УДК 541.69:547.84

Макроциклические и ациклические дибромиды 1,3-бис[5-(триалкиламмонио)пентил]-5(6)-замещенных урацилов: синтез, антимикробные свойства и связь структура—активность*

В. Э. Семенов, * А. Д. Волошина, Н. В. Кулик, А. С. Стробыкина, Р. Х. Гиниятуллин, Л. Ф. Сайфина, А. Е. Николаев, Е. С. Крылова, В. В. Зобов, В. С. Резник

> Институт органической и физической химии им. А. Е. Арбузова Казанского научного центра Российской академии наук, Российская Федерация, 420088 Казань, ул. Акад. Арбузова, 8. Факс: (843) 273 2253. E-mail: sve@iopc.ru

Синтезированы ряды ациклических ониевых производных урацила — дибромидов 1,3-бис[5-(алкилдиэтиламмонио)пентил]-5(6)-замещенных урацилов — и изоструктурных им макроциклических соединений (изомерных *цис- и транс*-пиримидинофанов, несущих ониевые группировки в составе декаметиленовых цепочек). Полученные соединения проявляют значительную бактериостатическую и фунгистатическую активность. Выявлен специфический вклад в антимикробном действии ониевых производных урацила: бактериостатическая и фунгистатическая активности соединений определяются их топологией, природой заместителя при атоме C(5) урацилового цикла и заместителя в составе ониевых группировок. Исследованы механизм антимикробного действия и цитотоксичность ониевых производных урацила.

Ключевые слова: урацилы, аммониевые соединения, пиримидинофаны, антимикробная активность.

В последние годы в качестве противомикробных агентов вызывают интерес соединения амфифильной природы, в состав которых входят структурные фрагменты обладающих противомикробной активностью природных пептидов. В большинстве случаев эти соединения представляют собой олигомеры, например амфифильные полиметакрилаты^{1,2}, полинорборнены³⁻⁵, поливинилспирты⁶, фениленэтинилены⁷, имеющие аммониевые группировки и обладающие весьма высокой антибактериальной активностью наряду с низкой токсичностью. Молекулярные веса олигомерных амфифилов варьируются в весьма широких пределах — от 137500 до 1000 г • моль⁻¹.⁸

Практически отсутствуют сведения о биологической активности, в частности, противомикробной активности макроциклических амфифилов; кроме того, чрезвычайно редки работы, посвященные изучению биологической активности амфифилов, содержащих нуклеотидные основания, в том числе производные урацилов. Между тем можно предположить, что циклическая структура амфифильного соединения может обусловливать специфический механизм его противомикробного действия, с одной стороны, а остаток урацила будет способствовать более прочному закреплению на биомишени — с другой.

Нами впервые синтезированы и протестированы на антимикробную активность по отношению к грамположительным и грамотрицательным бактериям, а также грибам ониевые производные урацила — дибромид 1,3-бис{5-[*н*-децил(диэтил)аммонио]пентил}-

2a,b: *n* = 2—4; R¹, R² = H, *n*-C₁₀H₂₁, Bn

* Посвящается академику Российской академии наук Н. С. Зефирову в связи с его 80-летием.

© 2015 «Известия Академии наук. Серия химическая», Российская академия наук, Отделение химии и наук о материалах Российской академии наук, Институт органической химии им. Н. Д. Зелинского Российской академии наук

6-метилурацила (1) и изоструктурные ему макроциклические амфифильные соединения — изомерные пиримидинофаны **2а,b**, которые представляют собой два 6-метилурациловых фрагмента, соединенных друг с другом через атомы N(1) и N(3) пиримидиновых колец полиметиленовыми цепочками, содержащими ониевые группировки^{9–11}. Изомерия этих макроциклов определяется различным *цис-* и *транс*-расположением карбонильных групп C(4)=O в составе урациловых циклов пиримидинофанов **2a** и **2b** соответственно. Эти макроциклы, на наш взгляд, можно рассматривать как амфифильные циклические олигомеры с низкой молекулярной массой.

Обнаружено, что взаимное *цис*- или *транс*-расположение карбонильных групп при урациловых циклах пиримидинофанов не влияет на их антимикробную активность^{9,10}. Поэтому для исследования антимикробной активности пиримидинофанов не представляется целесообразным их разделение на индивидуальные изомеры.

Наибольшую активность по отношению к грамположительным бактериям *Staphylococcus aureus* и *Bacillus cereus* продемонстрировали смеси *цис-* и *mpaнc-*изомерных пиримидинофанов **2а,b** с n = 3, где $\mathbb{R}^1 = \mathbb{H}$, $\mathbb{R}^2 = n - \mathbb{C}_{10}\mathbb{H}_{21}$ и $\mathbb{R}^1 = \mathbb{R}^2 = n - \mathbb{C}_{10}\mathbb{H}_{21}$. нии исследовано влияние структурных факторов, в частности топологии соединений, природы заместителя при атоме C(5) урацилового цикла и заместителя в составе ониевых группировок в полиметиленовых цепочках, на антимикробную активность ациклических и макроциклических ониевых производных урацила по отношению к различным микроорганизмам — бактериям и грибам.

С этой целью синтезирован ряд ациклических ониевых производных урацила — дибромидов 1,3-бис[5-(алкилдиэтиламмонио)пентил]-5(6)-замещенных урацилов 3а—h — и изоструктурных им смесей изомерных цис-и транс-пиримидинофанов 4a,b—8a,b. В этих ациклических и макроциклических ониевых производных урацила при постоянном числе метиленовых групп в цепочке, соединяющей урациловый фрагмент с ониевой группировкой, варьируются заместители при атомах C(5) и C(6) урациловых циклов и атомах N в составе полиметиленовых цепочек. В соединениях За-h соединительные цепочки пентаметиленовые, а в пиримидинофанах 4а, b—8а, b — декаметиленовые. Такая длина цепочек выбрана на основании данных о высокой антимикробной активности пиримидинофанов 1 и 2a,b (n == 3; $R^1 = H$, $R^2 = n - C_{10}H_{21}$; $R^1 = R^2 = n - C_{10}H_{21}$)¹⁰.

Кроме того, синтезированы и исследованы соединения 9 и 10, в которых урациловые циклы мономер-

ных ациклических или макроциклических фрагментов связаны межмолекулярным дииновым мостиком. В данном случае интерес представляет влияние увеличения числа ониевых группировок и размеров соединений на антимикробную активность.

По нашему мнению, полученные данные позволят, с одной стороны, оптимизировать структуру урацилсодержащего амфифила с целью создания высокоэффективных антимикробных средств, а с другой — прояснить механизм действия этого нового класса соединений, обладающих антибактериальной и антигрибковой активностью.

Обсуждение полученных результатов

Синтез ониевых производных урацила. Для синтеза ониевых производных урацила как ациклического,

так и макроциклического строения использовали одни и те же исходные соединения, а именно 1,3-бис(5-бромпентил)-5(6)-замещенные урацилы 11а-д. Дибромиды 11а-д получали по известной методике¹² исходя из динатриевой соли соответствующего 5(6)-замещенного урацила и 1,5-дибромпентана в ДМФА. Далее дибромиды 11а-д переводили либо в 1,3-бис(5-диэтиламинопентил)-5(6)-замещенные урацилы 12а-д взаимодействием с диэтиламином (схема 1), либо в 1,3-бис(5-этиламинопентил)-5(6)замещенные урацилы, в частности диамины 13а, b, peакцией 1,3-бис(5-бромпентил)-6-метилурацила (11а) с этиламином или аллиламином (схема 2). Соединения макроциклического строения синтезировали по реакции диаминов 13a,b с дибромидами 11a-f. Такие реакции предполагают образование макроциклов с цис- и транс-расположением карбонильных групп

Реагенты и условия: *i*. NHEt₂, K₂CO₃, MeCN. *ii*. R³Br, MeCN.

а

b

С

13: $R^1 = Me$, $R^2 = H$, $R^3 = Et$ (**a**); $R^1 = Me$, $R^2 = H$, $R^3 = H_2C=CHCH_2$ (**b**)

Соеди- нение	R ¹	R ²	R ³	Соеди- нение	R ¹	R ²	R ³
14a,b	н	Me	Et	17a,b	Me	HC≡CCH ₂	Et
15a,b	Н	OMe	Et	18a,b	Me	н	H ₂ C=CHCH ₂
16a,b	Me	$H_2C=CHCH_2$	Et				

Реагенты и условия: *i*. NH₂R³, PrⁱOH. *ii*. 11a-f, K₂CO₃, MeCN. *iii*. R⁴Br, MeCN.

