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Abstract

We consider an optimal control problem of a system governed by
a linear parabolic equation with the following features: control is dis-
tributed, observation is either distributed or �nal, there are constraints
on the state function and on its time derivative. Iterative solution
methods are proposed and investigated for the �nite di�erence ap-
proximations of these optimal control problems. Due to explicit in
time approximation of the state equation and the appropriate choice
of the preconditioners in the iterative methods, the implementation of
all constructed methods is carried out by explicit formulaes. Compu-
tational experiments con�rm the theoretical results.

Key words: optimal control, �nite di�erence method, constrained saddle
point problem, iterative method

Introduction

State constraints in optimal control of systems governed by partial dif-
ferential equations play an important role in many real world applications.
For instance, in continuous casting process a need to prevent the cracks in
a slab and the solidi�cation at a wrong place leads to the bounds on the
temperature variable ([1] and bibliography therein). Similar demands arise
in the processes of crystal growth [2] and cooling of glass melts [3].

A lot of contributions are known on elliptic optimal control problems with
pointwise bounds on the state ([4] � [8]) and on the gradient of state ([9] �
[14]). On the other hand, only a few articles deal with parabolic optimal
control problems with pointwise bounds on the state [15], [16]. In our best
knowledge, numerical analysis of parabolic optimal control problems with
pointwise bounds on the time derivative for the state has not yet considered
in the literature.

In this paper we consider a parabolic optimal control problem in a paral-
lelepiped with distributed control, distributed or �nal observation, and point-
wise constraints on the control, state and on time derivative of state. We
approximate this problem by a �nite di�erence scheme and construct precon-
ditioned Uzawa-type iterative solution methods for the corresponding mesh
(�nite-dimensional) problems.
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The constructed iterative methods have the following two basic properties
of the preconditioners: �rst, they are energy equivalent to the "main" matrix
of the problem with the constants of the equivalence which don't depend on
mesh parameters, and, secondly, they are easily invertible. The �rst property
of the preconditioners provides the rate of convergence which doesn't depend
on the mesh sizes for the problems without state constraints. Similar prop-
erty is not proved for the state constrained problems but it was observed in
the numerical experiments. To get the easily implementable algorithms we
construct the saddle point problems with block triangle matrices acting on
the direct variables (following the results of [17]). Note, that applying the
augmented Lagrangian methods [18], [19] we loose the explicit form of the
algorithms despite of the explicit in time approximation of the state equa-
tion, namely, we are forced to solve a variational inequality for state mesh
function on each iterative step.

This article continues the investigations of [17], [20]-[26] on the iterative
solution methods for the constrained saddle point problems with applications
to optimal control problems.

1. Formulation of the problem, approximation

Let Ω = (0, 1)n, QT = Ω × (0, T ], Σ = ∂Ω × (0, T ] and homogeneous
Dirichlet initial-boundary value problem

∂y

∂t
−∆y = u in QT ; y = 0 on Σ = ∂Ω× (0, T ]; y(x, 0) = 0, (1)

describes the state of a system. Here y(x, t) and u(x, t) are state and control
functions. For any u ∈ L2(QT ) there exists a unique solution of problem (1),

such that y ∈ L2(0, T ;H
1
0 (Ω)),

∂y

∂t
∈ L2(QT ), and the following inequality

takes place: (cf., e.g. [28], p.370):

∥y∥L2(0,T ;H1
0 (Ω)) + ∥∂y

∂t
∥L2(QT ) 6 c∥u∥L2(QT ). (2)

Let the goal function be de�ned as

J(y, u) =
γ1
2

∫
QT

(y(x, t)−yd(x, t))2dxdt+
γ2
2

∫
Ω

(y(x, T )−zd(x))2dx+
α

2

∫
QT

u2dxdt,

with given functions yd ∈ L2(QT ), zd ∈ L2(Ω), and constants α > 0, γ1 > 0,
γ2 > 0 such that γ1+γ2 > 0. Finally, de�ne the sets of point-wise constraints
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for state, time derivative of state and control:

Uad = {u ∈ L2(QT ) : |u(x, t)| 6 umax a.e. (x, t) ∈ QT},

Yad = {y ∈ L2(0, T ;H
1
0 (Ω)) :

∂y

∂t
∈ L2(QT ), ymin 6 y(x, t) 6 ymax

and dymin 6 ∂y

∂t
6 dymax a.e. QT}.

