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Abstract—The problem of determining the overall extraction curve for the supercritical fluid oil extraction
from polydisperse layer of ground oilseed granules was solved analytically using the shrinking core model. The
functional dependence obtained for bi-disperse approximation of the packed bed describes the results of
known experiments with high accuracy. Ways to solve the inverse problem of determining the size distribution
function for particles of granular layer based on experimental overall extraction curves are discussed.
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INTRODUCTION

New technologies for extracting components from
ground plant materials based on supercritical fluid
extraction (SFE) are superior to the traditional indus-
trial methods in the quality of the final product and
ecology of the process [1, 2]. This generates an
increased interest in mathematical modeling the SFE
from the granular layer of the ground plant material.

The entire SFE model must include two submod-
els, i.e., an outer macroscale model that describes the
transport processes in the extractor apparatus contain-
ing granular layer and an inner model, in which kinet-
ics of oil extraction from the single particle in the layer
is presented. The first submodel is usually formulated
[3—7] as a model of the ideal exclusion reactor with the
possible consideration of longitude dispersion. The
second submodel suggests the schematization of the
shape and structure of the particles in the layer and
concretization of the processes of dissolution and dif-
fusional transfer inside the particle.

The granular layer usually is described in a mono-
disperse approximation, while the concept of shrink-
ing core is often used for the development of inner
model [3—6]. Based on this, the inner oil-containing
zone (core) and peripheral transport zone are identi-
fied in the particle. The core radius decreases over time
due to the diffusional release of the oil containing in
the core through the transport zone into the inter-par-
ticle space. The oil concentration in the core remains
constant. The extraction process finishes when the
core radius becomes zero.

The application of the SC-model to calculate the
extraction processes from oilseeds of different cultures
(see the works cited above) showed that the shrinking
core scheme in general correctly describes the extrac-
tion dynamics from the layer of granular particles.
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However, the pronounced two-step character of the
extraction process with the high initial rate of extrac-
tion followed by the sharp drop in the oil yield was
observed in a series of experiments [7—9]. The ade-
quate description of these effects suggests the expan-
sion of the SC model for the case of polydisperse gran-
ular layer [6, 7].

In this work, the set-up of the respective problem is
suggested in a form of a system of equations with an
integrodifferential operator determined by the particle
size distribution function. An analytical solution of the
system is presented. Testing of the model is conducted
for the extended set of the known experimental data.
The way for the solution of the inverse problem of
determination of the distribution function using
experimental oil yield curves are discussed.

PROBLEM SET UP

The SFE process is realized through filtration of
supercritical fluid, usually supercritical carbon diox-
ide, through the granular layer of particles of ground
plant material. The oil contained in plant cells dis-
solves in the fluid saturating granules, diffuses to their
surface, and is transported by the fluid to the outlet
cross-section of the reactor through the porous channels
of the layer. The particles have a characteristic size of
approximately 1 mm, and each contains 10°—10° plant
cells. The particle shape in the granular layer can be dif-
ferent depending on the type of the material. In this
work, we restrict our consideration to two cases, i.e.,
spherical particles and flat particles with a thickness of
significantly less than their longitudinal size. Special
interest in flat particles is caused by two reasons aside
from practical considerations. First, in this case, the
obtained calculation formulas are the most simple and
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illustrative. Secondly, the oil extraction dynamics from
the layer of polydisperse particles of any shape in a
wide and practically important time range is described
by the same asymptotic equations as for the flat parti-
cles.

Here, tis time, z is the space coordinate calculated
from the cross section of the input along the extractor
axis, m is porosity of the granular layer, and v is the
rate of fluid filtration, a is the article size equal to the
radius of the spherical particle and the half-thickness
of flat particles, fis the density, and F'is the particle size
distribution function. According to the definition, the
value dF = f(a)da is a volumetric fraction of particles
with size from a to a + da. The mass concentration of
oil in supercritical fluid in pore space is designated as
C and equilibrium concentration in solution at given
pressure and temperature is designated as 0,.. The ratio

of the initial oil mass stored in the particle to its vol-
ume is denoted as 6,. Let us restrict our consideration
to the typical case of particles with high oil contents
when 6,> ...

