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Abstract

We introduce and study a family of characteristics for non-rectifi-
able plane curves and arcs in terms of integrals over their complements.
Then we apply them to solve some certain versions of the Riemann
boundary value problem.

Introduction

A great body of recent works is dealing with various characteristics of point
sets of sophisticated structure: fractals, non-rectifiable curves and so on. The
most known are Hausdorff and Minkowskii dimensions (see, for instance,
[1, 2]), and a number of new ones: Assouad and Aikawa dimensions and
codimensions [3], approximation dimension [4, 5], refined metric dimension
[6] and others.

In 2013 [8, 9] the author introduced a family of new metric character-
istics for plane sets and called them Marcinkiewicz exponents for closed
non-rectifiable Jordan curves. This name is connected with the fact that
J. Marcienkiewicz first characterized features of subsets of Euclidean spaces
in terms of certain integrals over their complements (see [13]). In the present
paper we introduce their weighted and local versions for any compact sets,
but mainly we are interested in non-rectifiable curves and arcs on the com-
plex plane. In section 1 we study their properties and relations with known
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dimensions. In particular, we show that these exponents are characteristics
of co-dimensional type.

Then we consider certain applications. We use these characteristics to
solve the Riemann boundary value problems (see [10, 11, 12]) in domains
with non-rectifiable boundaries. As known, there exists a lot of applications
of that problems in mechanics, elasticity theory and others. In section 2
we consider so called continuous formulation of this problem, in section 3 –
semi-continuous, and in the final section 4 – the jump problem on an open
arc. We obtain new solvability conditions which are sharper than the known
ones.

In particular, the improvement of known results is connected with the fact
that new features of non-rectifiable curves allow more precise description of
their local properties, including a phenomenon of local asymmetry. Let us
explain this phenomenon. A curve Γ on the complex plane divides small
disk B(t, r) = {z : |z − t| < r} with center at its interior point t into
left and right components B+ and B−. If Γ is smooth at point t, and S
is mapping of symmetry relatively its tangent at point t, then the area of
set B+4S(B−) is o(r2) for r → 0, i.e., it decreases faster than the area of
B(t, r). We understand this fact as local symmetry. Generally speaking, for
a non-rectifiable curve we cannot find a symmetry axis with this property,
i.e., non-rectifiable curves are locally asymmetric. In the present paper we
introduce left and right (inner and outer) characteristics of plane curves,
what allows us to improve solvability conditions for the locally asymmetric
curves.

Let us note that the Marcinkiewicz exponents are useful for solving other
problems. In paper [7] these characteristics are applied for building of gener-
alized curvilinear integral over non-rectifiable curves. In turn, the obtained
construction enables us to solve certain boundary value problems on that
curves in other way.

1 The Marcinkiewicz exponents

Let X = (X; d;µ) be a metric measure space equipped with a metric d
and a Borel regular outer measure µ such that 0 < µ(B) < ∞ for all balls
B = B(x; r) = {y ∈ X : d(y;x) < r}, x ∈ X, r > 0. We assume that
measure µ is doubling, i.e., there is a constant C = C(X) > 0 such that
µ(B(x; 2r)) ≤ Cµ(B(x; r)) for any ball B ⊂ X. Consequently, there exist a
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constant C > 0 and an exponent s ≥ 0 such that

µ(B(y; r))

µ(B(x;R))
≥ C

( r
R

)s
whenever 0 < r ≤ R < diam(X), x ∈ X, and y ∈ B(x;R). The most
lower bound of the set of exponents for which the last inequality holds is
also denoted by s and called the doubling dimension of X. The measure µ is
Q-regular, for Q ≥ 1, if there is a constant cQ ≥ 1 such that

c−1
Q rQ ≤ µ(B(x; r)) ≤ cQr

Q

for all x ∈ X and every 0 < r < diam(X). Clearly, any Q-regular mea-
sure is doubling, and its doubling dimension is Q. The Lebesgue measure in
Euclidean space Rn is n-regular.

Let compact set E be a subset of a fixed open domain Y ⊂ X. We put

Ip(E, µ) :=

∫
Y \E

dµ

distp(z, E)
.

Definition 1 The Marcinkiewicz exponent of set E with respect to measure
µ is the least upper bound of set {p : Ip(E, µ) <∞}. We denote it m(E, µ).

In paper [9] the Marcinkiewicz exponents are defined for the case where E
is a closed curve on the complex plane C, and µ is restriction of the plane
Lebesgue measure L on either inner or outer domain of this curve.

Definition 2 The inner and outer Marcinkiewicz exponents of a closed plane
curve Γ with respect to measure µ are m+(Γ, µ) := m(Γ, µ+) and m−(Γ, µ) :=
m(Γ, µ−), where µ+ and µ− are restrictions of measure µ on inner and outer
domains of Γ.