Above ū > 0, ymin, dymin > −∞, and ymax, dymax 6 ∞. We solve the following
optimal control problem:

min
(y,u)∈K

J(y, u),

K = {(y, u) ∈ Yad × Uad : state equation (1) is satis�ed}.
(3)

Lemma 1. Problem (3) has a unique solution.

Proof. The sets Uad and Yad are convex and closed, moreover Uad is bounded.
These properties together with linearity of state equation and stability in-
equality (2) ensure that the set K is convex, closed and bounded. Functional
J is continuous and strictly convex on K. Because of all these properties of
K and J problem (3) has a unique solution.

Construct a �nite-di�erence approximation of problem (3) using a uni-
form in x and t mesh ωx × ωt in Q̄T , where ωx is the uniform mesh of the
meshsize h on Ω̄, cardωx = Nx, and ωt = {tj = jτ, j = 0, 1, . . . Nt; Ntτ = T}.
Further we use the notations y, u, ... for the mesh functions and for the vec-
tors of their nodal values as well. By yj = y(x, tj) ∈ RNx we denote the
values on a time level tj = jτ ∈ ωt of a mesh function of x and t, and by ∥.∥x
� euclidian norm in the space RNx .

Let A be the sti�ness matrix of mesh Laplasian with homogeneous Dirich-
let boundary conditions. It is well-known that the matrix A is symmetric
with the spectrum in a segment [ξ0, ξ1], where ξ1 is of order h

−2, while ξ0 > 0
is bounded below by a constant which doesn't depend on h.

We approximate state problem (1) by an explicit (forward Euler) �nite-
di�erence scheme

yj − yj−1

τ
+ Ayj−1 = uj, j = 1, 2, . . . , Nt, y0 = 0, (4)

in the supposition τ 6 2

ξ1
that ensures its stability.
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Let the functions yd and zd be continuous. Further we use the same
notations yd and zd for the mesh functions and the vectors of their nodal
values. De�ne a mesh goal function and the sets of the constraints:

Jh(y, u) =
γ1
2

Nt∑
j=1

τ∥yj − ydj∥2x +
γ2
2
∥yNt − zd∥2x +

α

2

Nt∑
j=1

τ∥uj∥2x, (5)

Uh
ad = {u : |u(x, t)| 6 ū ∀x ∈ ωx,∀t ∈ ωt},

Y h
ad = Y h

0

∩
Y h
1 , Y

h
0 = {y : ymin 6 y(x, t) 6 ymax, ∀x ∈ ωx,∀t ∈ ωt},

Y h
1 = {y : τdymin 6 y(x, t)− y(x, t− τ) 6 τdymax (y0 = 0) ∀x ∈ ωx,∀t ∈ ωt}.

The mesh optimal control problem reads as follows:

min
(y,u)∈Kh

Jh(y, u),

Kh = {(y, u) ∈ Y h
ad × Uh

ad : (4) is satis�ed}.
(6)

Lemma 2. Problem (6) has a unique solution.

Proof. The set Kh is a convex compact and the quadratical function Jh(y, u)
is continuous and strictly convex on Kh, whence the statement of the lemma
follows.

Let us rewrite problem (6) in a "vector-matrix" form. To this end we
use the following notations: N = NtNx, (., .) and ∥.∥ are the inner product
and the norm in RN , E ∈ RN×N is the unit matrix. Let also matrices
L,M ∈ RN×N be de�ned by the equalities:

(Ly)j = {yj − yj−1

τ
+ Ayj−1 for j = 2, . . . , Nt;

y1
τ

for j = 1},

(My)j = {0 for j = 1, . . . , Nt − 1;
1

τ
E for j = Nt}.

With these notations mesh goal function (5) becomes

I(y, u) =
γ1
2
∥y − yd∥2 +

γ2
2
(M(y − zd), y − zd) +

α

2
∥u∥2.