Схема 2

Схема 1

при атоме C(4) урациловых циклов — пиримидинофанов **14а,b—18а,b** (см. схему 2)¹³.

Как отмечалось выше, относительное расположение карбонильных групп не влияет на антимикробную активность пиримидинофанов, поэтому макроциклы **14a,b—18a,b** выделены нами в виде смесей изомеров и не разделялись на индивидуальные компоненты. Только в случае синтеза пиримидинофанов **17a,b**, несущих пропаргильную группу при атоме C(5) одного из урациловых циклов, в индивидуальном состоянии был выделен *транс*-изомер **17b**, который далее вводили в реакцию окислительного сочетания терминальных тройных связей в варианте реакции Эглинтона¹⁴.

Аналогичную реакцию использовали для окислительного сочетания тройных связей в составе соединения **12с**. В результате были выделены тетраамин **19** и мультипиримидинофан **20**, в которых урациловые фрагменты мономеров ациклического и макроциклического строения связаны между собой гекса-2,4-дииновым мостиком.

Заключительной стадией, которая приводит к целевым ониевым производным урацила **3а—h**, **4а,b— 8а,b**, **9** и **10**, является кватернизация атомов N в составе полиметиленовых цепочек диаминов **12а—g**, тетраамина **19**, пиримидинофанов **14а,b—18а,b** и мультипиримидинофана **20** 1-бромдеканом в MeCN.

Антимикробная активность ониевых производных урацила. Синтезированные соединения были протестированы по отношению к ряду грамположительных (Staphylococcus aureus 209-P, Bacillus cereus 8035, Enterococcus faecalis ATCC 8043) и грамотрицательных (Pseudomonas aeruginosa 9027, Escherichia coli F-50) бактерий, а также грибов (Trichophyton mentagrophytes var. gypseum 1773, Aspergillus niger BKMF-1119, Candida albicans 885-653). Результаты представлены в таблицах 1 и 2 в терминах минимальных ингибирующих концентраций (МИК) — концентраций, останавливающих рост бактерий и грибов, и минимальных бактерицидных и фунгицидных концентраций (МБК и МФК соответственно) — концентраций, вызывающих гибель клетки.

Исследованные соединения размещены в таблице 1 в таком порядке, чтобы наглядно показать изменение их активности с изменением структурных фрагментов. Так, соединения, которые несут одни и те же заместители при урациловом цикле, например CH₃группу при атоме C(6) урацилового цикла (соединения **3a**, **1** и **2a,b** с n = 3, $\mathbb{R}^1 = \mathbb{H}$, $\mathbb{R}^2 = n - \mathbb{C}_{10}\mathbb{H}_{21}$), аллильный радикал (соединения **3f**, **6a,b**, **8a,b**) или тройные связи (соединения **3g**, **9**, **7a,b**, **10**), расположены друг под другом. В заключение приведены данные для соединения, моделирующего ониевую группировку, — триэтил-*н*-дециламмонийбромида (ТЭ-ДАБ), и данные для стандартных высокоэффективных антимикробных препаратов.

Анализ данных, представленных в таблице 1, позволяет сделать ряд выводов.

Смеси изомерных амфифильных пиримидинофанов в большинстве случаев слабо активны по отношению к грибам (МИК 125—500 мкг • мл⁻¹), антибактериальная активность по отношению к грамотрицательным бактериям практически отсутствует (активность наблюдается только по отношению к *E. Coli* (МИК 15.6—62.5 мкг • мл⁻¹)). Амфифильные пиримидинофаны демонстрируют хорошую антибактериальную активность по отношению к грамположительным бактериям *S. aureus* и *B. cereus* (но не к *E. faecalis*): МИК составляет 0.2—15.6 мкг • мл⁻¹.

Очевидно влияние заместителя при атомах С(5) или С(6) урацилового цикла пиримидинофанов на их антимикробную активность. Так, переход от пиримидинофанов 2а, b с двумя 6-метилурациловыми фрагментами к пиримидинофанам 4а, b с тиминовым (5-метилурациловым) и 6-метилурациловым фрагментами сопровождается 2-15-кратным увеличением значений МИК по отношению ко всему ряду тестируемых микроорганизмов. В свою очередь, введение в положение C(5) урацилового цикла OCH₃-группы (пиримидинофаны 5а,b) уменьшает значения МИК, хотя они и остаются выше значений для пиримидинофанов 2а, b с двумя 6-метилурациловыми фрагментами. Высокую активность по отношению к S. aureus (МИК 0.2 мкг \cdot мл⁻¹) и, что весьма примечательно, к грибам T. mentagrophytes и C. albicans, cpaвнимую с эталонными препаратами, демонстрируют изомерные пиримидинофаны **ба,b**, несущие в составе одного из урациловых фрагментов аллильный заместитель. При этом введение аллильного радикала в ониевые группировки полиметиленовых цепочек (пиримидинофаны 8а, b) не приводит к такому драматическому увеличению активности. Ненасыщенный пропаргильный заместитель при атоме С(5) урацилового цикла (пиримидинофаны 7а,b) не оказывает су-

Соеди-	${ m M}{ m M}{ m K}{ m f}\cdot{ m m}{ m m}^{-1}$										
нение	Sa	Ba	Ec	Pa	Ef	An	Tm	Ca			
3a	_	_	_	_	_	_	_	_			
1 <i>a</i>	1.6	2.5	12.5	_	312	62.5	31.3	31.3			
2a,b ^b	1.0	2.0	62.5	_	_	250	125	125			
3b	250	_	_	_	_	_	_	_			
3c	2.0	2.5	15.6	_	125	31.3	12.9	3.9			
5a,b	2.0	7.8	15.6	_	_	_	_	_			
3d	1.0	6.3	15.6	_	125	125	12.5	1.0			
4a,b	15.6	15.6	62.5	_	_	_	250	250			
3g	1.9	1.9	3.9	125	_	_	50	3.9			
7a,b	1.9	15.6	62.5	_	_	_	_	7.8			
9	1.9	3.9	15.6	31.3	_	_	31.3	1.0			
10	125	_	_	_	_	_	_	250			
3f	1.9	1.9	3.9	250	_	250	31.3	1.9			
6a,b	0.2	3.9	15.6	250	390	250	6.3	1.9			
8a,b	3.9	15.6	62.5	_	390	_	_	_			
3e	1.0	15.6	15.6	_	125	_	31.3	1.0			
3h	1.0	0.5	62.5	250	125	_	62.5	1.0			
2a,b ^c	2.5	5.0	62.5	_	250	_	125	125			
ТЭДАБ	2.5	50	156	_	_	_	_	62.5			
Клотримазол	_	_	_	_	_	_	3.1	0.4			
Норфлоксацин	2.4	7.8	1.5	3.0	3.9	_	_	_			
Амфотерицин Б	_	_	_	_	_	20	_	_			

Таблица 1. Бактериостатическая и фунгистатическая активности ониевых производных урацила, выраженные через минимальные ингибирующие концентрации (МИК)

Примечание. Здесь и в таблице 2 Sa — Staphylococcus aureus, Ba — Bacillus cereus, Ec — Escherichia coli, Pa — Pseudomonas aeruginosa, Ef — Enterococcus faecalis, An — Aspergillus niger, Tm — Trichophyton mentagrophytes, Ca — Candida Albicans. Прочерк относится к МИК ≥500 мкг · мл⁻¹. ^a См. лит.⁹ b n = 3, R¹ = H, R² = n-C₁₀H₂₁ (см. лит.⁹). ^c n = 3, R¹ = R² = n-C₁₀H₂₁ (см. лит.¹⁰).