Clearly, in this case m(Γ, µ) is the least of inner and outer exponents. We
name all these values the Marcinkiewicz exponents in connection with the
Marcinkiewicz’s idea to characterize sets by means of certain integrals over
their complements (see, for instance, [13]).

We introduce also a local version of these values. We put

Ip(E, t, r, µ) :=

∫
B(t,r)\E

dµ

distp(z, E)
,

where B(t, r) is ball of radius r with center t ∈ E.
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Definition 3 The local Marcinkiewicz exponent of set E with respect to mea-
sure µ is the least upper bound of set {p : lim

r→0
Ip(E, t, r, µ) <∞}. We denote

it m(E, t, µ).

In what follows we consider mainly the case dµ = w(z)dL where w is a non-
negative function, and write m(E,w) and m(E, t, w) instead of m(E, µ) and
m(E, t, µ).

If Γ is a closed plane curve, then we consider also its inner and outer
local Marcinkiewicz exponents m+(Γ, t, µ) := m(Γ, t, µ+) and m−(Γ, t, µ) :=
m(Γ, t, µ−). Clearly, the local properties of a curve cannot depend on its
closeness. Hence, we can introduce analogs of the inner and outer exponents
for open arcs, too; see below Definition 6.

Let us describe certain properties of these characteristics. We compare
them first with so called Aikawa dimension. H. Aikawa [14] defined it for
Euclidean spaces. Then it was defined for arbitrary spaces with doubling
measures [3]. According [15], we define Aikawa codimension of a set E ⊂ X
as follows.

Definition 4 Let CA(E, µ) consist of all non-negative values q such that
there exists positive constant cq satisfying estimate∫

B(ζ,r)

dµ(z)

distq(z, E)
≤ cqr

−qµ(B(ζ, r))

for any ζ ∈ E and all sufficiently small r. We call supCA(E, µ) Aikawa
codimension of set E with respect to measure µ, and denote it cda(E, µ).

If q ∈ CA(E, µ), then integral Iq(E, µ) is finite. Thus, any set E ⊂ X
satisfies estimate cda(E, µ) ≤ m(E, µ); if Γ is a closed Jordan curve on a
plane, then cda(Γ, µ) ≤ m+(Γ, µ) and cda(Γ, µ) ≤ m−(Γ, µ).

We do not define Assouad and Aikawa dimensions; the reader can find
their definitions in [3, 15]. According to [15], for Q-regular measures µ both
these dimensions of set E ⊂ (X; d;µ) are equal to Q− cda(E, µ). Moreover,
the Assouad dimension cannot be lesser than the upper Minkowskii dimen-
sion dm(E). This value is known also as upper box-counting dimension,
Kolmogorov dimension (see, for instance, [1]) and upper metric dimension
[16]. One of its definitions is

dm(E) := lim sup
r→0

logNr(E)

− log r
,
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where Nr(E) is the least number of balls of radius r covering E. Note that
the lower limit of the same fraction was considered in connection with metric
dimensions earlier; see [17].

As a conclusion, we obtain

Lemma 1 The inequality cda(E, µ) ≤ m(E, µ) is valid for any set E in any
space (X, d, µ). If X = C and Γ is a closed Jordan curve on the complex
plane, then cda(Γ, µ) ≤ m+(Γ, µ) and cda(Γ, µ) ≤ m−(Γ, µ).

If measure µ is Q-regular, then m(E, µ) ≥ Q− dm(E).
For X = C with standard metrics and µ = L we have m(E,L) ≥ 2 −

dm(E). If E ⊂ C is a continuum, then m(E,L) ≤ 1. The Marcinkiewicz
exponents of rectifiable curves on the complex plane are equal to 1.

It remains to show that m(E,L) ≤ 1 for any continuum E. Let us call to
our mind, that continuum is a connected set containing at least two distinct
points. Hence,

∫∫
Q\E

dxdy
dist(x+iy,E)

=∞, which concludes the proof of the inequal-

ity. The same consideration proves bounds m+(Γ,L) ≤ 1 and m−(Γ,L) ≤ 1
for closed curve Γ on the complex plane. As the Minkowskii dimension of
any rectifiable plane curve is 1, then the last statement of Lemma is proved,
too.

Lemma 2 If the set E is compact then inf{m(E; t;µ) : t ∈ E} = m(E;µ).
For a closed curve Γ we have inf{m+(Γ; t;µ) : t ∈ Γ} = m+(Γ;µ) and
inf{m−(Γ; t;µ) : t ∈ Γ} = m−(Γ;µ).