Introducing block two-diagonal matrixR ∈ RN×N , (Ry)j = {yj−yj−1 for j =
2, . . . , Nt; y1 for j = 1}, we replace the constraint y ∈ Y h

1 in problem (6) by
the constraints

p = Ry; p ∈ P h
ad = {τdymin 6 pj 6 τdymax, j = 1, 2, . . . Nt}.
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At last, denote by ψ, θ and φ the indicator functions of the sets Y h
0 , P

h
ad and

Uh
ad, respectively.
Finally we obtain the following algebraic form of mesh optimal control

problem (6):
min

Ly=u, p=Ry
{I(y, u) + ψ(y) + θ(p) + φ(u)}. (7)

2. Mesh saddle point problems

Construct Lagrange function for problem (7):

L(y, u, p, λ, µ) = I(y, u) + ψ(y) + θ(p) + φ(u) + (λ, Ly − u) + (µ,Ry − p).

A saddle point of this Lagrangian satis�es the following saddle point problem
(cf., e.g. [27], p.169):
γ1E + γ2M 0 0 LT RT

0 αE 0 −E 0
0 0 0 0 −E
L −E 0 0 0
R 0 −E 0 0



y
u
p
λ
µ

+


∂ψ(y)
∂φ(u)
∂θ(p)
0
0

 ∋


γ1yd + γ2Mzd

0
0
0
0

 ,

(8)
where ∂ψ(y), ∂φ(u) and ∂θ(p) are the subdi�erentials of the corresponding
functions. With the notations z = (y, u, p)T , η = (λ, µ)T , f = (γ1yd +
γ2Mzd, 0, 0)

T , Ψ(z) = ψ(y) + θ(p) + φ(u) and

A =

γ1E + γ2M 0 0
0 αE 0
0 0 0

 , B =

(
L −E 0
R 0 −E

)

problem (8) can be rewritten in a compact form:(
A BT

B 0

)(
z
η

)
+

(
∂Ψ(z)

0

)
∋
(
f
0

)
(9)

When investigating the solvability of problem (8) we use the following result:

Proposition 1. ([21]) Let the following assumptions be satis�ed:

matrix A ∈ Rm×m is positive semide�nite
and positive de�nite on the kernel KerB of matrix B,

(10)
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matrix B ∈ Rs×m has a full column rank: rankB = s 6 m, (11)

Ψ : Rm → R is a convex, proper and lower semicontinuous function,
(12)

{z ∈ Rm : Bz = 0} ∩ int domΨ ̸= ∅. (13)

Then problem (9) has a non-empty set of the solutions X = {(z, η)}, and z
is unique.

Lemma 3. Let τ 6 1

ξ1
. Then the following inequalities take place:

(Ly, y) > ξ0
2
(y, y), (Ly, y) > 1

2
(My, y) ∀y. (14)

Proof. Set y0 = 0 and using the inequality τ 6 1

ξ1
we get

(Ly, y) =
Nt∑
j=1

(
yj − yj−1

τ
+Ayj−1, yj)x =

1

2τ

Nt∑
j=1

(∥yj∥2x−∥yj−1∥2x+∥yj−yj−1∥2x)+

+
Nt∑
j=1

((Ayj−1, yj−1)x+(Ayj−1, yj−yj−1)x) >
1

2τ
∥yNt∥2x+

1

2

Nt∑
j=1

((Ayj−1, yj−1)x+

+
Nt∑
j=1

(
1

2τ
∥yj−yj−1∥2x−

1

2
(A(yj−yj−1), yj−yj−1)x)) >

1

2τ
∥yNt∥2x+

1

2

Nt∑
j=1

(Ayj−1, yj−1)x.

This estimate together with the inequality ((Ayj−1, yj−1)x > ξ0∥yj−1∥2x yield
both inequalities in (14).

Henceforth we suppose τ 6 1

ξ1
, so, inequalities (14) are true.

Theorem 1. Problem (8) has a solution (y, u, p, λ, µ) with unique y, u, p,
which coincide with the solution of problem (7).

Proof. We prove that all assumptions (10) � (12) and (13) of proposition
1 are satis�ed for problem (8). To prove (10) we use the de�nition of the
kernel of matrix B, namely, KerB = {(y, u, p) : Ly = u,Ry = p}, and the
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inequalities (Ly, y) > ξ0
2
(y, y) and ∥Ry∥ 6 2∥y∥. Then for (y, u, p) ∈ KerB

we get:

(Az, z) > α∥u∥2 > α

2
∥u∥2 + α

2
∥Ly∥2 > α

2
∥u∥2 + αξ0

8
∥y∥2 + αξ0

32
∥p∥2.