Таблица 2. Бактерицидная и фунгицидная активности ониевых производных урацила, выраженные через минимальные бактерицидные (МБК) и фунгицидные (МФК) концентрации

Соеди-	МБК (МФК)/мкг \cdot мл $^{-1}$										
нение	Sa	Ba	Ec	Pa	Ef	An	Tm	Ca			
3d	50.0	_	_	_	_	_	_	50.0			
6a,b	5.0	50.0	_	_	_	_	50.0	50.0			
7a,b	50.0	_	_	_	_	_	_	_			
3e	5.0	_	_	_	_	_	_	_			
3h	5.0	_	_	_	_	_	_	50.0			
9	5.0	_	-	—	—	_	125	15.6			

Примечание. Прочерк относится к МБК (М Φ К) ≥500 мкг · мл⁻¹.

щественного влияния на величины МИК, хотя и наблюдается их значительное снижение по отношению к *C. albicans* в сравнении с МИК пиримидинофанов **2a,b**.

Изоструктурные пиримидинофанам ациклические ониевые производные урацила **За**—**h**, в отличие от соответствующих им макроциклов, активны по отношению как к грамотрицательным (*E. Coli*: МИК 12.5— 62.5 мкг • мл⁻¹), так и к грамположительным бактериям (*S. aureus* и *B. Cereus*: МИК 1.0—12.5 мкг • мл⁻¹); кроме того, присутствует значительная фунгистати-

ческая активность, сравнимая с эталонными препаратами. В отличие от пиримидинофанов, в ряду ациклических ониевых производных урацила отсутствует выраженная зависимость антимикробной активности от природы заместителя при атомах С(5) или С(6) урацилового цикла — все исследуемые соединения с н-децильным радикалом в составе ониевых группировок весьма активны. Наименьшие значения МИК достигаются при введении в состав урацилового цикла нитрогруппы или н-децильного заместителя (соединения 3e,h). Важным структурным фактором, определяющим антимикробную активность ациклических соединений, является наличие в составе ониевых группировок н-децильного радикала — соединения За, b с н-пентильным заместителем практически неактивны.

Переход от ациклического соединения 3g с пропаргильным заместителем при атоме C(5) урацилового цикла к соединению 9, которое представляет связанные между собой гекса-2,4-дииновым мостиком 1,3-бис{5-[*н*-децил(диэтил)аммонио]пентил}-6-метилурацил-5-иловые фрагменты, сопровождается уменьшением значений МИК по отношению ко всему ряду тест-микроорганизмов. Напротив, переход от пиримидинофанов 7а,b к мультипиримидинофану 10 вызывает практически полное исчезновение антимикробной активности. Такой различный биологический эффект от связывания мономерных ониевых производных урацила гекса-2,4-дииновым мостиком, по-видимому, является следствием различий в топологии этих соединений.

Соединение ТЭДАБ, моделирующее ониевые группировки пиримидинофанов и изоструктурных им ациклических соединений, проявляет весьма умеренную активность по отношению ко всему спектру используемых тест-микробов — у него отсутствует выраженная эффективность и селективность к определенным микроорганизмам.

Для соединений с наименьшими значениями МИК (ациклические ониевые производные урацила **3d,e,h**, **9**, пиримидинофаны **6a,b**, **7a,b** (см. табл. 1)) определяли бактерицидную и фунгицидную активности в терминах МБК и МФК. Результаты приведены в таблице 2. Как видно из данных, представленных в таблице 2, пиримидинофаны **6a,b** и соединения **3e,h**, **9** обладают бактерицидным действием по отношению к *S. aureus* (МБК 5 мкг · мл⁻¹), тогда как фунгицидная активность практически отсутствует. Только пиримидинофаны **6a,b** и соединение **9** проявляют фунгицидные свойства по отношению к грибам *T. mentagrophytes* и *C. Albicans* (МФК 15.6—125 мкг · мл⁻¹).

Приведенные выше данные об антимикробных свойствах ациклических и макроциклических ониевых производных урацила, по нашему мнению, не согласуются со схемой антимикробного действия классических поверхносто-активных веществ (ПАВ): считают¹⁵, что оно обусловлено исключительно их солюбилизирующей способностью. Несомненно, что в механизм действия рассмотренных амфифильных соединений вносит вклад механизм действия известных дезинфектантов. Для ониевых биоцидов, в частности для бензалкония и родственных ему соединений, это предполагаемая адсорбция ПАВ на клеточную мембану и ее солюбилизация. Наличие такого вклада подтверждается солюбилизирующей способностью исследуемых амфифилов по отношению к нерастворимым в воде красителям, например гидрофобному красителю Orange OT (1-(о-толилдиазения)-2нафтол). Этот краситель используется при определении агрегационных характеристик амфифильных соединений^{8,16}. Но этот вклад не является доминирующим — по-видимому, имеет место вклад специфического механизма действия, обусловленный урациловым фрагментом и топологией соединения. Об этом свидетельствуют большая разница в величинах МИК для ониевых производных урацила макроциклического и ациклического строения — от одного до трех порядков, а также влияние природы заместителя при урациловом фрагменте на противомикробную активность. Кроме того, обращает на себя внимание существенная разница между значениями МИК для ониевых производных урацила и величинами критической концентрации агрегации (ККА), определенными методами тензиометрии и кондуктометрии. Агрегаты, образующиеся в водных растворах урацилсодержащих амфифильных соединений ациклического и макроциклического строения, являлись объектом детальных исследований^{11,17–21}. Так, например, МИК пиримидинофанов 2а, b с двумя 6-метилурациловыми фрагментами и соединений **1**, **3h** по отношению к *S. aureus* находятся в диапазоне 1—1.6 мкг·мл⁻¹ (см. табл. 1) или 0.001—0.0018 ммоль·л⁻¹, тогда как ККА этих соединений составляют 0.85 (см. лит.¹⁷), 3 (см. лит.¹⁸) и 0.4 ммоль·л⁻¹ (см. лит.²⁰) соответственно, т.е. разница между МИК и ККА составляет три и более порядков. Приведенные данные также свидетельствуют о вкладе специфического механизма действия в антимикробную активность пиримидинофанов, поскольку эти соединения останавливают рост бактерий в концентрациях, при которых не происходит образования агрегатов.

Специфический вклад ониевых производных урацила может быть связан с их влиянием на функционирование ферментных систем бактерий. Мы оценили воздействие ациклических ониевых производных урацила **3d,e,h**, **9**, пиримидинофанов **6a,b**, **7a,b** на дегидрогеназы глюкозы и экзогенные липазы *S. aureus* 209-Р и *C. albicans* 885-653. Выбор тестерных штаммов был связан с тем, что эти микроорганизмы оказались наиболее чувствительными ко всем исследованным соединениям.

Полученные результаты (табл. 3) показали, что в отличие от ТЭДАБ, все исследованные соединения начинают ингибировать дегидрогеназу *S. aureus* 209-Р в диапазоне малых концентраций (0.05–5 мкг • мл⁻¹). Наиболее эффективно угнетают этот фермент ацик-

Таблица 3. Угнетение активности дегидрогеназы глюкозы (ДГ) и экзогенных липаз (ЛЗ) *S. aureus* 209-Р и *C. albicans* 885-653 *in vitro* ониевыми производными урацила

Coe-	Концен-	Угнетение активности (%)							
дине- трация ние /мкг•мл ⁻¹		Į	ĮΓ	ЛЗ					
, 		S. aureus	C. albicans	S. aureus	C. albicans				
2a,b ^a	500	100	100	85	88				
	50	71	78	68	65				
	5	35	37	17	21				
	0.5	28	b	b	9				
6a,b	500	100	100	88	85				
	50	78	77	61	64				
	5	37	32	40	31				
	0.5	21	12	16	16				
9	500	100	100	b	98				
	50	100	72	b	94				
	5	35	44	b	94				
	0.5	5	7	b	83				
3d	500	100	100	95	90				
	50	71	100	45	90				
	5	58	51	15	29				
	0.5	46	b	10	13				
3h	500	100	100	93	89				
	50	70	94	70	83				
	5	41	51	45	31				
	0.5	26	b	10	11				
ТЭДА	Б 500	90	28	38	54				
	50	44	b	28	32				
	5	b	b	7	28				
	0.5	b	b	b	b				

 a n = 3, $\mathbf{R}^{1} = \mathbf{H}$, $\mathbf{R}^{2} = n - \mathbf{C}_{10}\mathbf{H}_{21}$. b Угнетение фермента отсутствует.

