ПРОГРАММА ЭЛЕКТИВНОГО КУРСА ПО ТЕМЕ «АЛГОРИТМИЗАЦИЯ И ПРОГРАММИРОВАНИЕ» (ПОДГОТОВКА К ЕГЭ)

3.3. Ризванов^а, 9.И. Фазлеева^b

^aE-mail: rizvanov.zemfir@mail.ru; Казанский федеральный университет ^bE-mail: elmira.fazleeva@mail.ru; Казанский федеральный университет

Аннотация. В работе приведена составленная авторами программа элективного курса по алгоритмизации и программированию, которая содержит учебно-тематический план и методические рекомендации по форме организации и построению уроков.

Abstract. Z.Z. Rizvanov, E.I. Fazleeva. In this paper the authors refer compiled program elective course on algorithms and programming, which includes teaching and thematic plan and guidelines on the form of organization and building lessons. .

Keywords: Algorithmization, Programming, Unified State Exam, Elective Course.

На сегодняшний день актуальной является проблема обучения алгоритмизации и программированию, которые востребованы вузами и в недостаточном объеме отражены программами по информатике в школе.

Анализ контрольно-измерительных материалов единого государственного экзамена предыдущих лет показал, что 52% баллов учащиеся могут набрать при выполнении заданий по разделу «Алгоритмизация и программирование». Это еще раз показывает необходимость и важность должного обучения школьников данной теме.

Мы проанализировали действующий образовательный стандарт (2004) и новый учебный стандарт основного образования, кодификатор единого государственного экзамена, рекомендованные министерством образования и науки, а также программы и учебники по информатике таких авторов, как Н. В. Макарова, И. Г. Семакин и Н. Д. Угринович. В результате анализа был сделан вывод, что объём часов, отведенных на изучение темы «Алгоритмизация и программирование», не дает возможности в полной мере изучить ее в школьном курсе. В этом и заключается несоответствие выделяемого количества часов на изучение данной темы с объемом рассматриваемого материала за данное количество часов, и в этом выражается несоответствие выпускника к требованиям итоговой аттестации по форме единого государственного экзамена. Поэтому нами был разработан элективный курс, который направлен на углубление знаний и развитие навыков решения задач по теме «Алгоритмизация и программирование».

Данный курс предлагается учащимся 11-х классов старшей школы, сдающих ЕГЭ по информатике. В структуре изучаемого курса выделяются следующие три раздела:

- «Элементы теории алгоритмов»;
- «Программирование»;
- «Тестирование по вариантам».

Курс рассчитан на 36 часов практических занятий и проводится в течение учебного года по 1 часу в неделю. Формы организации занятий - практикумы по решению задач. Результатом изучения является освоение учащимися содержания курса: овладение умениями и навыками решения задач, связанные с алгоритмизацией и программированием.

Каждое занятие тематических блоков может быть построено по следующему алгоритму:

- 1. Повторение основных методов решения заданий по теме.
- 2. Совместное решение заданий ЕГЭ.
- 3. Самостоятельная работа обучающихся по решению задач.

Курс завершается тестированием в форме ЕГЭ.

Ниже предложен учебно-тематический план элективного курса.

Наименование разделов и тем	Кол-	Формы организации
	во	занятий
	часов	
Раздел 1. «Элементы теории алгоритмов»		
1.1. Выполнение и анализ простых алгоритмов (6-1 (А5))	1	Индивидуальная работа
или Поиск алгоритма минимальной длины для исполнителя (6-2(B1))		
1.2. Рекурсивные алгоритмы (11 (В6))	1	Индивидуальная работа
1.3. Выполнение алгоритмов для исполнителя (14 (А13))	2	Работа в парах
1.4. Работа с массивами и матрицами в языке програм-	2	Фронтальная работа
мирования (19 (А12))		
1.5. Анализ программы, содержащей подпрограммы, цик-	2	Фронтальная работа
лы и ветвления (20 (В8))		
1.6. Динамическое программирование (22 (В13))	2	Фронтальная работа
1.7. Обработка массива (25 (С2))	4	Работа в парах
1.8. Дерево игры. Поиск выигрышной стратегии (26 (С3))	6	Работа в парах
Раздел 2. «Программирование»		
2.1. Анализ программы (8 (В5))	1	Индивидуальная работа
2.2. Анализ программы с подпрограммами (21 (В14))	2	Фронтальная работа
2.3. Исправление ошибок в простой программе с услов-	3	Работа в парах
ными операторами(24 (С1))		
2.4. Обработка данных, вводимых в виде символьных	8	Работа в парах
строк или последовательности чисел (27 (С4))		
Раздел 3. «Тестирование по вариантам»		
3.1. Алгоритмизация и программирование	2	Индивидуальная работа
ВСЕГО:	36	

Литература

- [1] Богомолова О.Б. Информатика: ЕГЭ за 30 дней: экспресс-репетитор Москва: АСТ, Астрель, 2014.-446 с.
- [2] Богомолова О.Б. Информатика: Полный справочник для подготовки к ЕГЭ Москва: АСТ, Астрель, 2014. 415 с.
- [3] Преподавание, наука и жизнь // http://kpolyakov.spb.ru/school/ege.htm

ПРИМЕНЕНИЕ ИНФОРМАЦИОННО-КОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ В ОБУЧЕНИИ МАТЕМАТИКЕ

3.3. Ризванов^а, 9.И. Фазлеева^b

 a E-mail: rizvanov.zemfir@mail.ru; Kaзaнский федеральный университет b E-mail: elmira.fazleeva@mail.ru; Kaзaнский федеральный университет

Аннотация. В работе приведены дидактические возможности использования информационнокоммуникационных технологий в обучении математике; описан электронный учебник «Задачи на движение», созданный в программе AutoPlay Media Studio 8.0.