The validity of assumptions (11), (12) follow from the de�nitions of matrix
B and function Ψ. At last, vector (y0, u0, p0) = (0, 0, 0) satis�es assumption
(13). So, all assumptions (10) � (12) and (13) are satis�ed for problem (8),
and it has a solution (y, u, p, λ, µ) with unique y, u, p due to proposition 1

As matrix A is only positive semide�nite we can't use Udzawa-type meth-
ods for solving problem (8). Because of this we make some equivalent trans-
formations of (8) by using one or two last equations of this system to get
a saddle point problem with a positive de�nite matrix. For the technical
simplicity we consider only two particular cases of optimal control problem,
namely, γ1 = 1, γ2 = 0, that corresponds to a problem with distributed
observation, and γ1 = 0, γ2 = 1, that corresponds to a problem with �nal
observation. Let us emphasize that investigation of the problem with γ1 > 0
and γ2 > 0 is very similar to that in the case γ1 = 1, γ2 = 0, while the case
of γ1 = 0, γ2 = 1 is a challenging problem.

In the case γ1 = 1, γ2 = 0 we add the equality r(p − Ry) = 0, r > 0 to
third row (inclusion) in system (8) and obtain

E 0 0 LT RT

0 αE 0 −E 0
−rR 0 rE 0 −E
L −E 0 0 0
R 0 −E 0 0



y
u
p
λ
µ

+


∂ψ(y)
∂φ(u)
∂θ(p)
0
0

 ∋


yd
0
0
0
0

 . (15)

In the case γ1 = 0, γ2 = 1 we add the equality r1α(Ly−u) = 0, r1 > 0 to the
�rst row in (8) and r2α(p − Ry) = 0, r2 > 0 to the third one. It results in
the following saddle point problem:

M + r1αL −r1αE 0 LT RT

0 αE 0 −E 0
−r2αR 0 r2αE 0 −E
L −E 0 0 0
R 0 −E 0 0



y
u
p
λ
µ

+


∂ψ(y)
∂φ(u)
∂θ(p)
0
0

 ∋


Mzd
0
0
0
0

 .

(16)
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Below we prove the positive de�niteness of the matrices of these saddle point
problems

A1r =

 E 0 0
0 αE 0

−rR 0 rE

 and A2r =

M + r1αL −r1αE 0
0 αE 0

−r2αR 0 r2αE

 (17)

for the appropriate choice of the parameters r and r1, r2.

Lemma 4. For 0 < r < 1 matrix A1r of system (15) is positive de�nite
and spectrally equivalent to a block diagonal matrix A0 = diag

(
E, αE, rE

)
:

(1−
√
r)(A0z, z) 6 (A1rz, z) 6 (1 +

√
r)(A0z, z) ∀z = (y, u, p). (18)

Proof. It su�ce to use the inequality |(Ry, p)| 6 2∥y∥∥p∥ 6 r−1/2∥y∥2 +
r1/2∥p∥2 when estimating (A1rz, z) = ∥y∥2 + α∥u∥2 + r∥p∥2 − r(Ry, p).

To investigate the properties of the matrix A2r we de�ne a domain

Ω(r1, r2) = {0 < r1 < 2ξ0, 0 < r2 < r1ξ0/2− r21/4}} (19)

(recall that ξ0 is the minimal eigenvalue of the matrix A), and a quadratical
form

Q(s1, s2, s3) = r1s
2
1 + s22 + r2s

2
3 − r1

√
2

ξ0
s1s2 − 2r2

√
2

ξ0
s1s3. (20)

Let s and s be the minimal and maximal eigenvalues of this quadratical form.
By direct calculations one can check that 0 < s < 1 if (r1, r2) ∈ Ω(r1, r2).
The constants s, s depend only on ξ0 and the distance between (r1, r2) and
the boundary of the domain Ω(r1, r2). Choosing (r1, r2) "in the middle" of

Ω(r1, r2) (for example, r1 = ξ0, r2 =
ξ20
8
), we obtain s, s which don't depend

on the mesh steps τ and h.