лические ониевые производные урацила **3d,h** (максимальный процент ингибирования 58% в концентрации 5 мкг·мл⁻¹). Дегидрогеназу *C. albicans* 885-653 также наиболее эффективно угнетают соединения **3d,h** (максимальный процент ингибирования 51% в концентрации 5 мкг·мл⁻¹). ТЭДАБ незначительно ингибирует дегидрогеназу *C. albicans* 885-653 только в высокой концентрации (500 мкг·мл⁻¹). На основании этих данных можно предположить, что механизм действия этих соединений связан с ингибированием ферментных систем дыхательной цепи микроорганизмов на ранних стадиях взаимодействия с клеточными мишенями, что приводит к нарушению нормального течения синтеза жизненно необходимых соединений в клетке микроорганизма.

На липазу *S. aureus* 209-Р ониевые производные урацила не оказывают значительного влияния. Более выраженный эффект исследуемые соединения оказывают на липазу *C. albicans* 885-653; например тетраамин **9** практически полностью угнетает фермент уже в концентрации 5 мкг • мл⁻¹. Полученные данные свидетельствуют о том, что воздействие ониевых производных урацила приводит к нарушению энергетического обмена в клетках тест-микроорганизмов.

Важной характеристикой веществ амфифильной природы является их цитотоксическое действие по отношению к клеткам млекопитающих, в частности, их гемолитическая активность³. Для наиболее активных ациклических и макроциклических ониевых производных урацила — соединений 3d,e,h и пиримидинофанов **6а,b**, **7а,b** — была определена вызываемая ими степень гемолиза эритроцитов крови человека. Результаты представлены в таблице 4. Гемолиз ониевых производных урацила в концентрациях 1.0-15.6 мкг · мл⁻¹, вызывающих остановку роста тестмикроорганизмов (см. табл. 1 и 2), не превышает 1%. Соединения становятся гемолитически активными (степень гемолиза ≥2%) в концентрациях свыше 125 мкг • мл-1. При этом следует отметить, что пиримидинофаны 6а, b и 7а, b с МИК по отношению к S. aureus 0.2 и 1.9 мкг \cdot мл⁻¹ соответственно в диапазоне концентраций 1—5 мкг · мл⁻¹ вообще не вызывают гемолиз. Напротив, ациклические соединения 3d,e,h в этом диапазоне концентраций вызывают гемолиз до 0.6%.

Таблица 4. Гемолитическая активность ониевых производных урацила

Соеди-	Степень гемолиза (%) при <i>С</i> /мкг • мл ⁻¹										
нение	1.0	1.9	3.9	7.8	15.6	31.3	62.5	125			
3d	0.43	0.52	0.52	0.80	0.88	1.20	1.70	2.00			
2a,b ^a 6a.b	b	b	b	0.20	0.76	0.83 0.74	$1.00 \\ 0.97$	1.50			
7a,b	b	b	b	0.28	0.86	1.00	1.60	2.00			
3e 3h	$\begin{array}{c} 0.40 \\ 0.47 \end{array}$	0.55 0.50	0.55 0.50	$\begin{array}{c} 0.80\\ 0.78\end{array}$	0.90 0.88	1.20 1.00	$\begin{array}{c} 1.70\\ 1.70\end{array}$	2.00 2.30			

 a n = 3, $\mathbb{R}^{1} = \mathbb{H}$, $\mathbb{R}^{2} = n - \mathbb{C}_{10}\mathbb{H}_{21}$. b Гемолиз отсутствует.

Таким образом, синтезированные нами ациклические и макроциклические ониевые производные урацила обладают значительной бактериостатической активностью. В частности, по отношению к бактериям S. aureus наименьшие значения минимальных бактериостатических концентраций водных растворов соединений составляют 0.2 мкг • мл⁻¹, а по отношению к грибам C. Albicans наименьшие значения минимальных фунгистатических концентраций составляют 1.0 мкг • мл⁻¹. Если соединения ациклического строения неизбирательны и активны по отношению ко всему ряду тест-микроорганизмов, то пиримидинофаны активны по отношению к стафилококкам и дрожжеподобным грибам. Выявлен специфический вклад в антимикробном действии ониевых производных урацила: бактериостатическая и фунгистатическая активности соединений определяются их топологией, природой заместителя при атоме С(5) урацилового цикла и заместителя в составе ониевых группировок. Введением заместителей в состав урацилового цикла и ониевых группировок, варьированием топологии соединения, связыванием производных урацила межмолекулярными мостиками можно регулировать антимикробную активность по отношению к определенному микроорганизму. Механизм антимикробного действия ониевых производных урацила, по-видимому, связан с ингибированием ферментных систем дыхательной цепи и энергообмена микроорганизмов. В диапазоне концентраций, останавливающих рост бактерий и грибов, ониевые производные урацила не обладают цитоксичностью по отношению к эритроцитам крови человека.

Экспериментальная часть

Спектры ЯМР ¹Н записывали в CDCl₃ на фурье-спектрометре «AVANCE-400» («Вгикег») с рабочей частотой 400 МГц при 30 °С, в качестве внутреннего стандарта использовали Me₄Si. Масс-спектры MALDI-TOF регистрировали на приборе «ULTRAFLEX III» («Вгикег»), металлическая мишень, матрица — *n*-нитроанилин; условия регистрации масс-спектра — лазер Nd:YAG, $\lambda = 355$ нм, линейный режим без накопления масс-спектров. Содержание С, Н, N в синтезированных соединениях определяли на анализаторе CHN-3. Для оценки гемолитической активности соединений использовали цифровой фотоэлектроколориметр AP-101 («Apel»).

5-Аллилурацил²² и 5-пропаргилурацил^{23,24} получали по известным методикам. Синтез 1,3-бис(5-бромпентил)-6-метилурацила (**11a**)²⁵, 1,3-бис(5-бромпентил)-5-метилурацила (**11e**)²⁵, 1,3-бис(5-бромпентил)-5-метоксиурацила (**11f**)²⁰, 1,3-бис(5-бромпентил)-5-метоксиурацила (**11g**)¹², 1,3-бис(5-диэтиламинопентил)-6-метилурацила (**12a**)⁹, 1,3-бис(5-диэтиламинопентил)-5-метоксиурацила (**12f**)²⁰, 1,3-бис(5-этиламинопентил)-6-метилурацила (**13a**)¹³, дибромида 1,3-бис{5-[μ -децил(диэтил)аммонио]пентил}-5- μ децил-6-метилурацила (**3b**)²⁰ и пиримидинофанов **4a**,**b**, **14a**,**b**¹¹ описан ранее.

Синтез 1,3-бис (5-бромпентил)-5(6)-замещенных урацилов 11а—g (общая методика). Суспензию 1 экв. 5(6)-замещенного урацила и 2 экв. NaH в ДМФА перемешивали 2 ч при 40—45 °C. К суспензии при перемешивании по каплям добавляли раствор 8 экв. 1,5-дибромпентана в ДМФА и полученную смесь перемешивали при 55—60 °С до нейтральной реакции водного раствора пробы (8—10 ч). Растворитель и избыток 1,5-дибромпентана отгоняли в вакууме, в остаток добавляли CHCl₃ и отфильтровывали. Фильтрат концентрировали до 10—15 мл и хроматографировали на колонке с SiO₂. Колонку последовательно элюировали петролейным эфиром, смесью растворителей петролейный эфир—диэтиловый эфир (1 : 1). Из фракций смеси растворителей получали целевые дибромиды **11а—g**.

