Differential Equations, Vol. 36, No. 4, 2000, pp. 631-634. Translated from Differentsial'nye Uravneniya, Vol. 36, No. 4, 2000, pp. 563-565. Original Russian Text Copyright © 2000 by Karchevskii, Solov'ev.

SHORT COMMUNICATIONS

Investigation of a Spectral Problem for the Helmholtz Operator on the Plane

E. M. Karchevskii and S. I. Solov'ev

Kazan State University, Kazan, Tatarstan, Russia Received March 23, 1999

INTRODUCTION

The present paper deals with the investigation of a certain spectral problem for the Helmholtz operator on a plane, which appears in the diffraction problem (problems on the eigenwaves of a weakly directing dielectric waveguide). Under specific assumptions (e.g., see [1, p. 525; 2, p. 48; 3; 4]), this problem can be reduced to finding the values of the parameter λ for which the Helmholtz equation

$$\Delta u + (q - \lambda)u = 0, \qquad x \in \Omega_i \cup \Omega_e, \tag{1}$$

has nontrivial solutions u(x) satisfying the conjugation conditions

$$[u] = 0, \qquad [\partial u/\partial \nu] = 0, \qquad x \in \Gamma.$$
(2)

Here

$$q(x) = \begin{cases} q_i(x) & \text{for } x \in \Omega_i, \\ q_e & \text{for } x \in \Omega_e, \end{cases}$$

 $q_i(x) = k_0^2 n_i^2(x), q_e = k_0^2 n_e^2, q_i(x) > q_e > 0, x \in \Omega_i, n_i(x)$ and $n_e = \text{const}$ are the refraction coefficients of the waveguide and the ambient medium, $\partial u / \partial \nu$ is the outward normal derivative on the boundary Γ of the bounded domain Ω_i on the plane $R^2, \Omega_e = R^2 \setminus \overline{\Omega}_i, [u]$ is the jump of the function u on the contour $\Gamma, k_0^2 = \omega^2 \varepsilon_0 \mu_0, \omega > 0$ is a given frequency of electromagnetic oscillations, ε_0 is the dielectric constant, μ_0 is the magnetic constant, $\lambda = \beta^2$, and β is the longitudinal propagation constant.

Following [5] (see also [6; 7, p. 228; 8, p. 31; 9]), we assume that the function u satisfies the partial condition at infinity, i.e., can be represented in the form

$$u(x) = \sum_{n=-\infty}^{\infty} \alpha_n H_n^{(1)} \left(\sqrt{q_e - \lambda} \, r \right) \exp(in\varphi) \tag{3}$$

for sufficiently large |x|, where r and φ are the polar coordinates of the point x and $H_n^{(1)}$ is the first-kind Hankel function of order n. Following [7, p. 228; 8, p. 31; 9], we can readily show that the eigenvalues of problem (1)–(3) must be sought on the Riemann surface Λ of the function $\ln \sqrt{q_e - \lambda}$.

The exact solution of this problem is well known (e.g., see [1, p. 258]) in the case of a homogeneous waveguide with circular cross-section. In the case of some particular waveguide structures, approximate solutions were constructed, their asymptotic properties were analyzed, algorithms were developed for the computation of spectral characteristics of waveguides with cross-sections of special form and with a specific distribution of the refraction coefficient (e.g., see [1, p. 258; 2, p. 68; 3; 4]). Karchevskii [10, 11] suggested and investigated a numerical method for the case of a piecewise constant refraction coefficient.

In the present paper, we establish the localization domain of eigenvalues of problem (1)-(3)on the Riemann surface Λ and reduce problem (1)-(3) to the spectral problem for a Fredholm operator function holomorphic in Λ . Using the results of [12, p. 39], we show that the characteristic set of this operator function can consist only of isolated points, which are its characteristic values. On the basis of the method similar to [13], we show that problem (1)-(3) has at least one simple real positive eigenvalue corresponding to a positive eigenfunction.

KARCHEVSKII, SOLOV'EV

1. LOCALIZATION OF EIGENVALUES

We assume that q_i is a continuous function continuously differentiable in Ω_i and Γ is a Lipschitz contour. By U we denote the the space of continuous complex-valued functions continuously differentiable in $\overline{\Omega}_i$ and $\overline{\Omega}_e$ and twice continuously differentiable in $R^2 \setminus \Gamma$. A nonzero function $u \in U$ is referred to as an *eigenfunction* of problem (1)–(3) corresponding to an eigenvalue $\lambda \in \Lambda$ if the relations of problem (1)–(3) are valid.