Lemma 5. Let (r1, r2) ∈ Ω(r1, r2). Then matrix A2r of system (16)
is positive de�nite and energy equivalent to block diagonal matrices A00 =
diag

(
M + αL0, αE, αE

)
and Ã0 = α diag(L0, E,E), L0 = 0.5(L+ LT ):

s(A00z, z) 6 (A2rz, z) 6 s(A00z, z) ∀z = (y, u, p), (21)

s(Ã0z, z) 6 (A2rz, z) 6 (1 + 2/α)s(Ã0z, z) ∀z = (y, u, p). (22)
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Proof. By using the inequalities |(Ry, p)| 6 2∥y∥∥p∥ and (L0y, y) = (Ly, y) >
ξ0
2
∥y∥2 we obtain left estimate in (21):

(A2rz, z) = (My, y) + α
(
r1(L0y, y) + ∥u∥2 + r2∥p∥2 − r1(y, u)−

− r2(Ry, p)
)
> (My, y) + αQ(L

1/2
0 y, u, p) > (My, y)+

+ αs(∥L1/2
0 y∥2 + ∥u∥2 + ∥p∥2) > s(A00z, z). (23)

The right estimate (A2rz, z) 6 s(A00z, z) can be proved similarly.
Now, (L0y, y) > 1/2(My, y) due to (14), therefore A00 is spectrally equiv-

alent to the matrix Ã0 = α diag(L0, E, E):

(Ã0z, z) 6 (A00z, z) 6 (1 + 2/α)(Ã0z, z). (24)

The estimates (22) follow from inequalities (21) and (24).

3. Iterative solution methods for problems (15) and (16)

We will use the following result on the convergence of Uzawa-type method
for solving (9):

Proposition 2. ([17]) Let matrix A be positive de�nite and the assump-
tions (11)� (13) be satis�ed. Let one of the following equivalent condition
hold:

(Az, z) > (1 + ε)ρ

2
(D−1Bz,Bz) ∀z ∈ Rm (25)

or

(Dη, η) > (1 + ε)ρ

2
(A−1

s BTη,BTη) ∀η ∈ Rs, (26)

with ε > 0, As = 0.5(A+AT ) and a symmetric and positive de�nite matrix
D. Then Uzawa-type method with preconditioner D

Azk+1 + ∂Ψ(zk+1) ∋ BTηk + f,
1

ρ
D(ηk+1 − ηk) +Bzk+1 = 0, ρ > 0

(27)

converges for any initial guess η0: (zk, ηk) → (z∗, η∗) ∈ X for k → ∞.
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Stopping criterion. As a stopping criterion of the iterations (27) we use
the smallness of the norm of the residual (cf. [21], [23]). Namely, since we
suppose that the inclusion Azk + ∂Ψ(zk) ∋ BTηk−1 + f is solved exactly,
then we control only the norm of the residual vector rkη = Bzk. The vector
of error of k-th iteration (z∗ − zk, η∗ − ηk−1)T satis�es the system(

A −BT

B 0

)(
z∗ − zk

η∗ − ηk−1

)
+

(
∂Ψ(z∗)− ∂Ψ(zk)

0

)
∋
(

0
−rkη

)
.

Multiplying this system by (z∗ − zk, η∗ − ηk−1)T and using the monotonicity
of ∂Ψ, we get

(A(z∗ − zk), z∗ − zk) 6 (rkη , η
k−1 − η∗) 6 ∥rkη∥D−1∥η∗ − ηk−1∥D = o(∥rkη∥D−1).

(28)
So, for a positive de�nite matrix A inequality (28) gives a posteriori estimate
for the iterations error of method (27)

Choice of a preconditioner. The inequalities (25), (26) give the su�cient
convergence conditions of iterative method (27) with a wide class of the pairs
(D, ρ) � a preconditioner and an iterative parameter. Since the problem is
�nite dimensional, these inequalities are true for any symmetric and posi-
tive de�nite matrix D with an appropriate parameter ρ. So, the main task is
constructing the preconditioners for which inequalities (25), (26) are satis�ed
if ρ ∈ (0, ρ0) with ρ0 independent on mesh steps τ and h. The motivation
of this task is that in the case of unconstrained problem (∂Ψ = 0) the op-
timal preconditioner in method (27) is a matrix D spectrally equivalent to
BA−1

s BT :

c0(BA−1
s BTη, η) 6 (Dη, η) 6 c1(BA−1

s BTη, η) ∀η,

and the rate of convergence of (27) depends on c0/c1.
Thus, further we construct for problems (15) and (16) the easily imple-

mentable block-diagonal preconditioners which are spectrally equivalent to
BA−1

s BT with constants c0 and c1 independent on τ and h.
First, we apply method (27) to solving problem (15).