5-Аллил-1,3-бис(5-бромпентил)-6-метилпиримидин-2,4(1*H,3H***)-дион (11b). Выход 46%. Масло. Найдено (%): С, 46.61; Н, 6.11; Вг, 34.47; N, 6.00. С₁₈H₂₈Br₂N₂O₂. Вычислено (%): С, 46.57; Н, 6.08; Вг, 34.42; N, 6.03. Спектр ЯМР ¹Н (δ, м.д.,** *J***/Гц): 1.48—1.55 (м, 4 H, 2 CH₂); 1.64—1.70 (м, 4 H, 2 CH₂); 1.88—1.94 (м, 4 H, 2 CH₂); 2.24 (с, 3 H, C(6)_{ur}CH₃); 3.22 (д, 2 H, C(5)_{ur}CH₂,** *J* **= 5.8); 3.39—3.44 (м, 4 H, 2 CH₂Br); 3.84—3.88 (т, 2 H, N(1)_{ur}CH₂,** *J* **= 7.9); 3.94—3.98 (т, 2 H, N(3)_{ur}CH₂,** *J* **= 7.5); 4.98—5.03 (м, 2 H, CH₂=); 5.76—5.80 (м, 1 H, CH=). Масс-спектр MALDI-TOF,** *m/z***, найдено: 465.0 [M + H]⁺, 487.1 [M + Na]⁺; C₁₈H₂₈Br₂N₂O₂; вычислено: 465.1, 487.0.**

1,3-Бис(5-бромпентил)-6-метил-5-пропаргилпиримидин-2,4(1*H***,3***H***)-дион (11с). Выход 54%. Масло. Найдено (%): С, 46.68; H, 5.72; Br, 34.49; N, 6.02. C_{18}H_{26}Br_2N_2O_2. Вычислено (%): С, 46.77; H, 5.67; Br, 34.57; N, 6.06. Спектр ЯМР ¹H (\delta, м.д.,** *J***/Гц): 1.48—1.55 (м, 4 H, 2 CH₂); 1.64—1.70 (м, 4 H, 2 CH₂); 1.88—1.94 (м, 4 H, 2 CH₂); 1.97 (т, 1 H, CH,** *J* **= 2.7); 2.38 (с, 3 H, C(6)_{ur}CH₃); 3.38—3.45 (м, 6 H, 2 CH₂Br, C(5)_{ur}CH₂); 3.85—3.89 (т, 2 H, N(1)_{ur}CH₂,** *J* **= 7.9); 3.93—3.97 (т, 2 H, N(3)_{ur}CH₂,** *J* **= 7.5). Масс-спектр MALDI-TOF,** *m***/***z***, найдено: 463.0 [M + H]⁺, 485.0 [M + Na]⁺; C₁₈H₂₆Br₂N₂O₂; вычислено: 463.0, 485.0.**

Синтез 1,3-бис(5-диэтиламинопентил)-5(б)-замещенных урацилов 12а—g (общая методика). К раствору 3.0 ммолей 1,3-бис(5-бромпентил)-5(б)-замещенного урацила и 15 ммолей диэтиламина в 150 мл МеСN добавляли 10 ммолей K_2CO_3 и реакционную массу перемешивали 10 ч при 70—75 °C. Осадок отфильтровывали, фильтрат концентрировали до 10—15 мл и хроматографировали на колонке с 100 г SiO₂. Колонку последовательно элюировали петролейным эфиром, смесями растворителей петролейный эфир—диэтиловый эфир (1 : 1) и диэтиловый эфир—диэтиловый эфир—диэтиловый эфир али целевые диамины 12а—g.

5-Аллил-1,3-бис (5-диэтиламинопентил)-6-метилпиримидин-2,4(1*H***,3***H***)-дион (12b). Выход 78%. Масло. Найдено (%): С, 69.48; H, 10.93; N, 12.50. C_{26}H_{48}N_4O_2. Вычислено (%): С, 69.60; H, 10.98; N, 12.46. Спектр ЯМР ¹H (\delta, м.д.,** *J***/Гц): 0.98–1.02 (м, 12 H, 4 CH₃); 1.36–1.40 (м, 4 H, 2 CH₂); 1.54– 1.57 (м, 4 H, 2 CH₂); 1.64–1.68 (м, 4 H, 2 CH₂); 2.24 (с, 3 H, C(6)_{ur}CH₃); 2.41–2.46 (м, 4 H, 2 NCH₂); 2.50–2.55 (м, 8 H, 4 NCH₂); 3.21 (д, 2 H, C(5)_{ur}CH₂,** *J* **= 5.8); 3.83–3.87 (т, 2 H, N(1)_{ur}CH₂,** *J* **= 7.9); 3.91–3.94 (т, 2 H, N(3)_{ur}CH₂,** *J* **= 7.6); 4.98–5.02 (м, 2 H, CH₂=); 5.77–5.82 (м, 1 H, CH=). Массспектр MALDI-TOF,** *m***/***z***, найдено: 449.5 [M + H]⁺; C₂₆H₄₈N₄O₂; вычислено: 449.4.**

1,3-Бис(5-диэтиламинопентил)-6-метил-5-пропаргилпиримидин-2,4(1*H***,3***H***)-дион (12с). Выход 75%. Масло. Найдено (%): С, 70.00; Н, 10.41; N, 12.57. С₂₆Н₄₆N₄O₂. Вычислено (%): С, 69.91; Н, 10.38; N, 12.54. Спектр ЯМР ¹Н (δ, м.д.,** *J***/Гц): 1.00—1.04 (м, 12 H, 4 CH₃); 1.33—1.39 (м, 4 H, 2 CH₂); 1.48—1.53 (м, 4 H, 2 CH₂); 1.62—1.69 (м, 4 H, 2 CH₂); 1.97 (т, 1 H, CH,** *J* **= 2.7); 2.37 (с, 3 H, C(6)_{ur}CH₃); 2.41—2.44 (м, 4 H, 2 NCH₂); 2.50—2.55 (м, 8 H, 4 NCH₂); 3.41 (д, 2 H, C(5)_{ur}CH₂,** *J* **= 2.6); 3.83—3.87 (т, 2 H, N(1)_{ur}CH₂,** *J* **= 7.9); 3.92—3.96 (т, 2 H, N(3)_{ur}CH₂,** *J* **= 7.6). Масс-спектр MALDI-TOF,** *m/z***, найдено: 447.6 [M + H]⁺; С₂₆H₄₆N₄O₂; вычислено: 447.4.** **1,3-Бис (5-диэтиламинопентил)-5-метилпиримидин-2,4(1***H,3H***)-дион (12е). Выход 82%. Масло. Найдено (%): С, 67.68; H, 10.79; N, 13.62. C_{23}H_{44}N_4O_2. Вычислено (%): С, 67.61; H, 10.85; N, 13.71. Спектр ЯМР ¹H (\delta, м.д.): 1.00– 1.04 (м, 12 H, 4 CH₃); 1.32–1.37 (м, 4 H, 2 CH₂); 1.45–1.49 (м, 4 H, 2 CH₂); 1.61–1.65 (м, 4 H, 2 CH₂); 1.92 (с, 3 H, C(5)_{ur}CH₃); 2.38–2.43 (м, 4 H, 2 NCH₂); 2.48–2.56 (м, 8 H, 4 NCH₂); 3.70–3.74 (т, 2 H, N(1)_{ur}CH₂,** *J* **= 7.2 Ги); 3.90–3.94 (т, 2 H, N(3)_{ur}CH₂,** *J* **= 7.2 Ги); 6.96 (с, 1 H, C(6)_{ur}H). Массспектр MALDI-TOF,** *m/z***, найдено: 409.3 [M + H]⁺; C₂₃H₄₄N₄O₂; вычислено: 409.4.**

1,3-Бис (5-диэтиламинопентил)-5-нитропиримидин-2,4(1*H***,3***H***)-дион (12g). Выход 95%. Масло. Найдено (%): С, 59.98; H, 9.34; N, 16.01. С₂₂H₄₁N₅O₄. Вычислено (%): С, 60.11; H, 9.40; N, 15.93. Спектр ЯМР ¹Н (\delta, м.д.): 1.04— 1.10 (м, 12 H, 4 CH₃); 1.40—1.45 (м, 4 H, 2 CH₂); 1.53—1.57 (м, 4 H, 2 CH₂); 1.66—1.72 (м, 4 H, 2 CH₂); 2.55—2.66 (м, 12 H, 6 NCH₂); 3.89—3.93 (т, 2 H, N(1)_{ur}CH₂, J = 7.3 Гц); 3.97—4.00 (т, 2 H, N(3)_{ur}CH₂, J = 7.6 Гц); 8.67 (с, 1 H, C(6)_{ur}H). Массспектр MALDI-TOF, m/z, найдено: 440.5 [M + H]⁺; C₂₂H₄₁N₅O₄; вычислено: 440.3.**

