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Abstract. In this paper, we have created an interparticle interaction potential for liquid alkali
metals using ab-initio simulations and machine learning. The resulting family of potentials was
tested by molecular dynamics simulation, in which the liquid metals were heated to the melting
point and the resulting system was then averaged. The simulation results show that near the
melting point, the radial distribution function and the static structure factor are reproduced.
This results indicates that the principle of corresponding states is fulfilled in liquid alkali metals.

1. Introduction
At present, the structural features and properties of alkali metals are of great interest to
researchers. Firstly, this class of metals is the first one after the fully studied inertial gases,
which makes it possible to test, generalize and adapt new models to existing experimental
data. Secondly, liquid alkali metals have many practical applications, for example, coolants in
nuclear reactors, purification of alloys from impurities, the creation of photovoltaic cells. The
high chemical activity of this metals is explained by the presence of one electron on the outer
shell. Therefore, when studying these metals in their pure form, where the alkali metal atom is
represented as a “positive ion and ns1 electronic structure”, on which many different theories
of simple metals were tested and well studied experimentally [1, 2, 3, 4]. It was shown in the
Ref.[5] [5] that the interaction potential for liquid alkali metals has an oscillating form, due to
the periodicity in the arrangement of the electronic structure (Friedel oscillations). For lithium,
good agreement was achieved between the simulation results and experimental data [6]. It was
also shown the possibility of fulfilling the principle of thermodynamic similarity [7] in liquid
alkali metals near the melting point. Authors have shown that this approach is correct and
the pair oscillating potential makes it possible to describe the structural characteristics in other
liquid alkali metals.

2. Obtaining the coefficients of potentials for alkali metals
The interaction potential is assumed to be paired due to the fact that alkali metal melt is
consists of positively charged ions and electrons moving between them, creating oscillations in
the structure. To determine the interaction potential, we need a functional dependence of the
interaction energy on distance and a set of parameters. In our case, the set of parameters will
be chosen on the assumption that for alkali metals the potential will have one dependence:

U(r) = A exp(−η(r − r0)) +
B

rn
cos(kr + ϕ), (1)
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where the first term characterizes the short-range repulsion, the second term characterizes
periodic oscillations in the electronic structure. The potential parameters for considered systems
were obtained by machine learning: the algorithm is a controlled random search with local
mutation [8]. The convergence criterion of the machine learning algorithm is the forces acting
on the atoms obtained from the earlier ab-initio simulation in the VASP package (100 system
configurations) [9, 10]. Initial conditions for ab-initio simulation: 54 particles, bcc lattice type,
NVT ensemble, final simulation temperatures are 475 K, 390 K, 343 K, 320 K, 303 K respectively
for lithium, sodium, potassium, rubidium, cesium, respectively. The lattice constants are chosen
in such a way as to correspond to the quantitative density of the systems in the experiment and
are equal to 3.557, 4.282, 5.386, 5.772, 6.215 Åfor lithium, sodium, potassium, rubidium, cesium,
respectively. The parameters for the potentials obtained in the course of machine learning are
shown in Table 1:

Table 1. Potential parameters for alkali metals.

Element A η r0 B n k ϕ

Li 3 3.5 1 9.068 4.24 -1.995 3.440
Na 35.73 6.593 1 20.16 4.532 -1.675 3.595
K 2.7527 2.82863 2.47148 2 1.661 -1.358 -0.574
Rb 1.00047 2 2.88956 0.5 2 1.379 4.137
Cs 1.416*10−5 1.019 13.66 14.44 2.778 0.883 13.793

3. Structure and collective dynamics of liquid alkali metals
Simulation was performed in the LAMMPS package [11] with the following initial conditions: a
bcc lattice of N = 9826 atoms with periodic boundary conditions. The lattice constants are same
as in the ab-initio simulation case with initially zero velocities and accelerations. A canonical
NVT ensemble with an integration time step of τ = 10 fs was used, where the systems were
heated to the temperature 800 K over 100 000 time steps and held for 70,000 time steps, after
which the liquid system were cooled to the following target temperatures: for lithium is 475 K,
sodium is 390 K, potassium is 343 K, rubidium is 320 K, cesium is 303 K. This state is located
near the melting curve, and there is a fairly extensive experimental material for it. One of the
most common ways to check the correctness of the interaction potential is to calculate the radial
distribution function of atoms [12]:

g(r) =
V

4πr2N

〈
N−1∑
i=1

∆ni(r)

∆r

〉
(2)

and the static structure factor [12]:

S(k) = 1 +
N

V

∫
[g(r)− 1] exp (ikr) dr, (3)

where V is the volume of the system, N is the number of atoms in the system, ∆ni(r) is the
number of atoms in a spherical layer of thickness ∆r, k is the wave vector, and r is the radius
vector of the particle, angular brackets mean averaging over the entire system and over the time
sample. The results of calculations of the radial distribution function and the static structure
factor are presented below.
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Figure 1. Radial distribution function (left panel) and static structure factor (right panel) for:
a) lithium, b) sodium, c) potassium, d) rubidium, e) cesium. Blue line is the simulation results,
red circles are the experimental results [13].

In our case, we will consider also dynamical structure factor [14, 15, 16, 17, 18, 19]. This
quantity is determined from the experiments of inelastic scattering neutrons and X-rays [12]:

S(k, ω) =
1

2πN

∫ +∞

−∞
exp(−iωt)

∑
i,j

⟨exp [−ikri(0)] exp [−ikrj(t)]⟩ dt. (4)

The angular brackets mean averaging over the entire system and over the time sample. To
compare the simulation results with the experimental data, the X-ray scattering intensity spectra
I(k, ω) were determined for different values of the wave number k, which is related to the dynamic
structure factor S(k, ω) by the relations [18]

I(k, ω) = E(k)

∫
R(k, ω − ω′)Sq(k, ω

′)dω′, (5)

Sq(k, ω) =
h̄ω/kBT

1− exp(h̄ω/kBT )
S(k, ω). (6)

4. Conclusions
In the present work, the oscillating potential model (1) is constructed and tested as applied to
liquid alkali metals near the melting point. It is shown that such a pair potential accurately
reproduces the ”structural” features of alkali metal melts and describes experimental data on
neutron and X-ray diffraction. It has been established that the resulting model can be used to
describe the static structure in a wide range of wave numbers. But in the dynamical structure
factor, there is some mismatch between the simulation results, especially in sodium.
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Figure 2. Spectra of inelastic scattering of X-rays and neutrons (red circles) for liquid lithium
at a temperature of T = 475 K [20], sodium T = 390 K [21], potassium T = 343 K [22], rubidium
T = 320 K [23], cesium T = 303 K [24]. The experimental errors of the intensity are shown for
all liquid metals, except cesium. The results of simulation with model potential are marked as
blue line.
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