Lemma 6. For 0 < r < 1 the matrix BA1rs
−1BT , A1rs = 0.5(A1r+A

T
1r),

is spectrally equivalent to block-diagonal matrix

D = diag
(
(L+ α−1/2E)(LT + α−1/2E), r−1E

)
. (29)
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In particular,

BA1rs
−1BT 6 (1−

√
r)−1(

√
1 + r − r)−2D. (30)

Proof. Due to lemma 4 the matrix BA1rs
−1BT is spectrally equivalent to

D̃ = BA−1
0 BT :

(1 +
√
r)−1D̃ 6 BA1rs

−1BT 6 (1−
√
r)−1D̃. (31)

It rests to prove that D̃ is spectrally equivalent to D.

Let η = (λ, µ). Since D̃ =

(
LLT + α−1E LRT

RLT RRT + r−1E

)
, then using

the inequality ∥RTµ∥ 6 2∥µ∥ we obtain:

(D̃η, η) = ∥LTλ+RTµ∥2 + α−1∥λ∥2 + r−1∥µ∥2 6 (1 +
1

ε
)∥LTλ∥2+

+ (1 + ε)∥RTµ∥2 + α−1∥λ∥2 + r−1∥µ∥2 6 (1 +
1

ε
)∥LTλ∥2 + α−1∥λ∥2+

+(1+4r(1+ε))r−1∥µ∥2 6 (1+
1

ε
)∥LTλ+α−1/2λ∥2+(1+4r(1+ε))r−1∥µ∥2, ε > 0.

For ε =

√
1 + r − r

2r
the inequality (D̃η, η) 6 (

√
1 + r − r)−2(Dη, η) holds.

From here and (31) inequality (30) follows.
Further, since ∥LTλ+α−1/2λ∥2 6 2∥LTλ∥2+2α−1∥λ∥2 then for any δ > 1

we get

(D̃η, η) > (1− 1

δ
)∥LTλ∥2 + (1− δ)∥RTµ∥2 + α−1∥λ∥2 + r−1∥µ∥2 >

> 1

2
(1− 1

δ
)∥LTλ+ α−1/2λ∥2 + (1 + 4r(1− δ))r−1∥µ∥2.

If δ ∈ (1, 1+
1

4r
), then (D̃η, η) > c0(δ)(Dη, η), c0(δ) > 0. From here and (31)

inequality BA1rs
−1BT > (1 +

√
r)−1c0(δ)D follows.

Method (27) for problem (15) with preconditioner (29) reads as follows:

yk+1 + ∂ψ(yk+1) ∋ yd − LTλk −RTµk,
αuk+1 + ∂φ(uk+1) ∋ λk,

rpk+1 + ∂θ(pk+1) ∋ rRyk+1 + µk,

(L+ α−1/2E)(LT + α−1/2E)
λk+1 − λk

ρ
= Lyk+1 − uk+1,

µk+1 − µk

rρ
= Ryk+1 − pk+1.

(32)

11



Theorem 2. Method (32) converges for any initial guess (λ0, µ0) if

0 < r < 1, 0 < ρ < 2(1−
√
r)(

√
1 + r − r)2. (33)

Proof. In virtue of inequality (30) the convergence condition of proposition

2, namely, (Dη, η) > (1 + ε)ρ

2
(A−1

1rsB
Tη,BTη), is true for the parameters r, ρ

from (33). The validity of all other assumptions of proposition 2 is proved in
theorem 1.

When implementing method (32) one has to solve the inclusions with
respect yk+1, uk+1 and pk+1, and a system of linear equations with matrix
(L+ α−1/2E)(LT + α−1/2E). As the matrices and the operators of the men-
tioned inclusions have diagonal form then their solving reduces to pointwise
projection. In turn, the matrices L+ α−1/2E and LT + α−1/2E are triangle,
so, their solving is also executed by the explicit formulaes.

We can use estimate (28) to control error of the iterative method. In the
case under consideration rη = (rλ, rµ) = (Ly−u,Ry−p), preconditioner D =
diag

(
(L+ α−1/2E)(LT + α−1/2E), r−1E

)
and (A1rz, z) > (1−

√
r)(A0z, z),

where A0 = diag
(
E, αE, rE

)
. For a �xed r estimate (28) becomes

∥y∗ − yk∥2 + α∥u∗ − uk∥2 + ∥p∗ − pk∥2 6
6 c∥η∗ − ηk−1∥D(∥(L+ α−1/2E)−1(Lyk − uk)∥+ ∥Ryk − pk∥), (34)

where constant c doesn't depend on mesh steps and α, and ∥η− ηk−1∥D → 0
for k → ∞.