1,3-Бис(5-аллиламинопентил)-6-метилпиримидин-2,4(1H,3H)-дион (13b). К раствору 0.6 г (10.5 ммоля) аллиламина и 1.50 г (10.9 ммоля) К₂СО₃ в 100 мл н-бутанола при 100 °С добавили раствор 2.0 г (4.7 ммоля) дибромида 11а в 100 мл н-бутанола. Реакционную смесь перемешивали 7 ч при 110 °С. Осадок отфильтровали, раствор сконцентрировали до 10-20 мл и хроматографировали через колонку с SiO₂. Колонку промыли последовательно диэтиловым эфиром, смесью растворителей диэтиловый эфир-диэтиламин (40:1). Из фракций смеси диэтиловый эфир-диэтиламин получили 1.67 г (95%) маслообразного соединения 13b. Найдено (%): С, 67.04; Н, 9.73; N, 15.00. С₂₁Н₃₆N₄O₂. Вычислено (%): С, 66.99; Н, 9.64; N, 14.88. Спектр ЯМР ¹Н (б, м.д.): 1.30–1.40 (м, 4 Н, 2 СН₂); 1.58–1.72 (м, 8 Н, 4 СН₂); 2.23 (с, 3 H, C(6), CH₃); 2.43–2.50 (м, 4 H, 2 NCH₂); 2.66– 2.70 (м, 2 H, 2 NH); 2.87–2.95 (м, 4 H, 2 NCH₂); 3.77–3.81 (т, 2 H, N(1)_{ur}C₂, *J* = 7.4 Гц); 3.88—3.92 (т, 2 H, N(3)_{ur}CH₂, *J* = 7.9); 5.04—5.15 (м, 4 H, 2 CH₂=); 5.56 (с, 1 H, C(5)_{ur}H); 5.73-5.80 (м, 2 H, 2 CH=). Масс-спектр MALDI-TOF, *m/z*, найдено: 376.7 [M]⁺; C₂₁H₃₆N₄O₂; вычислено: 376.3.

Синтез изомерных транс- и цис-пиримидинофанов 4a,b-8а, в (общая методика). К раствору смеси 1 экв. 1,3-бис-(5-бромалкил)-5(6)-замещенного урацила 11а-f и 1 экв. 1,3-бис(5-алкиламинопентил)-6-метилурацила 13а, в в 130-150 мл MeCN добавляли 3.5 экв. К₂CO₃ и реакционную массу перемешивали 7-10 ч при температуре кипения растворителя. Ход реакции контролировали методом ТСХ. По охлаждении растворитель отгоняли, к остатку добавляли 150-200 мл CHCl₃, отфильтровывали, фильтрат концентрировали до 10-20 мл и хроматографировали на колонке с 100-120 г SiO₂. Колонку промывали последовательно диэтиловым эфиром, этилацетатом и смесью растворителей этилацетат-диэтиламин (10 : 1). Смесью растворителей этилацетат-диэтиламин (10:1) элюировали смесь целевых изомерных транс- и цис-пиримидинофанов. Для выделения *транс*-изомера 17b смесь изомеров 17a, b повторно хроматографировали на колонке с 100-120 г SiO₂, элюент смесь этилацетат-диэтиламин (20:1).

1⁴-Метил-13⁵-метокси-1²,1⁶,13²,13⁶-тетраоксо-7,19-диэтил-7,19-диаза-1(1,3),13(1,3)-дипиримидинациклотетракозафан (15а) и 1⁴-метил-13⁵-метокси-1²,1⁶,13²,13⁴-тетраоксо-7,19-диэтил-7,19-диаза-1(1,3),13(1,3)-дипиримидинациклотетракозафан (15b) получали из дибромида 11f и диамина 13a. Выход 23%. Порошок белого цвета. Найдено (%): C, 64.82; H, 9.33; N, 13.24. C₃₄H₅₈N₆O₅. Вычислено (%): C, 64.73; H, 9.27; N, 13.32. Спектр ЯМР ¹H (δ, м.д.): 1.05–1.01 (м, 6 H, 2 CH₃); 1.31–1.35 (м, 8 H, 4 CH₂); 1.43–1.51 (м, 8 H, 4 CH₂); 1.63–1.75 (м, 8 H, 4 CH₂); 2.23 (с, 3 H, C(6)_{ur}CH₃); 2.40–2.45 (м, 8 H, 4 NCH₂); 2.51–2.54 (м, 4 H, 2 NCH₂); 3.75 (с, 3 H, OCH₃); 3.74–3.80 (м, 4 H, 2 N_{ur}CH₂); 3.88–3.92 (м, 2 H, N_{ur}CH₂); 3.95–3.99 (м, 2 H, N_{ur}CH₂); 5.56 (с, 1 H, C(5)_{ur}H); 6.72 (с, 1 H, C(6)_{ur}H). Масс-спектр MALDI-TOF, *m/z*, найдено: 630.7 [M]⁺; C₃₄H₅₈N₆O₅; вычислено: 630.4.

13⁵-Аллил-1⁴,13⁴-диметил-1²,1⁶,13²,13⁶-тетраоксо-7,19диэтил-7,19-диаза-1(1,3),13(1,3)-дипиримидинациклотетракозафан (16а) и 13⁵-аллил-1⁴,13⁶-диметил-1²,1⁶,13²,13⁴-тетраоксо-7,19-диэтил-7,19-диаза-1(1,3),13(1,3)-дипиримидинациклотетракозафан (16b) получали из дибромида 11b и диамина 13а. Выход 17%. Масло. Найдено (%): С, 67.91; Н, 9.59; N, 12.80. С₃₇H₆₂N₆O₄. Вычислено (%): С, 67.85; H, 9.54; N, 12.83. Спектр ЯМР ¹H (δ , м.д.): 0.97–1.02 (м, 6 H, 2 CH₃); 1.30–1.37 (м, 8 H, 4 CH₂); 1.43–1.49 (м, 8 H, 4 CH₂); 1.64–1.68 (м, 8 H, 4 CH₂); 2.23 (уш.с, 6 H, 2 C(6)_{ur}CH₃); 2.35–2.40 (м, 8 H, 4 NCH₂); 2.42–2.50 (м, 4 H, 2 NCH₂); 3.21–3.23 (м, 2 H, C(5)_{ur}CH₂); 3.78–3.96 (м, 8 H, 4 N_{ur}CH₂); 4.98–5.03 (м, 2 H, CH₂=); 5.56 (с, 1 H, C(5)_{ur}H); 5.77–5.80 (м, 1 H, CH=). Масс-спектр MALDI-TOF, *m*/*z*, найдено: 654.8 [M]⁺; С₃₇H₆₂N₆O₄; вычислено: 654.5.

14,134-Диметил-12,16,132,136-тетраоксо-135-пропаргил-7,19-диэтил-7,19-диаза-1(1,3),13(1,3)-дипиримидинациклотетракозафан (17а) и 14,136-диметил-12,16,132,134-тетраоксо-135-пропаргил-7,19-диэтил-7,19-диаза-1(1,3),13(1,3)-дипиримидинациклотетракозафан (17b) получали из 2.50 г (5.4 ммоля) дибромида 11с, 1.90 г (5.4 ммоля) диамина 13а и 2.62 г (19.0 ммолей) К₂СО₃ в 150 мл МеСМ. Выход смеси изомеров 0.80 г (23%). Масло. Найдено (%): С, 67.09; Н, 9.21; N, 12.92. С₃₇Н₆₀N₆O₄. Вычислено (%): С, 68.06; H, 9.26; N, 12.87. Спектр ЯМР ¹H (δ, м.д.): 1.00–1.04 (м, 6 H, 2 CH₃); 1.30—1.37 (м, 8 H, 4 CH₂); 1.43—1.49 (м, 8 H, 4 CH₂); 1.64-1.68 (м, 8 Н, 4 СН₂); 1.97 (м, 1 Н, СН); 2.23 (с, 3 Н, С(6)_{ur}CH₃); 2.37 (с, 3 H, С(6)_{ur}CH₃); 2.40–2.45 (м, 8 H, 4 NCH₂); 2.49–2.52 (м, 4 H, 2 NCH₂); 3.41 (м, 2 H, C(5)_{ur}CH₂); 3.78-3.94 (м, 8 H, 4 N_{ur}CH₂); 5.56 (с, 1 H, С(5)_{иг}Н). Масс-спектр MALDI-TOF, *m/z*, найдено: 652.5 [M]⁺; С₃₇H₆₀N₆O₄; вычислено: 652.5. Смесь макроциклов 17а, b хроматографировали на колонке с SiO₂. Получили 0.34 г *транс*-изомера 17b. Масло. Спектр ЯМР ¹Н (δ, м.д., J/Гц): 0.99—1.02 (м, 6 H, 2 CH₃); 1.32—1.35 (м, 8 H, 4 CH₂); 1.46-1.49 (м, 8 Н, 4 СН₂); 1.63-1.63 (м, 8 Н, 4 СН₂); 1.97 (M, 1 H, CH, J = 3.1); 2.23 (c, 3 H, C(6)_{ur}CH₃); 2.37 (c, 3 H, С(6)_{иг}СН₃); 2.38–2.42 (м, 8 H, 4 NCH₂); 2.48–2.52 (м, 4 H, 2 NCH₂); 3.41 (д, 2 H, C(5)_{ur}CH₂, *J* = 2.8); 3.76—3.80 (т, 2 H, N_{ur}CH₂, J = 7.4); 3.83–3.87 (T, 2 H, N_{ur}CH₂, J = 7.4); 3.91– 3.96 (м, 4 H, 2 N_{ur}CH₂); 5.57 (с, 1 H, C(5)_{ur}H).