By Λ_0 we denote the main (physical) leaf of the surface Λ , which is determined by the conditions $-\pi < \arg \sqrt{q_e - \lambda} < 2\pi$ and $\operatorname{Im} \sqrt{q_e - \lambda} \ge 0$. Let G be an interval of the real axis on the leaf Λ_0 , namely, $G = \{\lambda \in \Lambda_0 : \operatorname{Im} \lambda = 0, q_e < \lambda < q_m\}$, and let $q_m = \max_{x \in \Omega_i} q_i(x)$.

Theorem 1. On Λ_0 , the eigenvalues of problem (1)–(3) can lie only in the interval G.

Proof. If $\lambda \in \Lambda_0$ lies on the real axis in the domain $\lambda < q_e$, then the coefficient of Eq. (1) in Ω_e is a positive real number. In this case, problem (1)–(3) has only the trivial solution (e.g., see [14, p. 72]). For the remaining values of $\lambda \in \Lambda_0$, from the relations of problem (1)–(3) and from the asymptotic formula (e.g., see [15, p. 222 of the Russian translation])

$$H_n^{(1)}(z) = \sqrt{2/(\pi z)} \exp(i(z - n\pi/2 - \pi/4))(1 + O(1/z)), \qquad z \to \infty,$$

valid if $-\pi < \arg z < 2\pi$, we can readily obtain

$$\int_{\Omega_i \cup \Omega_e} |\nabla u|^2 dx + \int_{\Omega_i \cup \Omega_e} (\lambda - q) |u|^2 dx = 0.$$
(4)

To this end, one must use the Green formula in Ω_i and $\Omega_R = \{x \in \Omega_e : |x| < R\}$ and let R tend to infinity. Only the zero function u satisfies inequality (4) for real values of λ lying in the domain $\lambda \ge q_m$. Taking the imaginary part of (4), we obtain

$$\operatorname{Im} \lambda \int\limits_{\Omega_i \cup \Omega_e} |u|^2 dx = 0.$$

Consequently, the eigenvalues of problem (1)–(3) on Λ_0 cannot have a nonzero imaginary part, which completes the proof of the theorem.

If $\lambda \in G$, then condition (3) is valid for functions exponentially decaying as $|x| \to \infty$ (surface waves); if $\lambda \in \Lambda \setminus \Lambda_0$, then the condition holds for exponentially growing functions (leaking waves).

2. A NONLINEAR SPECTRAL PROBLEM FOR A FREDHOLM HOLOMORPHIC OPERATOR FUNCTION

Lemma. Let u be the eigenfunction of problem (1)–(3) corresponding to an eigenvalue $\lambda \in \Lambda$. Then $u(x) = (B(\lambda)u)(x), x \in \mathbb{R}^2$, where

$$(B(\lambda)u)(x) = \int_{\Omega_i} \Phi(\lambda; x, y) p(y) u(y) dy, \qquad p(y) = q_i(y) - q_e,$$

$$\Phi(\lambda; x, y) = (i/4) H_0^{(1)} \left(\sqrt{q_e - \lambda} |x - y| \right), \qquad x \in \mathbb{R}^2, \qquad y \in \Omega_i$$

Proof. The desired assertion can be proved with the use of the Green formula and the relation (e.g., see [8, p. 35; 6; 16])

$$\int\limits_{\Gamma_R} \left(\frac{\partial u(y)}{\partial |y|} \Phi(\lambda; x, y) - \frac{\partial \Phi(\lambda; x, y)}{\partial |y|} u(y) dy \right) = 0,$$

which is valid for any $\lambda \in \Lambda$, an arbitrary function $u \in U$ satisfying condition (3), and a circle Γ_R entirely lying in Ω_e .