Proof. Let us fix a value p < m(E;µ). By definition Ip(E, µ) < ∞. Hence,
for any t ∈ Γ and sufficiently small r > 0 we have Ip(E, t, r, µ) < ∞, and
m(E; t;µ) ≥ p for any t ∈ E. Whence, inf{m(E; t;µ) : t ∈ E} ≥ m(E;µ).

Assume that inf{m(E; t;µ) : t ∈ E} > m(E;µ). Then there exists a value
p such that inf{m(E; t;µ) : t ∈ Γ} > p > m(E;µ). Then for any point t ∈ E
there exists radius r(t) > 0 such that integral Ip(E, r, t, µ) converges. The
balls B(t, r(t)) cover compact set E. We select finite covering consisting of

balls Bj = B(tj, r(tj)), j = 1, 2, . . . , n, and put ∆ = Q
⋂

(
n⋃
j=1

Bj). Clearly,∫
∆\E

dµ
distp(z,E)

< ∞. But integral
∫

Q\∆

dµ
distp(z,E)

is finite, too. Thus, Ip(E, µ) <

∞, and inequality p > m(E, µ) is impossible. The proof for inner and outer
exponents is just the same.

Now we consider certain examples.
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Example 1 We consider first a curve from the notice [9] (cf. [19], [6] and
[20]). We divide the upper side {x + iy : 0 ≤ x ≤ 1, y = 0} of square
S = {x + iy : 0 ≤ x ≤ 1,−1 ≤ y ≤ 0} on the complex plane into segments
In := {2−n ≤ x ≤ 2−n+1, y = 0}, n = 1, 2, . . . . Then we fix α ≥ 1 and
β ≥ 1, and divide each of the segments In on 2[nβ] equal parts; here [·] stands
for the entire part. We denote the points of division of segment In by xnj
in decreasing order. Let pnj := {x + iy : xnj − Cn ≤ x ≤ xnj, 0 ≤ y ≤
2−n}. Here Cn = 1

2
aαn, where an is a distance between neighboring points of

division of segment In, i.e., an = 2−n−[nβ]. Then rectangles pnj are mutually

disjoint. We put D1 := S
⋃

(
∞⋃
n=1

2[nβ]⋃
j=1

pnj), and denote boundary of domain

D1 by Γ1. Clearly, this curve consists of infinite number of vertical and
horizontal segments condensing to the origin. The summary length of the

vertical segments is infinite. As shown in [6], dm(Γ1) =
2β

β + 1
for any α ≥ 1.

Thus, the upper Minkowskii dimension of Γ1 does not depend on α.
We consider weight w(z) = |z|−γ for real γ ∈ [0, 1). If point t does not

coincide with the origin, then its sufficiently small neighborhood contains a
rectifiable arc of Γ1. Hence, we have m+(Γ1; t;w) = m−(Γ1; t;w) = 1 for
t 6= 0.

It remains to consider the case t = 0. Immediate calculation shows that

the integral

∫∫
B(t,r)

⋂
D

|z|−γdxdy
distp(z,Γ1)

converges if and only if α(β + 1)(1 − p) >

β + γ − 1, i.e., m+(Γ1; 0;w) = 1− β + γ − 1

(β + 1)α
. Analogous consideration gives

m−(Γ1; 0;w) =
2− γ
β + 1

. Thus, by virtue of Lemma 2

m+(Γ1;w) = 1− β + γ − 1

α(β + 1)
, m−(Γ1;w) =

2− γ
β + 1

.

Example 2 We put S ′ = {x + iy : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} and D2 :=

S ′ \ (
∞⋃
n=1

2[nβ]⋃
j=1

pnj). Curve Γ2 := ∂D2 also consists of infinite number of verti-

cal and horizontal segments condensing to the origin. Clearly, the weighted
Marcienkiewicz exponents of this curve satisfies all relations from Example 1
if we replace the sign plus in the superscripts by minus and vice versa.
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Example 3 Let α ≥ 1, β > 1 and µ is the Lebesgue measure L. We con-
sider domain D1 from Example 1 and domain D2 from Example 2, and put
D3 := D2

⋃
D′, where D′ := {z : z − 1 ∈ D1}. Then curve Γ3 := ∂D3

consists of infinite number of vertical and horizontal segments condensing to

points 0 and 1. Then m+(Γ3; 0;L) = m−(Γ3; 1;L) =
2

β + 1
, m−(Γ3; 0;L) =

m+(Γ3; 1;L) = 1 − β − 1

α(β + 1)
, and m±(Γ3; t;L) = 1 for t 6= 0, 1. Thus,

m+(Γ3;L) = m−(Γ3;L) = 2 − dm(Γ3), but at each point t ∈ Γ3 at least one
of exponents m+(Γ3; t;L), m−(Γ3; t;L) is greater.

In connection with the last example we introduce one more version of the
Marcienkiewicz exponent.