7,19-Диаллил-1⁴,13⁴-диметил-1²,1⁶,13²,13⁶-тетраоксо-7,19-диаза-1(1,3),13(1,3)-дипиримидинациклотетракозафан (18а) и 7,19-диаллил-1⁴,13⁶-диметил-1²,1⁶,13²,13⁴-тетраоксо-7,19-диаза-1(1,3),13(1,3)-дипиримидинациклотетракозафан (18b) получали из дибромида 11а и диамина 13b. Выход 9%. Порошок белого цвета. Найдено (%): С, 67.52; Н, 9.26; N, 13.29. С₃₆Н₅₈N₆O₄. Вычислено (%): С, 67.68; Н, 9.15; N, 13.15. Спектр ЯМР ¹H (δ , м.д.): 1.27–1.35 (м, 8 H, 4 CH₂); 1.40–1.51 (м, 8 H, 4 CH₂); 1.52–1.62 (м, 8 H, 4 CH₂); 2.23 (уш.с, 6 H, 2 C(6)_{ur}CH₃); 2.34–2.45 (м, 8 H, 4 NCH₂); 3.02– 3.10 (м, 4 H, 2 NCH₂); 3.76–3.81 (м, 4 H, 2 N_{ur}CH₂); 3.88– 3.93 (м, 4 H, 2 N_{ur}CH₂); 5.08–5.17 (м, 4 H, 2 CH₂=); 5.53 (с, 2 H, 2 C(5)_{ur}H); 5.79–5.87 (м, 2 H, 2 CH=). Масс-спектр MALDI-TOF, *m*/*z*, найдено: 638.7 [M]⁺; C₃₆H₅₈N₆O₄; вычислено: 638.5.

Введение межмолекулярных гекса-2,4-дииновых мостиков (общая методика). К раствору 4 экв. Cu(OAc)₂ в 25—35 мл пиридина добавляли 1 экв. диамина **12с** или *транс*-изомера **17b** и перемешивали 20 ч при 80—85 °C. Растворитель отгоняли, остаток растворяли в 15—20 мл CHCl₃ и хроматографировали на колонке с 40—60 г SiO₂. Колонку промывали последовательно CHCl₃ и смесью CHCl₃—NHEt₂ (50 : 1). Смесью растворителей элюировали целевые соединения.

1,6-Бис[1,3-бис(5-диэтиламинопентил)-6-метилурацил-5-ил]гекса-2,4-диин (19). Выход 57%. Найдено (%): С, 69.97; H, 10.31; N, 12.65. С₅₂H₉₀N₈O₄. Вычислено (%): С, 70.07; H, 10.18; N, 12.57. Спектр ЯМР ¹H (8, м.д.): 1.00—1.04 (м, 24 H, 8 CH₃); 1.32—1.36 (м, 8 H, 4 CH₂); 1.47—1.52 (м, 8 H, 4 CH₂); 1.62—1.66 (м, 8 H, 4 CH₂); 2.32 (с, 6 H, 2 C(6)_{ur}CH₃); 2.40— 2.44 (м, 8 H, 4 NCH₂); 2.50—2.55 (м, 16 H, 8 NCH₂); 3.46 (уш.с, 4 H, 2 C(5)_{ur}CH₂); 3.81—3.85 (м, 4 H, 2 N(1)_{ur}CH₂); 3.90—3.94 (м, 4 H, 2 N(3)_{ur}CH₂). Масс-спектр MALDI-TOF, *m/z*, найдено: 890.1 [M]⁺; С₅₂H₉₀N₈O₄; вычислено: 890.7.

1,6-Бис(1⁴,13⁶-диметил-1²,1⁶,13²,13⁴-тетраоксо-7,19-диэтил-7,19-диаза-1(1,3),13(1,3)-дипиримидинациклотетракозафан-13⁵-ил)гекса-2,4-диин (20). Выход 74%. Найдено (%): С, 68.03; Н, 9.24; N, 13.01. С₇4H₁₁₈N₁₂O₈. Вычислено (%): С, 68.17; Н, 9.12; N, 12.89. Спектр ЯМР ¹Н (δ, м.д.): 1.04— 1.07 (м, 12 H, 4 CH₃); 1.31—1.39 (м, 16 H, 8 CH₂); 1.48—1.56 (м, 16 H, 8 CH₂); 1.60—1.70 (м, 16 H, 8 CH₂); 2.23 (с, 6 H, 2 C(6)_{ur}CH₃); 2.34 (с, 6 H, 2 C(6)_{ur}CH₃); 2.44—2.47 (м, 16 H, 8 NCH₂); 2.54—2.57 (м, 8 H, 4 NCH₂); 3.47 (с, 4 H, 2 C(5)_{ur}CH₂); 3.79—3.84 (м, 8 H, 4 N_{ur}CH₂); 3.88—3.92 (м, 8 H, 4 N_{ur}CH₂); 5.56 (с, 2 H, 2 C(5)_{ur}H). Масс-спектр MALDI-TOF, *m/z***, найдено: 1301.6 [M – H]⁺; C₇₄H₁₁₈N₁₂O₈; вычислено: 1301.9.**

Синтез ациклических и макроциклических ониевых производных урацила 3а—h, 4a,b—8a,b, 9 и 10 (общая методика). Раствор 0.3 ммоля диамина 12а—g, смеси изомерных пиримидинофанов 14a,b—18a,b, тетраамина 19, мультипиримидинофана 20 и 4-кратного избытка 1-бромпентана или 1-бромдекана в 50 мл MeCN кипятили в течение 40 ч. Растворитель отгоняли. Остаток тщательно растирали в безводном диэтиловом эфире, эфир декантировали. Процедуру повторяли несколько раз, остаток сушили в вакууме (1 Торр).

Дибромид 1,3-бис{5-[*и*-пентил(диэтил)аммонио]пентил}б-метилурацила (3а). Выход 88%. Масло. Найдено (%): С, 55.91; Н, 9.24; Вг, 22.42; N, 8.01. С₃₃Н₆₆Вг₂N₄O₂. Вычислено (%): С, 55.77; Н, 9.36; Вг, 22.49; N, 7.88. Спектр ЯМР ¹Н (δ, м.д.): 0.92–0.95 (м, 6 Н, 2 СН₃); 1.19–1.24 (м, 12 Н, 4 СН₃); 1.39–1.45 (м, 8 Н, 4 СН₂); 1.71–1.75 (м, 8 Н, 4 СН₂); 1.78–1.83 (м, 8 Н, 4 СН₂); 2.33 (с, 3 Н, С(6)_{ur}CH₃); 3.25–3.36 (м, 4 Н, 2 NCH₂); 3.47–3.54 (м, 12 Н, 6 NCH₂); 3.87–3.89 (м, 2 H, N(1)_{ur}CH₂); 3.91–3.94 (м, 2 H, N(3)_{ur}CH₂); 5.55 (с, 1 H, C(5)_{ur}H).