According to the shrinking core model [3—6], two
zones are identified each moment in the particles of
the packed bed. The oil content in the plant cells of the
core 0 <r< R(?) is 0, equilibrium concentration in the

solution is 0. Oil in the cells of the transport zone
R(?) < r < a is fully exhausted, and the solution con-
centration changes from 0,, at the mobile border r =
R(?) to the lesser value 6, on the surface of the grain
r=a. The concentration drop 6,, — 0, is a driving force

of the oil diffusional transport from the core to the par-
ticle surface. It was established in [5] that the diffu-
sional resistance of the transport zone is much higher
than in the border zone of the filtering flow at the par-
ticle surface. This allows 6, to be identified with C. It
was also shown there that the diffusion process for the
particles with high oil content is quasistationary, due
to which the rate of the core border movement and the
density of the diffusional oil flow g from the grains into
the pore space in each single moment of time are pro-

portional to the concentration difference 0, — C as
follows:

OR a n—1 a (1—n)/2
e—z—(—) , a(tza) =2 (—) 0. -C).

Here, D, is the effective d1ffus1on coefficient, index n
is equal to 1 or 3 for flat or spherical particles, respec-
tively.

The equation describing distribution of oil concen-
tration C dissolved in supercritical fluid on its filtration
through the bed layer in the regime of expanded
extraction front assumes the form:

oC

v= =g

- —m) j 0.2.039D rda. (1)

Via)
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Here, g, is the density of the source of oil coming from
the grains to the pore space in a volume unit of the bed
layer, and A(a) and V(a) are surface area and volume of
the grain with the size a (4/V = n/a). Second-degree
terms that describe the capacitive and dispersion
effects in the pore space essential only during the
short-term initial stage of extraction [5, 6] are dropped
in the equation for convective oil transfer (1).

As a result, the inner and outer SFE submodels for
a polydisperse packed bed layer are transferred to the
system of two equations relative to unknown functions
R(t,z;a) and C(¢, ) as follows:

)(n 1)/2 8R

0y (a - R)( —Desyr (9* - C),

a

(2)
v€ o _(1- )eoja( )f(a)da

with the following initial and boundary conditions:
R(0,z;a) =a, C(t,0)=0. 3)

The suggested model (2), (3) contains constants
accepted as a given 0., 0,, D, and density of particle

size distribution f{a). The density of particle size distri-
bution can be determined from either the results of
sieve analysis or alternative granulometric measure-
ments. The equilibrium concentration 6, depending

on the conditions of extraction (temperature, pres-
sure, material composition) can be estimated a priory
using, for example, a known Del Valle equation [13]
for the average solubility of oils in supercritical CO,
and refined further according to the slope of the linear
initial part of the curve of the oil yield after extractor
on conducting an experiment [5, 6]. The initial load 6,
of the extractive oil that also depend on experimental
condition are determined [5, 6] by the asymptote of
the overall extraction curve at large times. Finally, the
effective diffusion coefficient that can change in a
wide range depending on material type is an adapta-
tion parameter of the model. It is a function of extrac-
tion parameters and the chosen extractant, and is
determined from the conditions of the best fit of
experimental and calculated curves of the oil yield.

Analytical solution of the problem. Let us introduce
a dimensionless parameter to solve problem (2) and
(3) as follows:

y(t,2) = J’c 1,2)dr,

(- )e0

which represents the accumulated oil extracted by the
time 7 from the part of the packed bed layer [0, z] nor-
malized to the initial oil mass in the entire reactor of
the L height. Let us also determine the dimensionless
analogues of the rest of the parameters by normalizing
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zto L, normalizing time 7 to ¢, and normalizing @ and
Rto ay without changing symbols as follows:

. L(1-m)0, 2nL(1—m) D

sc _— = |
vO, v

The time scale 7. represents the entire time of com-
plete oil extraction from the reactor with the particles
of infinitesimally small size, and the grain scale a,, cor-
responds to the particle size, at which this time will
double, as will be shown below.