Definition 5 Let Γ be a closed Jordan curve. We call value

m∗(Γ;µ) := inf{t ∈ Γ : max{m+(Γ; t;µ),m−(Γ; t;µ)}}

refined Marcienkiewicz exponent.

Thus, m(Γ3;L) = 2− dm(Γ3), but m∗(Γ3;L) > 2− dm(Γ3).

2 The Riemann boundary value problem on

a closed non-rectifiable curve

The Riemann boundary value problem is well known in complex analysis (see
[10, 11, 12]). In the present section we consider it on a closed Jordan curve.

Let a curve Γ divide the complex plane C into domains D+ and D− 3 ∞.
We seek a holomorphic in C \ Γ function Φ(z) satisfying equality

Φ+(t) = G(t)Φ−(t) + g(t), t ∈ Γ. (1)

The coefficients G(t) and g(t) are given. The boundary values of desired
function Φ+(t) and Φ−(t) are limits of Φ(z) for z tending to point t ∈ Γ from
domains D+ and D− correspondingly. The simplest case is so called jump
problem

Φ+(t)− Φ−(t) = g(t), t ∈ Γ. (2)
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The classical results here base on the properties of Cauchy integral

Φ(z) =
1

2πi

∫
Γ

g(t)dt

t− z
, z 6∈ Γ,

over piecewise-smooth curve Γ. If g satisfy the Hölder condition

sup

{
|g(t′)− g(t′′)|
|t′ − t′′|ν

: t′, t′′ ∈ Γ, t′ 6= t′′
}

:= hν(g,Γ) <∞

with exponent ν ∈ (0, 1], then (see, for instance [10, 11, 12]) the function
Φ(z) is holomorphic in C \ Γ and has boundary values Φ+(t) and Φ−(t)
satisfying equality (2). Thus, the Cauchy integral with density g ∈ Hν(Γ)
is a solution of jump problem (2). Problem (1) is reducible to the jump
problem. Hence, the whole theory of the Riemann boundary value problem
on piecewise-smooth curves reduces to application of the cited above result
on the boundary behavior of the Cauchy integral. But this integral is not
defined for non-rectifiable curves.

Let us describe a way for solving the Riemann problem on non-rectifiable
curves offered by B.A. Kats. Assume that g ∈ Hν(Γ); here and in what
follows Hν(Γ) stands for the set of all defined on Γ functions satisfying the
Hölder condition with exponent ν. We apply to g Whitney extension operator
E . As known (see, for instance, [13]), function u = Eg is defined on the whole
complex plane, u|Γ = g, u ∈ Hν(C), and hν(u,C) = hν(g,Γ). In addition,
the function u has partial derivatives of all orders in C \ Γ, and

|∇u(z)| ≤ hν(g,Γ)

dist1−ν(z,Γ)
. (3)

We consider function ϕ(z) = u(z)χ+(z), where χ+(z) is a characteristic func-
tion of domain D+. It equals to 1 for z ∈ D+ and to 0 for z ∈ D−. Clearly,
function ϕ(z) has a jump g on Γ, but it is not holomorphic in C \ Γ. In
[21, 22] that function is called a quasi-solution of the jump problem (2). We
turn it into a solution of the problem by means of transformation

R : ϕ(z) 7→ Φ(z) := ϕ(z)− 1

2πi

∫∫
C

∂ϕ

∂ζ

dζdζ

ζ − z
. (4)

It is representable as R = I − T ∂
∂ζ

, where I is the identity operator, and

T : f 7→ 1

2πi

∫∫
C

f(ζ)dζdζ

ζ − z
.
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The properties of potential T are well known (see, for instance, [23]). If f
has compact support and is integrable with certain exponent p > 2, then
Tf is continuous in the whole complex plane and satisfies there the Hölder

condition with exponent 1− 2

p
, and

∂

∂z
Tf = f(z). Thus, transformation R

regularizes quasi-solution ϕ if derivative
∂ϕ

∂z
is integrable in degree greater

than two. Inequality (3) means that the integrability of the first derivatives
of ϕ follows from integrability of function dist−1(z,Γ) in appropriate degrees.
As known (see, for instance, [19, 21]), it is locally integrable in C in any power
lesser than 2− dm Γ. As a result, there is valid

Theorem A If g ∈ Hν(Γ), ν > dm(Γ)/2, then the jump problem (2) is
solvable.

This is the first result on solvability of the Riemann boundary value problem
on non-rectifiable curves. It was announced in [18] and proved in [19].

