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МОДЕЛИРОВАНИЕ ВЗАИМОДЕЙСТВИЯ 

ГРУППЫ БПЛА И НАЗЕМНОГО РОБОТА ДЛЯ ЗА-
ДАЧИ ПЛАНИРОВАНИЯ ПУТИ С УЧЕТОМ ИЗМЕ-
НЯЮЩИХСЯ КРИТЕРИЕВ ОЦЕНКИ КАЧЕСТВА 
МАРШРУТА 

 
Аннотация. Важнейшими критериями оценки качества алго-

ритма построения маршрута для робота являются скорость выполне-
ния поиска и оптимальность полученного пути относительно задавае-
мых пользователем параметров.  В данной статье представлен набор 
ключевых параметров оптимизации пути, алгоритм поиска и результа-
ты моделирования алгоритма в среде MATLAB и в среде ROS\Gazebo 
для моделирования совместной работы гетерогенной группы роботов.1 
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Введение 
Планирование пути является важнейшей задачей 

при использовании автономных роботов в различных мис-
сиях: сбор информации в заранее неизвестных динамиче-
ских средах, поисково-спасательные операции или реше-
ние сложных транспортно-логистических задач. При пла-
нировании маршрута требуется учитывать множество фак-
торов, зачастую выбирая между кратчайшей или наиболее 
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безопасной траекторией движения. В данной статье мы 
рассматриваем ключевые параметры оптимизации пути 
для планирования маршрута, согласно которым строится 
предварительный маршрут движения, а затем маршрут ди-
намически корректируется локально в режиме реального 
времени через изменения весовых функций параметров 
оптимизации. Прототип алгоритма реализован в среде 
MATLAB и далее применен при моделировании действий 
гетерогенной группы роботов в среде ROS\Gazebo. 

 
1 Глобальные и локальные методы поиска 
В задаче выбора пути для мобильного робота широ-

ко используется методы потенциального поля [1], методы 
дорожной картой [2] и другие. В качестве практического 
применения, метод вероятностных дорожных карт был за-
действован для навигации робота через лабиринт в составе 
гетерогенной группы [3]. Особый интерес для нашей зада-
чи представляет метод диаграммы Вороного (ДВ), который 
позволяет строить максимально безопасный маршрут, так 
как ребра графа будут наиболее удалены от препятствий 
[4], [5], а найденные вершины графа можно использовать в 
алгоритме построения пути по сплайнам [1], рассчитыва-
ющем наиболее гладкую траекторию движения робота. 

При поиске маршрута мобильным роботом важную 
роль играют и локальные методы планирования: в незна-
комой или измененной среде робот должен уметь обнару-
живать препятствия и динамически перестраивать свою 
траекторию для их обхода. Основными алгоритмами ло-
кального планирования являются методы семейства Bug, 
согласно которым робот движется по направлению к цели, 
огибая встреченные препятствия [6], [7]. В динамических 
условиях применяют также алгоритмы, базирующиеся на 
принципах алгоритмов потенциального поля [1], [8] или 
локального использования алгоритмов класса A* [9], [10]. 



2 Поставленные задачи и настройки системы   
Основной задачей нашего проекта является расчет 

маршрута движения беспилотного наземного робота (БНР) 
с учетом изменения критериев оптимизации маршрута в 
режиме реального времени. Алгоритмом планировании 
маршрута выбран метод ДВ, который предоставляет набор 
траекторий, наиболее безопасных для обхода препятствий, 
а при динамических изменениях в окружающей среде поз-
воляет локально пересчитать первоначальный граф за 
ограниченное время [12]. В рамках проекта используется 
российский гусеничный БНР «Инженер» (Рисунок 1).  

 

 
Рисунок 1 – Российский робот «Инженер» 

 
3 Критерии оптимизации маршрута и реализа-

ция алгоритмов в MATLAB  
 
3.1 Алгоритм маршрутизации 
Реализация алгоритма планирования маршрута по 

ДВ осуществлялась в среде MATLAB [11]. Алгоритм рабо-
тает следующим образом: (1) От каждой грани препят-
ствия с определенным шагом строятся лучи; (2) В местах 
пересечения лучей от разных граней ставятся точки; (3) 
Точки от соседних лучей соединяются отрезками; (4) Со-
седние отрезки собираются в граф; (5) Конечный путь в 
графе рассчитывается по алгоритму Дейкстры.  



Алгоритм модифицирован под текущую задачу: до-
бавлена возможность создавать круглые и невыпуклые 
препятствия; метод построения ДВ изменен для работы со 
всеми типами препятствий; добавлены лучи от краев карты 
с целью возможности построения ДВ на карте с произ-
вольным расположением препятствий и точек старта/цели. 
Пример расчета показан на Рисунке 2. Модификация реа-
лизации алгоритма ДВ позволяет работать не только с точ-
ками [5], но и поддерживает построение графа при любых 
положениях препятствий, начальной и конечной точек 
маршрута. Принадлежащие различным гомотопическим 
классам маршруты на карте рассчитываются с использова-
нием ребер графа. Два маршрута принадлежат к одному 
классу, если возможно преобразование одного маршрута в 
другой при помощи неразрывной деформации.  

 

 
а)                                                             б) 

 

Рисунок 2 – а) Предварительный расчет ДВ; б) Финальная 
ДВ с точками ветвления и построенный путь (красный) 

 
3.2 Критерии оптимизации маршрута 
Построенный маршрут должен удовлетворять тре-

бованиям целевой функции и динамически пересчитывает-
ся при изменении этой функции. Мы выделили следующие 
ключевые параметры целевой функции [13]: длина пути, 
время прохождения маршрута, максимальное (или сред-



нее) расстояние до препятствий при прохождении маршру-
та, кривизна пути, время прямой видимости начальной по-
зиции и время выхода напрямую до целевой позиции.  