By integrating the equations (2) over time consid-
ering condition (3), we obtain

W _ [of(@da, s(t,z,a):1—(5)", @)
0z a

0

o(s)=(t-y)/a". (5)
The ¢(s) function is determined in the interval 0 <s <1
and is represented by the following expression:

2
s°, n=1

S)=
9(s) 3(1—(1—5)2/3)—2s, n=3.
The @(s) monotonously increases from zero at s =0 to
one at s = 1 for both types of particles. Let us denote
the function inverse to ¢ by S. By inverting (5) and
substituting the result in (4), the following ordinary
integrodifferential equation for the function y(¢, z) is
obtained:

2 jS( =) fawda ©)

The time 7 in this equation plays role of the parameter.
The S(¢) function appearing in (6) is formally
replaced by zero and one in the range <O and ¢ > 1,
respectively. The solution to Eq. (6) is presented as
quadratures taking into consideration the second con-
dition in (3) at y(¢, 0) =0

z-jdf,

k(t) = J'S( j fla)da. 7)

Considering that S=1 ata < \/;, and integrating the
expression for k(t) by parts

.
k(t) = js( ) f(ayda + j flaya =~ F(a)dS( 2),

we finally obtain by the substitution of integral variable

k(t) = IF ( \/7) j ds. (8)
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The dimensionless curve overall extraction Y
(OEC) from the reactor ¥(¢) = y(¢, 1) is of main prac-
tical interest. From the general solution (7), we obtain

t

dt
= | £ 9
= i ©)

The initial OEC slope and its limiting value ¥(o) equal
to one. Let us denote the duration of the initial linear
stage of the extraction by #_ and the time of complete
extraction—by 7,.

The concentration of outgoing fluid from the reac-
tor equals to equilibrium at # < ¢_. The duration of the
initial stage 7_ is determined by the conditions

jk & (10)

All oil in the reactor is extracted at 7> ¢, , and Y(¥) = 1.
Hence, the complete extraction time is given by the
condition

- | dt 11
! _]k(‘t)‘ (D

It can be seen from (8) that k< 1; hence, for (11) to be
valid, it is necessary that k(1) =l att>7, — 1. Asa
result, the integral function in (8) must be identical
with one at t > 7, — 1 and any s, 0 < s < 1. In other
words, the condition F(a) = 1 must be valid at a >

Jt, —1, and, hence, the complete extraction time is
determined by the maximum grain size a,,,, as follows:

=1+ afnax.

Monodisperse media. Distribution function for
monodisperse medium consisting of identical particles
of the size of a, is represented by the Heaviside func-
tion F(a) = H(a — a,). For flat particles from (8), we
have k = min(l,'cl/ 2a5 1) considering the fact that

@(s) = s%. The calculation of the time of completion of
the linear extraction stage according to Eq. (10) yields

]_ 2
{ = a°2
0.25a,

The curves t=1_(ay), t =1, (ay) = 1 + a;, together

a; <0.5

a; >0.5.

with the curve 1 = ) (ay) = ag, divide the plane (7, a)
into four subareas (solid lines in Fig. 1). The linear
stage of extraction occurs in area A; here, Y = t.
Extraction is completed in the area B, and Y= 1. The
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0 1 2 ay

Fig. 1. Scheme of the process in (7, ay) plane for monodis-
perse layer of flat and spherical particles: A—saturated
area; B—area of complete extraction; C, D—regions of
complete exhaustion.

OEC of nonlinear extraction in areas C and D is
described by the equations

(hay) e C Y=Y —4%;

ap  4q,

1+al)

(t,a,) € D: Y(t):t_(ﬂj _
2a,

It can be tested that the Y(7) curve and its first deriva-
tive are continuous at the borders of the subareas.