But the inner Marcienkievicz exponent is the immediate characteristic of
integrability of dist−1(z,Γ) in D+. By virtue of inequality (3) and Definition

2 the derivative
∂ϕ

∂z
is integrable with exponent p > 2 and, consequently,

the problem (2) is solvable for ν > (2−m+(Γ;L))/2. Example 1 shows that
this condition for solvability of the jump problem is sharper than Theorem
A. But quasi-solution is not unique. Another quasi-solution with compact
support is ϕ(z) = u(z)(χ+(z) − ω(z)), where ω ∈ C∞0 (C) equals to 1 in
D+. This quasi-solution vanishes in D+, and integrability properties of its
derivatives is determined by the outer Marcienkievicz exponent of Γ. Hence,
the problem is solvable for ν > (2−m−(Γ;L))/2, and Example 2 shows that
this result is sharper than Theorem A, too. Thus, there is valid

Theorem B Let m := max{m+(Γ;L);m−(Γ;L)} and g ∈ Hν(Γ). If ν >
(2−m)/2, then the jump problem on a closed curve Γ has a solution Φ = Rϕ,
where ϕ is one of the described above quasi-solutions. This solution satisfies
in domains D+ and D− the Hölder condition with any exponent lesser than
1− 2(1− ν)/m.

This result was announced in other terms in [8, 9].
The curve from Example 3 has the same singularities as the curves from

Examples 1 and 2, but Theorems B and A give for curve Γ3 the same solvabil-
ity conditions. The following result includes it to the class of curves where
Theorem B improves Theorem A.
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Theorem 1 Let m∗ := m∗(Γ;L) and g ∈ Hν(Γ). If ν > (2 − m∗)/2, then
the jump problem on a closed curve Γ has a solution satisfying the Hölder
condition with any exponent lesser than 1− 2(1− ν)/m∗ in domains D+ and
D−.

Proof. Let us fix a valuem < m∗ such that ν > (2−m)/2. By definition of the
refined Marcienkiewicz exponent for any t ∈ Γ there exists radius r = r(t) > 0
such that either Im(Γ, t, r,L+) < ∞ or Im(Γ, t, r,L−) < ∞. The family of
balls {B(t, r) : t ∈ Γ} covers Γ. As set Γ is compact, since this family con-
tains a finite covering {Bj = B(tj, r(tj)) : j = 1, 2, . . . , n}. Let ψj ∈ C∞0 (C)
be a non-negative function with support Bj, j = 1, 2, . . . , n. Then restriction

σ(t) of sum
n∑
j=1

ψj on curve Γ is positive and σ ∈ H1(Γ). We put gj(t) :=

g(t)ψj(t)σ
−1(t), t ∈ Γ. Obviously, gσ−1 ∈ Hν(Γ). If Im(Γ, tj, r(tj),L+) <

∞, then we put ϕj := E(gσ−1)ψjχ
+, and if Im(Γ, tj, r(tj),L−) < ∞, then

ϕj := E(gσ−1)ψj(χ
+ − ω), where χ+ and ω are defined above. In the both

cases ϕj is a quasi-solution of the jump problem with jump gj, its regulariza-

tion Φj := Rϕj solves this problem. Hence, function Φ :=
n∑
j=1

Φj is solution

of the problem (2) satisfying all requirements of the theorem.
We will consider now the uniqueness of obtained solution by means of the

E.P. Dolzhenko theorem [24], as it was done in paper [19]. Let dhE stand for
the Hausdorff dimension of compact set E (see, for instance, [1, 3]), which is a
subset of domain G ⊂ C. The Dolzhenko theorem claims that if ν > dhE−1,
then any holomorphic in G \ E function F ∈ Hν(G) is holomorphic in G;
otherwise the Hölder space Hν(G) contains a function which is holomorphic
in G \E, but not in G. By virtue of this theorem difference of two solutions
of the problem (2) is a constant, if the both solutions satisfy Hölder condition
with exponent ν > dhΓ − 1 in D+ and in D−. In this connection we will
study the Riemann boundary problem (1) in what follows under additional
assumptions

Φ|D+ ∈ Hλ(D
+), Φ|D− ∈ Hλ(D

−), Φ(∞) = 0. (5)

Thus, solution of the jump problem (2) in class (5) is unique for λ > dhΓ−1.
Then we apply the standard factorization technique (see [10, 11, 12]) for

solving of problem (1). We fix a point z0 ∈ D+ and represent non-vanishing
coefficient G(t) as G(t) = (t − z0)κ exp f(t), where integer number κ is so
called index of the problem. Here f satisfies the Hölder condition with the
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same exponent as G, and we find solution Φ0 of the jump problem with
jump f by means of Theorem 1. Then we evaluate function X(z) equaling
to exp Φ0(z) for z ∈ D+, and to (z− z0)−κ exp Φ0(z) for z ∈ D−, and reduce
(1) to the jump problem

Φ+(t)

X+(t)
− Φ−(t)

X−(t)
=

g(t)

X+(t)
, t ∈ Γ.