Abstract. The paper presents the didactic possibilities of using information and communication technologies in teaching mathematics; describes an electronic textbook «Challenges for the movement» created by the program AutoPlay Media Studio 8.0.

Keywords: Information and Communication Technologies, Teaching Mathematics Tasks «on the move», Electronic Textbook, AutoPlay Media Studio.

Информатизация образования, приводящая к внедрению современных информационно-коммуникационных технологий (ИКТ) в общеобразовательную школу, решительно меняет методы и формы деятельности учителя и учащихся.

Информационные и коммуникационные технологии способствуют созданию уникальной информационной среды, используемой для решения различных методических и учебно-познавательных задач в обучении математике. Это означает, что ИКТ обладают определенными дидактическими возможностями. К ним можно отнести (по М.П. Лапчику):

- незамедлительную обратную связь между учащимися и средствами ИКТ;
- компьютерную визуализацию учебной информации об объектах, процессах и явлениях, как реально протекающих, так и виртуальных;
 - хранение больших объемов информации с возможностью легкого доступа к ней;
 - компьютерное моделирование изучаемых или исследуемых явлений и процессов;
- автоматизацию процессов вычислительной, информационно-поисковой деятельности, обработки результатов учебного эксперимента с возможностью его многократного повторения;
- автоматизацию процессов управления учебной деятельностью и контроля за результатами усвоения учебного материала.

Вместе с тем, применение в обучении информационно-коммуникационных технологий способствует развитию самостоятельности и творческих возможностей учащихся, позволяет повысить уровень системности их знаний по изучаемому предмету, существенно повышает степень индивидуализации обучения.

ИКТ позволяют более эффективно использовать учебное время на уроке и во многом облегчают работу учителя по технической подготовке заданий учащимся для самостоятельной и контрольной работ (изготовление карточек); позволяют сделать урок красочным и подать материал наглядно. Всё это способствует активизации учебного процесса, изменяет у школьников психологический настрой к занятиям, делает учебно-воспитательный процесс увлекательным.

Использование различных ИКТ и компьютерных прикладных программ возможно при изучении любой темы школьного курса математики. Например, для успешного обучения теме «Задачи на движение» нами был создан электронный учебник с помощью программы AutoPlay Media Studio 8.0 (рис.1.).

Рис. 1: Пример программы, созданной в AutoPlay Media Studio.

AutoPlay Media Studio имеет широкие возможности и богатый набор инструментов для разработки мультимедийных проектов. Использовать программу можно не только для создания файлов автоза-

пуска, но и для других целей, например, для разработки интерактивного обучающего софта или мультимедийной презентации. Можно с уверенностью сказать, что на сегодняшний день AutoPlay Media Studio является одной из самых лучших программ в своей области.

Электронный учебник предназначен для учащихся 5-9 классов и включает в себя следующие разделы: теоретическая часть, задачи из ОГЭ и ЕГЭ, задачи для самостоятельного решения и дополнительная информация (пособия) (рис.2.).

Рис. 2: Разделы учебника.

В теоретической части можно познакомиться с определенными понятиями и рассмотреть методику и алгоритмы решения конкретных типов задач «на движение», таких, как движение двух объектов в одном направлении; движение объектов навстречу друг другу; движение объектов в противоположных направлениях; движение по кольцевым дорогам. Во втором разделе приводятся примеры из ОГЭ и ЕГЭ и их решения. В третьем разделе - список задач (от простых к постепенно усложняющимся) для самостоятельного решения. В дополнительной информации содержится список литературы.

Учебник может стать простым в обращении и незаменимым помощником для учителя и учащихся 5-9 классов в решении задач «на движение», а также при подготовке к ОГЭ и ЕГЭ по математике.

Литература

- [1] Башмаков А.И., Башмаков И.А. Разработка компьютерных учебников и обучающих систем. М.: «Филинъ», 2003. 256 с.
- [2] Лаппо Л.Д., Попов М.А. ОГЭ-2015. Математика: сборник заданий /. М.: Издательство «Экзамен», 2015. 157 с.
- [3] Лапчик М.П., Семакин И.Г., Хеннер Е.К., Рагулина М.И. Теория и методика обучения информатике: учебник. М.: Издательский центр «Академия», 2008. 592 с.
- [4] Поспелов В.А. Задачи на движение. Санкт-Петербург: изд. дом Литература, 2008.
- [5] Семенов А.В. Оптимальный банк заданий для подготовки к ЕГЭ. Единый государственный экзамен 2015. Математика. Учебное пособие под ред. И.В. Ященко, Московский Центр непрерывного математического образования. М: Интелект-Центр, 2015. 88 с.