the characteristic value and the eigenfunction of the 
operator K()~). Note that K(A) with any )~ E G is an integral operator with a symmetric weakly 
polar positive kernel [17, p. 327]. 

If for some A0 E G, the function v is an eigenfunction of the operator K (A0) corresponding 
to the characteristic number "7 = 1, then v is an eigenfunction of the operator function A()~) 
corresponding to the characteristic value A0. 

T h e o r e m  4. Problem (1)-(3) has at least one simple eigenvalue lying in the interval G and 
corresponding to a positive eigenfunction. 

Proof .  For given A E G, the operator K(A) has countably many positive characteristic values. 
The minimal of them satisfies the relation [17, p. 326] 

"fl(/~)~--~- inf (f,f)/(K(A)f,f), (6) 
feL2(f~i) 

where (., .) is the inner product in L2 (f~). Let us now show that there exists a A E G such that 
~/1()~) = 1. Since ~(A; x, y) continuously depends on A E A, it follows that "71 = 3'1(A) is a continuous 
function. This, together with the limit relation 0(,~; x, y) --* ~ as A ~ qe, implies that ~'I(A) ~ 0 
as )~ ~ qe. 
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Let us show that 71 (qm) > 1. Let v �9 L2 ( ~ )  be an eigenfunction of the operator K()`) 
corresponding to the characteristic value 71 for a given )` = qm. Following the proof of Theorems 1 
and 2, for the function u = 71B (am) (p-1/2v), we obtain the relation 

f IVul2dx + (qm - qe) f lul2dx - "T1 f PI?212dx = O. 

Obviously, if 71 _< 1, then the function u must be zero identically. Hence 71 (qm) > 1. 
By A1 we denote the unique solution of the equation ~/1()`) -- 1. By the Entsch theorem 

[17, p. 329], 71 ()`1) is a simple characteristic value and corresponds to a positive eigenfunction vl. 
Consequently, ),1 is a simple eigenvalue of problem (1)-(3) corresponding to the positive eigenfunc- 
tion ul -- B ()`1) (p-1/2vl). The proof of the theorem is complete. 
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