The factor 1/X+ has intrinsic holomorphic extensions to D+ and to D−,
what allows us to build quasi-solutions of this problem and to regularize
them under assumptions of Theorem B (cf. [19]). We obtain

Theorem 2 Let m∗ := m∗(Γ;L), ν > (2−m∗)/2 and 1−2(1−ν)/m∗ > λ >
dhΓ− 1. If G, g ∈ Hν(Γ) and G(t) does not vanish, then there are valid the
following propositions on solvability of the Riemann boundary problem (1) in
the class (5):

— for κ = 0 the problem has a unique solution;
— for κ > 0 the problem has a family of solutions depending on κ arbi-

trary complex constants;
— for κ < 0 the problem has a unique solution if −κ solvability conditions

are fulfilled.

In other words, under assumptions of Theorem 2 the problem has just the
same solvability properties as in the classical case (see [10, 11, 12]).

3 The semi-continuous case.

The semi-continuous version of Riemann boundary problem allows violation
of equality (1) at a finite set of points of the curve Γ. We restrict ourselves
to the jump problem, i.e., we seek holomorphic in C \ Γ function Φ(z) such
that it has limit values Φ+(t) and Φ−(t) from D+ and D− correspondingly at
any point t ∈ Γ′ := Γ \ τ , τ := {t1, t2, . . . , tm} ⊂ Γ, and these values satisfy
relation

Φ+(t)− Φ−(t) = g(t), t ∈ Γ′. (6)

For definiteness we have to assume the desired function having prescribed
behavior at the points of set τ , for instance (see [10, 11, 12]),

Φ(z) = O(|z − tj|−γ), γ = γ(Φ) < 1, j = 1, 2, . . . ,m. (7)
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The set τ consists of discontinuity points of both Φ and g. If the curve is of
piecewise-smooth, then all discontinuities of solution Φ are caused by singu-
larities of jump g (see [10, 11, 12]). But in the case under consideration the
desired function can loss continuity at a point where the jump is continuous,
but local properties of the curve deteriorate; see [25], where this phenomenon
is described in terms of the box-counting dimension as ”paradoxical discon-
tinuities”. The Marcinkiewicz exponents seem to be more convenient for its
description. Put

w(z) =
m∏
j=1

|z − tj|−γj , 0 ≤ γj < 1, j = 1, 2, . . . ,m,

g = wg0, g0 ∈ Hν(Γ). We consider local quasi-solutions ϕj(z) := w(z)ξj(z)
where ξj equals either E(g0σ

−1)ψjχ
+ or wE(g0σ

−1)ψj(χ
+ − ω), ψj, σ and ω

are the same functions as in the proof of Theorem 1. The sum ϕ =
n∑
j=1

ϕj

is a global quasi-solution. Clearly, the integrability properties of
∂ϕ

∂z
are

determined by derivatives

∂wξj
∂z

= w
∂ξj
∂z
− vj(z), vj(z) := w(z)ξj(z)

m∑
j=1

γj
2(z − tj)

. (8)

The functions T (vj) is continuous in C \ tj, and equals to O(|z − tj|−γj)
at point tj (see, for example, [23]). Integrability of the first term of (8) is
characterized by the Marcinkiewicz exponents with weight w. We conclude
by means of well known estimates for potential T (see [23]) that function

potential Uj := T

(
w
∂ξj
∂z

)
exists if either ν > 1 − m+(Γ; tj;w) or ν >

1 − m−(Γ; tj;w), it satisfies bound Uj(z) = O(|z − tj|−γ
′
j), γj < γ′j < 1,

near point tj, and it is continuous in C \ tj for ν > (2 − m∗j)/2, m∗j :=
inf{max{m+(Γ; t;L),m−(Γ; t;L)} : t ∈ Γ \ tj}. As a result, we obtain

Theorem 3 Let g = wg0, g0 ∈ Hν(Γ), ν > 1 − m∗(Γ;w), and ν > (2 −
m′)/2 where m′ := inf{max{m+(Γ; t;L),m−(Γ; t;L)} : t ∈ Γ′}, then the
jump problem (6) has a solution satisfying (7).

Of course, in general a solution of the semi-continuous jump problem cannot
satisfy condition (5), and we have to introduce another uniqueness class.
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But we do not discuss this question in the present paper. The same concerns
apply to the jump problem on non-rectifiable arc (see next section).

Example 4 Let Γ1 be the curve from Example 1, w(z) = |z|−γ, 0 ≤ γ < 1.
We know that the curve is rectifiable outside of any neighborhood of origin,

i.e., m±(Γ1; t;L) = m±(Γ1; t;w) = 1 for t 6= 0, m+(Γ1; 0;w) = 1− β + γ − 1

(β + 1)α
,

and m−(Γ1; 0;w) =
2− γ
β + 1

. Hence, m′ = 1, m∗(Γ;w) = 1 − β + γ − 1

(β + 1)α
.