Similar results are valid for spherical particles. The
(#, ay) is divided by the curves 1 =1_(a,), t =1, (ay), t =
ty(a,) into four subareas exactly as above. The 7, (a,)
and #,(a,) dependences remain the same as for flat
particles. The # = ¢_(a,) dependence (dashed line in
Fig. 1) isdefinedas?_ = 1 + a; (1-«), where k = 3In3 —
n/ V3 = 1.482. It is presented in parametric form at

2
ay <k

aézL, 0<s<l,

o)’ o(s)

o(s) = —311{(% +(1- s)'”)2 + ﬂ

+ 2x/§arctan[i(l+ 1-=5 l/3)}+3ln3—2—n.
32 (1=s) V3

0
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Fig. 2. OEC for monodisperse granular layer of spherical
particles with size a = 0.5 (1), 0.9 (2), 2 (3), 3 (4), 5 (%),
9 (6). Squares indicate OEC from tomato seeds, [9]; circles
indicate OEC from apricot kernels [10]; dashed line shows
solution for bimodal granular layer.

As with flat particles, Y=rand Y= 1 in the areas A and
B, respectively. The OEC is described by the following
equations in areas C and D:

(ta) € C Y(t)=1— ag(p{d)[S(taaz) - agz]} :
(t.ap) € D. Yty =1 -azo{®|(r=1)a," +x~1].

Here, ® denotes a function inverse to ¢.

A series of OECs for monodisperse granular spher-
ical material is presented in Fig. 2. The different curves
relate to particles of different size a.

The OECs curves are in good agreement with sep-
arate experimental observations [3—5]. The results of
experiments on the extraction of oil from tomato seeds
ground to a size of 0.25 mm from [9] are presented by
squares in Fig. 2 as an example.

On the other hand, in many cases, the monodis-
perse approximation cannot describe the available
experimental material, and clearly demonstrates a
two-phase time course of the OEC. One of the typical
experimental OEC [10] that represent oil extraction
from apricot kernels is presented in Fig. 2 by circles.

Naturally, effort must be made to describe the sim-
ilar curves based on the assumption of the bimodality
of the particle size distribution considering that the
density of the particle distribution f{a) has two local
maxima with one located in the area of low a values
and another in the area of large a values. Let us denote
these media as bimodal.

Bimodal media. The density of the particle size dis-
tribution for bimodal media can be presented as

fla)=afi(a)+(1-a) f(a),
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where o and 1 — o represent contributions of small
and large fractions, and f; and f, are their distribution
densities. The specific argument values of f| are signif-
icantly less than 1, and the values of £, are significantly
larger. Hence, in expression (7), which defines the k(t)
functions as follows:

k = oc_[S( )fl(a)da+ l—oc)J.S( jfz(a)a’a

the values of the first integral in the right part are
defined by the character S(¢) at ¢ — 1, and the values
of the second are defined at ¢ — 0. Considering that

S =1, 5(p) = \/Ip, at @ — 0, we obtain
ey
a

k(D)= a+(1 = Jr@t a2
0

The a, value represents an average particle size of the

large fraction calculated from the ratio of the total vol-

ume of all particles to their surface area.

Note that it was actually assumed when deriving

equation (12) that 1 << aé. Hence, the use of Eq. (12)
in expressions (9) and (10) that present the general
solution of the problem is only acceptable for a much

shorter time interval than ag . For bimodal media a > 1,
and SFE is usually carried out on the order of several
dimensionless time units. In this case the substitution
of (12) in (9) and (10) is justified.

It is also worth mentioning that the obtained
expression (12) for k(1) is identical to the one for a
bimodal medium that consists of two types of flat par-
ticles: one of negligibly small size (fraction o) and
other with size a, (fraction 1 — o.. This is explained by
the fact that the mobile exhaustion front only pene-
trates the large particle for a small distance relative to
their size at times T ~ 1. The extraction process is only
determined by the total surface area of the particles.
The geometry of granules does not affect the process,
and the front movement remains flat.

The substitution of (12) into (9) results in the follow-
ing implicit expression for OEC Y(f) atr_ <t << aé :

l+evt—Y
1( - j+e($ x/t—Y)

€= \/ﬁl —
ao.
By expanding Yinto a power series of the small param-
eter €, we obtain
a)"”)+0(e’).