DIFFERENTIAL EQUATIONS Vol. 36 No. 4 2000

For a given $\lambda \in \Lambda$, we set

$$(K(\lambda)v)(x) = \int_{\Omega_i} \Phi(\lambda; x, y) p^{1/2}(x) p^{1/2}(y) v(y) dy.$$
(5)

We consider the operator $K(\lambda)$ treated as an operator acting in the space $L_2(\Omega_i)$ of complexvalued functions. We set $A(\lambda) = I - K(\lambda)$, where I is the identity operator in $L_2(\Omega_i)$. For any $\lambda \in \Lambda$, $A(\lambda)$ is a Fredholm operator. Following [8, p. 71], we can readily show that the operator function $A(\lambda)$ is holomorphic in Λ . A nonzero function $v \in L_2(\Omega_i)$ is called an *eigenfunction* of the operator function $A(\lambda)$ corresponding to a characteristic value $\lambda_0 \in \Lambda$ if $A(\lambda_0) v = 0$. The characteristic set of the operator function $A(\lambda)$ is defined as the set of numbers $\lambda \in \Lambda$ such that the operator $A(\lambda)$ does not have a bounded inverse in $L_2(\Omega_i)$.

Theorem 2. If $u \in U$ is an eigenfunction of problem (1)-(3) corresponding to an eigenvalue $\lambda_0 \in \Lambda$, then $v = p^{1/2}u \in L_2(\Omega_i)$ is an eigenfunction of the operator function $A(\lambda)$ corresponding to the characteristic value λ_0 . If $v \in L_2(\Omega_i)$ is an eigenfunction of the operator function $A(\lambda)$ corresponding to a characteristic value $\lambda_0 \in \Lambda$, then $u = B(\lambda_0)(p^{-1/2}v) \in U$ is an eigenfunction of problem (1)-(3) corresponding to the eigenvalue λ_0 .

Proof. The first assertion of the theorem readily follows from the lemma. Let $v \in L_2(\Omega_i)$ be an eigenfunction of the operator function $A(\lambda)$ corresponding to the characteristic value $\lambda_0 \in \Lambda$. The kernel $\Phi(\lambda; x, y)$ is weakly polar for any $\lambda \in \Lambda$. Consequently, the function $u = B(\lambda_0)(p^{-1/2}v)$ is continuous on $\overline{\Omega}_i$ (e.g., see [17, p, 327]). By virtue of the well-known properties of the area potential [17, p. 463], the function u is continuous and continuously differentiable in R^2 and twice continuously differentiable in Ω_i and Ω_e . Furthermore, the number λ_0 and the function u satisfy Eq. (1). Using the Graf addition theorem [18, p. 201], we can readily prove that the number λ_0 and the function u satisfy condition (3). The proof of the theorem is complete.

Theorems 1 and 2, together with the results of [12, p. 39], imply the following assertion.

Theorem 3. The characteristic set of the operator function $A(\lambda)$ consists only of isolated points, which are its characteristic values.

3. THE EXISTENCE OF AN EIGENVALUE

Let the operator $K(\lambda)$ with given $\lambda \in G$ be determined by (5) and act in the space $L_2(\Omega_i)$ of real functions. For given $\lambda \in G$, we introduce the problem $v = \gamma K(\lambda)v$. The solutions $\gamma = \gamma(\lambda)$ and $v \neq 0$ of this problem are referred to as the *characteristic value* and the *eigenfunction* of the operator $K(\lambda)$. Note that $K(\lambda)$ with any $\lambda \in G$ is an integral operator with a symmetric weakly polar positive kernel [17, p. 327].

If for some $\lambda_0 \in G$, the function v is an eigenfunction of the operator $K(\lambda_0)$ corresponding to the characteristic number $\gamma = 1$, then v is an eigenfunction of the operator function $A(\lambda)$ corresponding to the characteristic value λ_0 .

Theorem 4. Problem (1)-(3) has at least one simple eigenvalue lying in the interval G and corresponding to a positive eigenfunction.

Proof. For given $\lambda \in G$, the operator $K(\lambda)$ has countably many positive characteristic values. The minimal of them satisfies the relation [17, p. 326]

$$\gamma_1(\lambda) = \inf_{f \in L_2(\Omega_i)} (f, f) / (K(\lambda)f, f), \tag{6}$$

where (\cdot, \cdot) is the inner product in $L_2(\Omega_i)$. Let us now show that there exists a $\lambda \in G$ such that $\gamma_1(\lambda) = 1$. Since $\Phi(\lambda; x, y)$ continuously depends on $\lambda \in \Lambda$, it follows that $\gamma_1 = \gamma_1(\lambda)$ is a continuous function. This, together with the limit relation $\Phi(\lambda; x, y) \to \infty$ as $\lambda \to q_e$, implies that $\gamma_1(\lambda) \to 0$ as $\lambda \to q_e$.