В симуляторе реализованы следующие параметры: 
длина пути, расстояние от препятствий, кривизна, время 
выхода на целевую позицию. Перебор ребер ДВ в перво-
начальном маршруте создает вариативность в различных 
гомотопиях, предоставляя опции для учета времени пря-
мой видимости точек старта и цели. Для этого также срав-
ниваются расстояния от точек старта/цели до первой кри-
вой ДВ (Рисунок 3). По аналогии, замена вершин графа 
видимости позволяет использовать различные гомотопии. 
Если по методу сплайнов[1] соединить вершины ДВ (крас-
ные точки на Рисунке 2), полученный путь будет удовле-
творять критерию минимальной кривизны траектории. 

 

 

а)  

 

б)  

Рисунок 3 – Критерии расстояния Р и время прямой 
видимости ВПР а) Р=100, ВПР= 0; б) Р=0, ВПР= 100 

 
При расчетах сначала определяются траектории в 

различных гомотопиях, удовлетворяющие 100% значениям 
критериев. Затем, в зависимости от процентного вклада 
каждого критерия, вычисляется путь.  

 



4 Моделирование группового взаимодействия 
роботов в среде ROS\Gazebo 

Для тестирования алгоритма проведено 
моделирование совместного исследования пространства и 
построения карты при помощи группы БПЛА с 
дальнейшим построением маршрута для БНР типа Husky в 
среде ROS Indigo и симуляторе Gazebo 2.2. Список пакетов 
ROS, использованных для моделирования и симуляции, 
включает пакеты [14]: husky_simulator, husky_navigation, 
gmapper, hector_quadrotor, octomap, map_server, tf, 
voronoi_planner и средство визуализации rviz.  

Для моделирования квадрокоптеров использовался 
модуль hector_quadrotor. БПЛА и БНР используют Unified 
Robot Description Format (URDF) для описания физических 
и механических свойств модели. В качестве основного 
сенсора картографирования использовался RGBD-сенсор 
Kinect. Пример совместного расположения группы робо-
тов, состоящей из одного БНР и двух БПЛА-
квадрокоптеров, в смоделированном мире с простыми 
препятствиями показан на Рисунке 4а.  

 

    
 

а)                                                  б) 
Рисунок 4 – а) Симуляция в Gazebo 2.2 БНР и 2-х 

БПЛА, б) Октокарта, построенная двумя БПЛА, следую-
щими по меандру вперед от места стоянки БНР; БНР рас-

положен по центру на левом крае карты 



В целях избегания столкновений, в начальный мо-
мент времени БПЛА были расположены на безопасном 
удалении друг от друга, позволяющим перекрывать 
области видимости сенсоров Kinect друг друга. Для 
следования выбрана траектория-меандр [15]. Аналогичные 
траектории используются, например, при подводной 
съемке [16]. Пример октокарты, построенной таким 
образом, изображен на Рисунке 4б. 

Ключевым фактором успешного построения 
октокарты является точная локализация каждого робота и 
передача правильной матрицы трансформации в общее 
дерево трансформаций (пакет tf). Локализация БПЛА 
использовала информацию симулятора Gazebo об 
истинном положении аппарата - так называемая ground 
truth локализация. Этот подход в дальнейшем будет 
заменён на локализацию по сенсорам БПЛА. Для решения 
задачи планирования маршрута использовался представ-
ленный в  выше алгоритм на основе  ДВ. На Рисунке 5а 
показана построенная ДВ при максимальном разрешении 
воксела в 10 см3.  

 

 
а)                                                  б) 

Рисунок 5. а) Робот Husky (правый верхний угол) на 
построенной двумя БПЛА карте б) БНР следует по гло-

бальному маршруту (показан черным цветом на увеличен-
ной карте с рисунка 5а) 



Разрешение карты важно, так как при высоком 
разрешении существенно увеличивается время, 
необходимое на расчет ДВ и построение маршрута 
движения уже с использованием ребер и узлов диаграммы. 
Однако, при разрешении карты в 10 см3, планировщик 
справляется со своей задачей за время менее 1 секунды для 
площадей порядка сотен квадратных метров. Пример 
глобального маршрута движения БНР показан на Рисунке 
5б черной линией. 

Заключение 
Важным результатом данной работы является со-

здание алгоритма планирования пути, учитывающего из-
меняемые в реальном времени параметры оптимизации. 
Метод интегрирует подходы глобального и локального 
планирования маршрутов, оптимизируя рассчитываемые 
траектории мобильного робота в любой, подходящей по 
критериям оптимизации, гомотопии. На стадии глобально-
го планирования строится предварительный маршрут дви-
жения, а затем на стадии локального планирования он ди-
намически корректируется в режиме реального времени 
путем изменения весовых функций различных параметров 
оптимизации. Разработанный алгоритм демонстрирует 
быструю и робастную подстройку к динамически меняю-
щейся среде, обеспечивая эффективную маршрутизацию 
мобильных роботов. Программная реализация алгоритма 
осуществлена в среде ROS с использованием симулятора 
Gazebo. Нами был создан симулятор, позволяющий моде-
лировать различные условия местности и осуществлять её 
картографирование с воздуха при помощи группы БПЛА. 

В дальнейшем, помимо усовершенствования модели 
БПЛА и использования распределенной компьютерной си-
стемы, нами планируется расширить алгоритмы картогра-
фирования и поиска маршрута для возможности их ис-
пользования в динамической среде. 
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