Y=a+=% g( (-
3
Similar calculations for the completion time of the lin-
ear stage of extraction result in the following expres-
sion

(13)

(14)

2 .32 2
. =a+=ea’ +0(e" ). 15
; (%) (15)
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Fig. 3. Kinetics of oil SFE from apricot kernels [10] for
particles with diameter d = 0.4 (1), 0.8 (2), 0.92 (3), 1.5 (4)
mm. Markers represent experimental data; solid lines
show general theory of bimodal granular layer; dashed
lines show asymptotic approximation.

Asymptotic equations (13)—(15) represent the com-
plete solution of the SFE of oil from the bimodal gran-
ular layer. The characteristic shape of the solution is
presented in Fig. 2 by a dashed line. This line corre-
sponds to values oo = 0.28, and a, = 13.44. It can be
seen that the suggestion of the bimodal character of
the bed layer explains the observed character of exper-
imental dependencies completely.

COMPARISON WITH EXPERIMENT

Let us consider the known experimental data on
the kinetics of the oil SFE process from apricot kernels
[10] and pumpkin [8] and sunflower [7] seeds. Four
experiments were performed in [10] and [8] when
determining the OEC for layers with different sizes of
particles, and five such experiments were performed in
[7]. The experiments in [7] were conducted in an extrac-
tor with a total load of 34 g at a pressure of 28 MPa, tem-
perature 313 K, and fluid flow of 10 g/min. The respec-
tive values in [8] were 3.25 g, 30 MPa, 313 K, 1.8 g/min
and, in [10], they were 5 g, 45 MPa, 325 K, 3 g/min.

Let us briefly present the used treatment method
and interpretation of the experimental data on the
example of oil extraction from apricot kernels [10].
Experiments 1—4 were performed on different frac-
tions with particle diameter d of 0.4—1.5 mm, sepa-
rated from the ground material with sieve analysis
(Table 1). The results of measurements are presented
in Fig. 3 by dots.

The equilibrium concentration 0, and initial oil

stores O, were determined according to [5, 6] by the
initial slope of the OEC and its asymptote (t — ) for
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Table 1. Composition and particle size of fractions used in calculations

[10] Experiment number 1 2 3 4
Apricot Diameter of particle in large fraction d, mm 0.4 0.8 0.92 1.5
Contribution of small fraction a 0.98 0.81 0.56 0.28
Diameter of particle in small fraction d;, mm 0.054 0.066 0.054 0.054
[8] Experiment number 1 2 3 4
Pumpkin Diameter of particle in large fraction d, mm 0.45 0.84 1.34 1.93
Contribution of small fraction a 0.94 0.84 0.44 0.31
Diameter of particle in small fraction d;, mm 0.028 0.028 0.028 0.028
[7] Experiment number 2 3 4 5
Sunflower | Diameter of particle in large fractiond, mm | 0.312 0.488 0.545 0.563 1.2
Contribution of small fraction a 0.87 0.65 0.58 0.53 0.265
Diameter of particle in small fraction d;, mm| 0.038 0.036 0.04 0.04 0.04

a load with particles of the smallest size; they com-
prise 0, = 14.5 kg/m? and 0, = 345 kg/m?.

Despite the prior fractionation of the granular lay-
ers and their apparent mono dispersity, the experi-
mental OEC have well pronounced two-stage charac-
ter even in this case as can be seen in Fig. 3. Hence, all
calculations were conducted based on the assumption
of a bimodal layer. The size of particles d in the large
fraction was preset the same as in experiments, and the
contribution of the small fraction o was found from
the condition of the best fit of the asymptotic equa-
tions (13)—(15) and the experimental data. Another
adaptation parameter, the coefficient of effective dif-
fusion, was selected for each series of experiments with
an identical type of raw material. For example, even
the asymptote approximation (14), (15) (dashed lines
in Fig. 3) describes all experimental curves quite satisfac-
torily for apricot stones at optimal values of the o param-
eter presented in Table 1 and D,z = 3.9 x 1072 m?/s. An
almost ideal fit with the experiment (solid line in
Fig. 3) is provided by the general theory of the bimodal
granular layer, which allows one to additionally con-
sider and select the size of the small fraction that is set
equal to zero in (14), (15). In this case, the model
OEC were calculated according to Egs. (8), (9) with
bidisperse distribution density fla) = ad(a—a,) +
(I—a)8(a—a,). The values of the effective particle
diameter of the small fraction d, corresponding to the
dimensionless parameter a, are presented in Table 1. It
is interesting to note that the &, hardly changes from
series to series and comprises two to three diameters of
plant cells.