DIFFERENTIAL EQUATIONS Vol. 36 No. 4 2000

Let us show that $\gamma_1(q_m) > 1$. Let $v \in L_2(\Omega_i)$ be an eigenfunction of the operator $K(\lambda)$ corresponding to the characteristic value γ_1 for a given $\lambda = q_m$. Following the proof of Theorems 1 and 2, for the function $u = \gamma_1 B(q_m) (p^{-1/2}v)$, we obtain the relation

$$\int_{\Omega_i\cup\Omega_e} |\nabla u|^2 dx + (q_m - q_e) \int_{\Omega_i\cup\Omega_e} |u|^2 dx - \gamma_1 \int_{\Omega_i} p|u|^2 dx = 0.$$

Obviously, if $\gamma_1 \leq 1$, then the function u must be zero identically. Hence $\gamma_1(q_m) > 1$.

By λ_1 we denote the unique solution of the equation $\gamma_1(\lambda) = 1$. By the Entsch theorem [17, p. 329], $\gamma_1(\lambda_1)$ is a simple characteristic value and corresponds to a positive eigenfunction v_1 . Consequently, λ_1 is a simple eigenvalue of problem (1)–(3) corresponding to the positive eigenfunction $u_1 = B(\lambda_1) (p^{-1/2}v_1)$. The proof of the theorem is complete.

REFERENCES

- 1. Snyder, A. and Love, J., *Teoriya opticheskikh volnovodov* (Theory of Optical Waveguides), Moscow, 1987.
- 2. Sodha, M.S. and Gkhatak, A.K., *Neodnorodnye opticheskie volnovody* (Inhomogeneous Optical Waveguides), Moscow, 1980.
- 3. Shevchenko, V.V., Radiotekhnika i Elektronika, 1974, vol. 19, no. 3, pp. 473-480.
- 4. Voitovich, N.N., Katsenelenbaum, B.Z., Sivov, A.N., and Shatrov, A.D., Radiotekhnika i Elektronika, 1979, vol. 24, no. 7, pp. 1245–1263.
- 5. Sveshnikov, A.G., in *Vychislit. metody i programmirovanie* (Computational Methods and Programming), Moscow, 1969, issue 13, pp. 145–151.
- 6. Reichardt, H., Abh. Mathem. Seminar. Univ. Hamburg, 1960, vol. 24, pp. 41-53.
- 7. Shestopalov, V.P., Spektral'naya teoriya i vozbuzhdenie otkrytykh struktur (Spectral Theory and Excitation of Open Structures), Kiev, 1987.
- 8. Il'inskii, A.S. and Shestopalov, Yu.V., Primenenie metodov spektral'noi teorii v zadachakh rasprostraneniya voln (Application of Methods of Spectral Theory to Wave Propagation Problems), Moscow, 1989.
- 9. Nosich, A.I., J. El. Wav. Appl., 1994, vol. 8, no. 3, pp. 329-353.
- 10. Karchevskii, E.M., in Issledovaniya po prikladnoi matematike (Investigations in Applied Mathematics), Kazan, 1997, issue 22, pp. 47–51.
- 11. Karchevskii, E.M., Izv. Vyssh. Uchebn. Zaved. Matematika, 1999, no. 1, pp. 10-17.
- 12. Gokhberg, I.Ts. and Krein, M.G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gil'bertovom prostranstve (Introduction to the Theory of Linear Nonself-Adjoint Operators in a Hilbert Space), Moscow, 1965.
- 13. Dautov, R.Z., Lyashko, A.D., and Solov'ev, S.I., Differents. Uravn., 1991, vol. 27, no. 7, pp. 1144-1153.
- 14. Il'inskii, A.S., Kravtsov, V.V., and Sveshnikov, A.G., *Matematicheskie modeli elektrodinamiki* (Mathematical Models of Electrodynamics), Moscow, 1991.
- 15. Jahnke, E., Emde, F., and Losch, F., Tables of Higher Functions, New York: McGraw-Hill; Stuttgart: Teubner, 1960. Translated under the title Spetsial'nye funktsii, Moscow, 1968.
- 16. Vekua, I.N., Tr. Tbil. Mat. In-ta, 1943, vol. 12, pp. 105-174.
- 17. Vladimirov, V.S., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow, 1976.
- 18. Nikiforov, A.F. and Uvarov, V.B., Osnovy teorii spetsial'nykh funktsii (Foundations of Theory of Special Functions), Moscow, 1974.