Now, we investigate the iterative solution methods for problem (16). For
constructing a preconditioner D we take the matrix Ã0 = α diag(L0, E, E),
which is energy equivalent to A2r (cf. (21)).

Lemma 7. Matrix

D̃ = BÃ−1
0 BT = α−1

(
LL−1

0 LT + E LL−1
0 RT

RL−1
0 LT RL−1

0 RT + E

)
(35)

is spectrally equivalent to block diagonal matrix

D = α−1diag
(
LL−1

0 LT , E
)
. (36)

Namely, there exist constants k0(ξ0) and k1(ξ0) such that

k0(ξ0)(Dη, η) 6 (D̃η, η) 6 k1(ξ0)(Dη, η).
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Proof. The following inequality is true:

LL−1
0 LT > ξ0

2
E. (37)

In fact, it is equivalent to the inequality L−1
0 > ξ0

2
(LTL)−1, which in turn is

equivalent to ∥Ly∥2 > ξ0
2
(L0y, y) =

ξ0
2
(Ly, y), and this is an obvious conse-

quence of (14). Using (37) and the inequalities L−1
0 6 2

ξ0
E and ∥RTµ∥ 6

2∥µ∥ we obtain

(D̃η, η) = α−1∥L−1/2
0 LTλ+ L

−1/2
0 RTµ∥2 + α−1∥λ∥2 + α−1∥µ∥2 6

6 α−1(2 +
2

ξ0
)∥L−1/2

0 LTλ∥2 + α−1(1 +
16

ξ0
)∥µ∥2 = k1(ξ0)(Dη, η).

On the other hand, for any δ ∈ (0, 1) we have:

α(D̃η, η) > (1− δ)∥L−1/2
0 LTλ∥2 + (1− 1

δ
)∥L−1/2

0 RTµ∥2 + ∥µ∥2 >

> (1− δ)∥L−1/2
0 LTλ∥2 + (1 + (1− 1

δ
)
8

ξ0
)∥µ∥2.

For a δ, which is close enough to 1 there exists constant k0 = k0(ξ0) > 0 such

that 1− δ > k0 and (1 + (1− 1

δ
)
8

ξ0
) > k0, whence (D̃η, η) > k0(Dη, η).

Method (27) for problem (16) with preconditioner (36) reads as follows:

αuk+1 + ∂φ(uk+1) ∋ λk,
(M + αr1L)y

k+1 + ∂ψ(yk+1) ∋Mzd − LTλk −RTµk − r1αu
k+1,

r2p
k+1 + ∂θ(pk+1) ∋ r2Ry

k+1 + µk,

LL−1
0 LT λ

k+1 − λk

αρ
= Lyk+1 − uk+1,

µk+1 − µk

αρ
= Ryk+1 − pk+1.

(38)

Theorem 3. Let the vector (r1, r2) belong to the domain Ω(r1, r2) de�ned
in (19). Then there exists a constant ρ0, depending only on ξ0, such that
method (38) converges for any initial guess (u0, λ0, µ0) if 0 < ρ < ρ0.

13



Proof. It su�ces to prove inequality of the form (26) in proposition 2.

Using the inequalities ∥L1/2
0 L−1u∥2 6 2

ξ0
∥u∥2 and ∥Ry∥ 6 2∥y∥, we get

(D−1Bz,Bz) = α∥L1/2
0 y − L

1/2
0 L−1u∥2 + α∥Ry − p∥2 6

6 αC(ξ0)
(
(L0y, y) + ∥u∥2 + ∥p∥2

)
, (39)

where C(ξ0) is the maximal eigenvalue of the quadratical form

(1 +
8

ξ0
)s21 + 2

√
2

ξ0
s1s2 +

2

ξ0
s22 + s23 +

8

ξ0
s1s3.