Good agreement of the model OEC and experi-
mental data similar to Fig. 3 is observed when the
results from [7, 8] are processed using the bidisperse
approximation. The equilibrium concentration and

initial oil stores were 0,, = 6.6 kg/m3, 6, = 121 kg/m?
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in [7] and 0, = 7.7 kg/m?, 0, = 212 kg/m? in [8]. Effective
diffusion coefficient was equal to D,z= 1.2 x 10712 m?/s

for pumpkin seeds and D= 0.5 x 10~'? m?/s for sun-

flower seeds. The rest of the parameters are presented
in Table 1.

The way of possible emergence of the fraction of
small particles in uniform layers prepared with the
sieve analysis of the seeds is of interest. Different
mechanisms are discussed in the literature, e.g., the
attachment of dust on large particles due to adhesion
and mechanical factors [6], mechanical damage of the
particle surface in the process of grinding [11, 12], and
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Fig. 4. Dependence of small fraction contribution on par-
ticle diameter of the main fraction of the layer: triangles
indicate sunflower seeds, circles indicate apricot kernels,
squares indicate pumpkin seeds.
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others. In any case, the contribution of the small frac-
tion must be determined by the specific surface area of
the main fraction (large particles). The higher the spe-
cific surface area (i.e., the smaller the diameter d of the
large particles), the higher the contribution of the
small fraction. The data presented in Table 1 confirm
this suggestion. Moreover, as can be seen in Fig. 4, in
all cases, the corresponding dependence can be pre-
sented as follows:
d - do
d

The approximation parameters d, and d,, together

with D.rand d,, depend only on the type of material,
not on the degree of grinding. These four universal
constants entirely determine the oil SFE process for
the particular type of raw material. These parameters
for apricot kernels and pumpkin and sunflower seeds
are summarized in Table 2.

a’l = max(l, 1+

ANALYSIS OF INVERSE PROBLEM

The limited duration of the considered SFE pro-
cesses does not allow for further detalization of the
fraction composition of the granular layer on the basis
of OEC. Only the subsurface layer of large particles
participates in the extraction process at these time
scales, all granules behave similarly independent on
their size. Nevertheless, identification of the fraction
composition becomes possible in principle at the suf-
ficiently long duration of the process. Subsequently,
the inverse problem of reconstructing the particle dis-
tribution function F(a) from the experimental OEC

{Y(),0 < t < oo} can be considered.
Let us rearrange Egs. (8) and (9) as follows:

Gt = G(t— Yy +1, (16)
1

IF[\/z]ds —_dt_ (17)
o) " a6w

This allows one to determine the function G(7) from
the given OEC Y(¥) based on functional equation (16),
followed by the determination of the required distribu-
tion function from the integral equation (17) by calcu-
lating the dG/dt derivative.

It follows from (17) that, at > #,, dG/dt = 1. The
dependence G(7) is determined with the accuracy of
the integration constant. Let us set G(f) =t at r > 1,
considering this arbitration. The calculation of G(7) at
t<t, does not pose a problem. The corresponding cal-
culation scheme is illustrated in Fig. 5. The function
y(f) =t — Y(¢) presented there is equal to zeroatr< ¢ _,
coincides with y(f) =7 — 1 at > ¢,, and grows monot-

onously in the segment [7_,7,].
Let us assume that it is necessary to calculate G at a
certain point #,. According to (16), G(t,) = G(t,) — 1,
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Table 2. Approximation parameters for processing of ex-
perimental data

Raw material| Doy, m?/s | d, mm | dy, mm | dy, mm
Apricot 3.9x10712|  0.054 0.71 0.31
Pumpkin 1.2x 1072 0.028 0.71 0.54
Sunflower 0.5x10712|  0.038 0.29 0.34

where #, = 1, + Y(#,) (see Fig. 5). By continuing this
procedure, we obtain

Due to finiteness of 7, it will require a finite number of
steps k to reduce the calculation of G(7,) to calculation
of G(t,) at 1, > ¢,.