Thus, the jump problem (6) has a solution satisfying (7) under condition

ν > max

{
1

2
,
β + γ − 1

(β + 1)α

}
. 1

4 Non-rectifiable arcs

Let Γ be simple directed plane non-rectifiable arc beginning at point t1 and
ending at point t2. We put Γ′ := Γ \ {t1, t2}, and consider the jump problem
(6) on open arc Γ′. In this section we understand Φ+(t) and Φ−(t) as limit
values of Φ(z) at a point t ∈ Γ′ from the left and from the right correspond-
ingly. The main difference of the jump problems for closed curves and for
open arcs is connected with the fact, that in the case of open arcs we can-
not use function χ+ in constructions of quasi-solutions. Here we offer two
approaches to overcome this obstacle.

4.1 Local analysis

We need an analog of the inner and outer Marcinkiewicz exponents at a point
t ∈ Γ′.

Definition 6 Let t ∈ Γ′. We fix small positive radius r such that Γ divides
disk B(t, r) on left and right components B+ and B−. The left and right
local Marcinkiewicz exponents of arc Γ with respect to measure µ at point t
are m+(Γ; t;µ) := m(Γ; t;µ+) and m−(Γ; t;µ) := m(Γ; t;µ−), where µ+ and
µ− are restrictions of measure µ on components B+ and B− correspondingly.
We put m∗(Γ; t;µ) := max(m+(Γ; t;µ),m−(Γ; t;µ)).

1The term
1

2
can be omitted, because Γ1 is piecewise-smooth outside of any neighbor-

hood of the origin.
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We say that a point t ∈ Γ satisfies condition of smooth touch (ST-condition)
if there exists a smooth arc λ such that the intersection λ ∩ Γ consists of
the point t. As shown in [26], the set ST (Γ) of all points t ∈ Γ satisfying
ST-condition is everywhere dense in Γ.

We study first the case t1,2 ∈ ST (Γ). Then there exists a smooth arc Λ
beginning at t1 and ending at t2, which has not other common points with Γ.
Then union Γ∗ := Γ∪Λ is simple closed curve, m±(Γ∗; t;L) = m±(Γ; t;L) for
t ∈ Γ′, and m±(Γ∗; t;L) = 1 for t ∈ Λ \ {t1, t2}. Put m±(Γ); t1,2;L) :=
m±(Γ∗; t1,2;L), m∗(Γ; t1,2;L) := max(m+(Γ); t1,2;L),m−(Γ); t1,2;L)); these
values do not depend on the choice of arc Λ. We extend jump g ∈ Hν(Γ) on
Γ∗ (for instance, by the Whitney extension operator E), and find a solution
Φ∗ of the jump problem on the closed curve Γ∗ with the extended jump by
means of Theorem 1. Then difference

Φ(z) := Φ∗(z)− 1

2πi

∫
Λ

Eg(t)dt

t− z

is a solution of the jump problem on Γ, and its behavior at the points t1,2 is
determined by well known properties of its integral term (see [10, 11, 12]).
Thus, there is valid

Theorem 4 Let t1,2 ∈ ST (Γ), m∗ := inf{m∗(Γ; t;L) : t ∈ Γ} and g ∈ Hν(Γ).
If ν > (2−m∗)/2, then the jump problem (6) on arc Γ has a solution satisfying
estimates

Φ(z) = (−1)j ln |z − tj|+O(1), z → tj, j = 1, 2.

Here and in what follows a uniqueness class for solutions of the jump problem
can be described in terms of the Hausdorff dimension (see [24]).

Then we consider a situation where the points t1,2 do not satisfy the ST-
condition. For instance, spiral arc {z = r exp ir−γ : 0 < r ≤ 1} ∪ {0}, γ > 0,
does not allow smooth touch at the origin. But set ST (Γ) is dense in Γ, and,
consequently, Γ is representable as union of either finite or countable family
of mutually disjoint arcs Γj with ends from this set. If the family of arcs is
countable, then without loss of generality we consider that t1,2 are the only
limit points of their ends. According Theorem 4, we find solutions Φj of the

jump problems on arcs Γj with jumps g|Γj . Then we regularize series
+∞∑
j=1

Φj

as it is done in the known proof of Mittag–Leffler Theorem (see, for instance,
[27]), and obtain
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Theorem 5 Let m∗ := inf{m∗(Γ; t;L) : t ∈ Γ′}. If g satisfies the Hölder
condition with exponent ν outside of arbitrarily small neighborhoods of points
t1,2, and ν > (2−m∗)/2, then the jump problem (6) is solvable.