In what follows we use the quadratical form Q de�ned in (20). We have:

(A2rz, z) = (My, y)+αr1(Ly, y)+αr2∥p∥2+α∥u∥2−αr1(u, y)−αr2(Ry, p) >
> (My, y) + αQ(L

1/2
0 y, u, p) > (My, y) + αs

(
(L0y, y) + ∥u∥2 + ∥p∥2

)
. (40)

The estimates (39) and (40) yield

(A2rz, z) > αsC−1(ξ0)(D
−1Bz,Bz),

thus, inequality of the form (26) is true if iterative parameter ρ ∈ (0, ρ0),

where ρ0 = s − ρC(ξ0)

2
> 0. All other assumptions of proposition 2 are

satis�ed, whence, the statement of the theorem is true.

When implementing method (38) one has to solve the inclusions with
respect yk+1, uk+1 and pk+1, and a system of linear equations with matrix
LL−1

0 LT . Similar to method (32), multivalued operators of the inclusions
have diagonal form, matrices of the problems for uk+1 è pk+1 are diagonal
while the matrix of the problem for yk+1 is triangle. So, solving of all inclu-
sions reduces to pointwise projection. Solving the system with the matrix
LL−1

0 LT = 2(L−1 + L−T )−1 is also executed by the explicit formulaes.

Remark 1. One can take

D = diag
(
L(M + αL0)

−1LT , α−1E
)

as a preconditioner in method (27) for solving (16). The statement of theo-
rem 3 on the convergence of iterative method for ρ ∈ (0, ρ1) with a constant
ρ1, independent on mesh steps is still true. The implementation of the cor-
responding iterative method again reduces to the explicit calculations.

14



Since rη = (rλ, rµ) = (Ly − u,Ry − p), D = α−1diag
(
LL−1

0 LT , E
)

and (A2rz, z) > s(Ã0z, z), where Ã0 = α diag(L0, E, E), then estimate (28)
becomes

∥y∗ − yk∥2L0
+ ∥u∗ − uk∥2 + ∥p∗ − pk∥2 6

6 cα−1/2∥η∗ − ηk−1∥D(∥Lyk − uk∥L−1+L−T + ∥Ryk − pk∥), (41)

where constant c doesn't depend on mesh steps and α, while ∥η− ηk−1∥D →
0 for k → ∞. Above we use the notations ∥.∥L0 and ∥.∥L−1+L−T for the
energy norms of symmetric and positive de�nite matrices L0 and L

−1+L−T ,
respectively,

4. Numerical examples

We solved problem (3) in the cases γ1 = 1, γ2 = 0 and γ1 = 0, γ2 = 1,
n = 1 and α = 1. After approximating these problems by �nite di�erence
schemes we constructed saddle point problems (15) and (16), and applied for
their solution the iterative methods (32) and (38), respectively.

The solution domain was QT = (0, 1) × (0, T ) in both cases, the known
functions yd(x, t) = 2 sin(2πx)t and zd(x) = 2 sin(2π). For calculations we
used operating system Redhat 5 AS and processor 2.4 Ghz Xeon E7330.

We controlled the residuals of the iterations as in (34) and (41). In fact,
we multiply both sides of these inequalities by τh to have the mesh analogs
of the norms L2(QT ) and H

1(QT ) for the errors. For instance, the estimate
(34) for the �rst problem becomes

∥y − yk∥2L2(QT ) + α∥u− uk∥2L2(QT ) + r∥p− pk∥2L2(QT ) 6 C(norm1 + norm2)

with a small factor C = (hτ)1/2∥η−ηk−1∥D and the values norm1 and norm2
which correspond to the norms of the residuals. The estimate for the second
problem is similar with ∥y − yk∥2L2(QT ) replaced by ∥y − yk∥2H1(QT ).

For the �rst problem (γ1 = 1., γ2 = 0.) the values norm1 and norm2
are shown at Figures 1 and in 2. For the result of Figure 1 we used 0,3 milj
nodes and the CPU time was 27 sec. For the result of Figure 2 we used 2,1
milj nodes and the CPU time was 330 sec.

For the second problem (γ1 = 0., γ2 = 1.) the values norm1 and norm2
are shown at Figures 3 and in 4. For the result of Figure 3 we used 0,3 milj
nodes and the CPU time was 240 sec. For the result of Figure 4 we used 2,1
milj nodes and the CPU time was 2900 sec.

From the results one can see, that in all cases the rate of the convergence
doesn't depend on mesh parameters.
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Figure 1: Figure 2:
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