Let us further consider the procedure for solution
of integral equation (17) for the case of flat particles at
@(s) = s%. By substituting the integral variable in (17),
we obtain

0

J‘F(a)da dt
VA

&2 JdG@)

By differentiating this equation, we ultimately obtain

2i( da j
da\dG(a*))

The ill-posed character of the inverse problem is obvi-
ously demonstrated by the need for the double differ-
entiation of the G(¢) function, which is specified by the
experiment.

The problem of solving the integral equation (17)
in the case of spherical particles is similar in nature to
the ill-posed procedure (18); however, it requires the
application of special numerical iteration methods.

F(a)=-2a (18)

y
4r—m)
y=t |
1
Z
77 : 1y
” |
s I
/’y:t—l :/
0 1 f h f t

Fig. 5. Scheme for calculating the G(¢) function.
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The discussion of this problem is beyond the scope of
this work.

CONCLUSIONS

The generalization of the mathematical model of
the supercritical extraction in the framework of
shrinking core scheme for the case of the polydisperse
granulated layer of ground plant material was con-
ducted in this work. The analytical solution of the
problem of calculating the oil-yield curve was found.

The consideration of the fraction polydispersity of
the layer provides the almost ideal agreement of the
model with the known experimental data. It is suffi-
cient to calculate the SFE processes that are limited in
duration (at the finite intervals of the dimensionless
time) in the bidisperse approximation. The adaptation
of the model to the three types of raw material showed
that the contribution of the small fraction was propor-
tional to the specific surface area of the granulated
layer, and the size of its particles corresponded to a few
(two to three) diameters of the cells of plant material
independent on the degree of grinding. Asymptotic
dependencies (13) and (14)—(15) can be used to assess
OEC.

Description of longer experiments requires a
higher degree of detalization of the particle size distri-
bution function of the porous granulated layer. In con-
nection with this, the inverse problem of determining
the fractional composition of the layer by the experi-
mental OEC was presented. The problem was reduced
to solving the integral equation and was considered to
be poorly posed. The analytical solution was found for
flat particles. Special numerical iterative procedure is
suggested for the general case. The preliminary calcu-
lation experiments show that the integral operator for
flat particles can be used in this procedure as an effec-
tive preconditioner, which significantly increases the
rate of its convergence.

DESIGNATIONS

A(a)—surface area of granule with size a, m?;
a—particle size equal to the radius in the case of
spherical particles and half-thickness in the case of flat
particles, m;

a,,.~—maximum size of granules, m;

a.—particle size scale, m;

C—mass concentration of oil solution in supercritical
fluid in the pore space, kg/m?;

D —effective diffusion coefficient in granules, m?/s;
d—particle diameter of large fraction, m;
d,—particle diameter of small fraction, m;

F—size distribution function;

f—density of volumetric size distribution function,
m!;
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L—height of the reactor, m;

m—porosity of the granular layer;

g—density of the oil diffusional flow from granules of
the size a into a pore space, kg/(m?s);

g.—total density of the oil diffusional flow from gran-
ules in the bed into pore space, kg/(m?s)

R—-core radius of the particle, m;

t—time, s;

t,—time scale, s:

t —duration of the linear extraction stage, s;
t,—total extraction time, s;

V(a)—volume of the granule of size a, m?,

v—rate of the fluid filtration, m/s;

Y—dimensionless overall extraction curve;
y—accumulated oil yield from the [0, z] layer normal-
ized to the initial oil load of the reactor;
z—-coordinate measured from the inlet cross section
along the extractor axis, m;

a—contribution of the small fraction;

d— Dirac delta function, m™';

0,—ratio of the initial oil load in the particle of the
granular layer to its volume, kg/m?;
0,—concentration on the surface of the granule,
kg/m’;

0.,—equilibrium concentration of oil in supercritical

CO, (at given pressure and temperature), kg/m?.

SUBSCRIPTS AND SUPERSCRIPTS

n—index is equal to 1 or 3 for flat and spherical parti-
cles, respectively.
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