Note that the last theorem treats the jump problem free of any restrictions
on behavior of solutions at the end-points t1,2.

4.2 Logarithmic kernel

We consider function

kΓ(z) :=
1

2πi
ln
z − t2
z − t1

, z ∈ C \ Γ, (9)

where branch of the logarithmic function is determined by cut along arc Γ.
In the case tj ∈ ST (Γ) we have kΓ(z) = O(ln |z − tj|−1) for z → tj, j = 1, 2.
In general the rate of growth of kΓ(z) for z → t1,2 can be arbitrarily high (see
Example 5 below). B.A. Kats [26] offered to use this function in constructions
of quasi-solutions of the jump problems on arcs. Obviously,

k+
Γ (t)− k−Γ (t) = 1, t ∈ Γ′,

i.e. product kΓEg is a quasi-solution of problem (6) for g ∈ Hν(Γ). Its
regularization leads in [26] to the following result.

Theorem C Let kΓ(z) = O(|z − tj|−λj) for z → tj, j = 1, 2. If g ∈ Hν(Γ),
ν > dm Γ/2, and λj < (2ν − dm Γ)/(2 − dm Γ), then jump problem (6) has
a solution satisfying estimate Φ(z) = g(tj)kΓ(z) +O(1) for z → tj, j = 1, 2.

The concept of weighted Marcinkiewicz exponents implies the following shar-
pening of this theorem.

Theorem 6 Let kΓ ∈ Lloc(C). If g ∈ Hν(Γ), ν > (2 − m(Γ, |kΓ|))/2, then
jump problem (6) has a solution satisfying estimate Φ(z) = g(tj)kΓ(z)+O(1)
for z → tj, j = 1, 2.

The local exponents allow us to obtain the following complement of this
result. Let us fix two points t̃1,2 ∈ ST (Γ). They divide Γ into three arcs: arc
Γ1 beginning at t1 and ending at t̃1, arc Γ2 beginning at t̃1 and ending at t̃2,
and arc Γ3 beginning at t̃2 and ending at t2. We consider the jump problems
on these arcs. The problem for arc Γ2 is solved in Theorem 4. Theorem 6
describes solutions for arcs Γ1 and Γ2. As points t̃1,2 are arbitrarily close to
t1,2, then their solvability is determined by local exponents m(Γ; t1,2; |kΓ|).
We obtain
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Theorem 7 Let kΓ ∈ Lloc(C), m∗ := inf{m∗(Γ; t;L) : t ∈ Γ′}, mend :=
min{m(Γ; tj; |kΓ|) : j = 1, 2}. If g ∈ Hν(Γ), ν > (2−m∗)/2, and ν > 1−mend,
then jump problem (6) has a solution. If, in addition, ν > (2−mend)/2, then
it has a solution satisfying estimate Φ(z) = g(tj)kΓ(z) + O(1) for z → tj,
j = 1, 2.

Example 5 We fix a positive value q, and consider infinite sequence of
points z1 = 1, z2+4k = −z4(k+1) = 1+i

(k+1)q
, z3+4k = −z5+4k = 1−i

(k+1)q
for

k = 0, 1, 2, . . . . We connect consecutive points zn and zn+1 by segment Sn,

and build arc Γ = {0}
⋃(+∞⋃

n=1

Sn

)
beginning at the origin and ending at point

z1 = 1. Clearly, the length of arc Γ is finite length for q > 1, and infinite
for q ≤ 1; all points of Γ excluding origin satisfy the ST−condition. Im-
mediate calculations show that kΓ(z) = (2πi)−1 ln |z − 1| + O(1) for z → 1,
and kΓ(z) = O(|z|−1/q) for z → 0. Hence, kΓ ∈ Lloc(C) for q > 1/2. As the
arc is locally rectifiable everywhere excluding origin, then m±(Γ; t;L) = 1 for
t ∈ Γ′, m(Γ; 1;L) = m(Γ; 1; |kΓ|) = 1. For q > 1 we have m(Γ; 0;L) = 1, too.
Easy evaluation shows that for q < 1 we have m(Γ; 0;L) = 2q/(q + 1), and
m(Γ; 0; |kΓ|) = (2q − 1)/(q + 1) for 1/2 < q < 1.

By virtue of Theorem 5 the jump problem on this arc has a solution free
of restrictions at its ends for ν > 1/2, but as the arc is piecewise-smooth
outside of any neighborhood of origin, then that solution exists for any ν >
0. For q > 1/2, ν > 1.5(1 + q)−1 it has a solution satisfying estimates
Φ(z) = g(tj)kΓ(z) +O(1) for z → tj, j = 1, 2.

Probably, we can apply the Marcinkiewicz exponents in the boundary
value problems for various versions of generalized analytic functions on non-
rectifiable curves.
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