Дибромид 1,3-бис{5-[*и*-пентил(диэтил)аммонио]пентил}-5-метоксиурацила (3b). Выход 91%. Масло. Найдено (%): С, 54.41; H, 9.04; Br, 22.11; N, 7.81. С₃₃H₆₆Br₂N₄O₃. Вычислено (%): С, 54.54; H, 9.15; Br, 21.99; N, 7.71. Спектр ЯМР ¹H (δ , м.д.): 0.92–0.94 (м, 6 H, 2 CH₃); 1.25–1.44 (м, 20 H, 4 CH₃) + 4 CH₂); 1.68–1.92 (м, 16 H, 8 CH₂); 3.26–3.34 (м, 4 H, 2 NCH₂); 3.43–3.56 (м, 12 H, 6 NCH₂); 3.83 (с, 3 H, OCH₃); 3.90–3.93 (м, 2 H, N(1)_{ur}CH₂); 3.96–3.99 (м, 2 H, N(3)_{ur}CH₂); 7.44 (с, 1 H, C(6)_{ur}H).

Дибромид 1,3-бис{5-[*и*-децил(диэтил)аммонио]пентил}-5-метоксиурацила (3с). Выход 86%. Масло. Найдено (%): С, 59.71; Н, 10.14; Вг, 18.28; N, 6.56. С₄₃Н₈₆Вг₂N₄O₃. Вычислено (%): С, 59.57; Н, 10.00; Вг, 18.43; N, 6.46. Спектр ЯМР¹Н (δ, м.д.): 0.86—0.90 (м, 6 H, 2 CH₃); 1.26—1.41 (м, 40 H, 4 CH₃ + 14 CH₂); 1.72—1.90 (м, 16 H, 8 CH₂); 3.23—3.36 (м, 4 H, 2 NCH₂); 3.47—3.56 (м, 12 H, 6 NCH₂); 3.83 (с, 3 H, OCH₃); 3.89—3.92 (м, 2 H, N(1)_{ur}CH₂); 3.97—4.00 (м, 2 H, N(3)_{ur}CH₂); 7.47 (с, 1 H, C(6)_{ur}H).

Дибромид 1,3-бис{5-[*н*-децил(диэтил)аммонио]пентил}-5-метилурацила (3d). Выход 90%. Масло. Найдено (%): C, 60.81; H, 10.07; Br, 18.80; N, 6.49. C₄₃H₈₆Br₂N₄O₂. Вычислено (%): C, 60.69; H, 10.19; Br, 18.78; N, 6.58. Спектр ЯМР ¹H (δ , м.д.): 0.86—0.89 (м, 6 H, 2 CH₃); 1.26—1.40 (м, 40 H, 4 CH₃ + 14 CH₂); 1.70—1.85 (м, 16 H, 8 CH₂); 1.93 (с, 3 H, C(5)_{ur}CH₃); 3.24—3.36 (м, 4 H, 2 NCH₂); 3.48—3.55 (м, 12 H, 6 NCH₂); 3.82—3.86 (м, 2 H, N(1)_{ur}CH₂); 3.96—3.99 (м, 2 H, N(3)_{ur}CH₂); 7.42 (с, 1 H, C(6)_{ur}H).

Дибромид 1,3-бис{5-[*н*-децил(диэтил)аммонио]пентил}-5-нитроурацила (3е). Выход 84%. Масло. Найдено (%): С, 57.06; H, 9.58; Br, 18.00; N, 8.03. C₄₂H₈₃Br₂N₅O₄. Вычислено (%): C, 57.20; H, 9.49; Br, 18.12; N, 7.94. Спектр ЯМР ¹H (δ, м.д.): 0.86-0.90 (м, 6 H, 2 CH₃); 1.30-1.55 (м, 40 H, 4 CH₃ + 14 CH₂); 1.72-1.94 (м, 16 H, 8 CH₂); 3.05-3.25 (м, 4 H, 2 NCH₂); 3.40-3.51 (м, 12 H, 6 NCH₂); 4.00-4.20 (м, 4 H, 2 N_{ur}CH₂); 9.21 (c, 1 H, C(6)_{ur}H).

Дибромид 1,3-бис{5-[*и*-децил(диэтил)аммонио]пентил}-5-аллил-б-метилурацила (3f). Выход 86%. Масло. Найдено (%): С, 62.11; Н, 10.28; Вг, 18.05; N, 6.40. $C_{46}H_{90}Br_2N_4O_2$. Вычислено (%): С, 62.01; Н, 10.18; Вг, 17.93; N, 6.29. Спектр ЯМР ¹H (δ , м.д.): 0.86—0.90 (м, 6 H, 2 CH₃); 1.26—1.39 (м, 40 H, 4 CH₃ + 14 CH₂); 1.70—1.83 (м, 16 H, 8 CH₂); 2.31 (с, 3 H, C(6)_{ur}CH₃); 3.20—3.22 (м, 2 H, C(5)_{ur}CH₂); 3.25—3.34 (м, 4 H, 2 NCH₂); 3.47—3.57 (м, 12 H, 6 NCH₂); 3.93—3.98 (м, 4 H, N_{ur}CH₂); 4.98—5.02 (м, 2 H, CH₂=); 5.76—5.81 (м, 1 H, CH=). Масс-спектр MALDI-TOF, *m*/*z*, найдено: 809.7 [M – Br]⁺; C₄₆H₉₀Br₂N₄O₂; вычислено: 809.6.

Дибромид 1,3-бис{5-[*н*-децил(диэтил)аммонио]пентил}-6-метил-5-пропаргилурацила (3g). Выход 86%. Масло. Найдено (%): С, 62.05; Н, 10.11; Вг, 17.89; N, 6.33. $C_{46}H_{88}Br_2N_4O_2$. Вычислено (%): С, 62.15; Н, 9.98; Вг, 17.98; N, 6.30. Спектр ЯМР ¹Н (δ , м.д.): 0.86—0.90 (м, 6 H, 2 CH₃); 1.26—1.38 (м, 40 H, 4 CH₃ + 14 CH₂); 1.67—1.80 (м, 16 H, 8 CH₂); 2.00 (м, 1 H, CH); 2.38 (с, 3 H, C(6)_{ur}CH₃); 3.26—3.29 (м, 2 H, C(5)_{ur}CH₂); 3.33—3.53 (м, 16 H, 8 NCH₂); 3.90—3.98 (м, 4 H, N_{ur}CH₂). Масс-спектр MALDI-TOF, *m/z*, найдено: 807.8 [M – Br]⁺; $C_{46}H_{90}Br_2N_4O_2$; вычислено: 807.6.

Дибромид 7,19-дидецил-1⁴,13⁵-диметил-1²,1⁶,13²,13⁶тетраоксо-7,19-диэтил-7,19-диазониа-1(1,3),13(1,3)-дипиримидинациклотетракозафана (4а) и дибромид 7,19-дидецил-1⁴,13⁵-диметил-1²,1⁶,13²,13⁴-тетраоксо-7,19-диэтил-7,19диазониа-1(1,3),13(1,3)-дипиримидинациклотетракозафана (4b). Выход 97%. Гигроскопичное вещество с т.пл. >190 °С (разл.). Найдено (%): С, 61.12; Н, 9.36; Вг, 15.34; N, 7.86. С₅₄H₁₀₀Br₂N₆O₄. Вычислено (%): С, 61.35; Н, 9.53; Bг, 15.12; N, 7.95. Спектр ЯМР ¹H (δ , м.д.): 0.86–0.89 (м, 6 H, 2 CH₃); 1.26–1.45 (м, 40 H, 2 CH₃ + 17 CH₂); 1.68–1.87 (м, 22 H, 11 CH₂); 1.94 (с, 3 H, C(5)_{ur}CH₃); 2.25 (с, 3 H, C(6)_{ur}CH₃); 3.12–3.45 (м, 16 H, 8 NCH₂); 3.83–3.95 (м, 8 H, 4 N_{ur}CH₂); 5.56 (с, 1 H, C(6)_{ur}H); 7.01 (с, 1 H, C(6)_{ur}H). Масс-спектр MALDI-TOF, *m/z*, найдено: 897.0 [M – 2 Br]⁺; C₅₄H₁₀₀Br₂N₆O₄; вычислено: 896.8.

Дибромид 7,19-дидецил-1⁴-метил-13⁵-метокси-12,16,132,136-тетраоксо-7,19-диэтил-7,19-диазониа-1(1,3),13(1,3)-дипиримидинациклотетракозафана (5а) и дибромид 7,19-дидецил-1⁴-метил-13⁵-метокси-1²,1⁶,13²,13⁴тетраоксо-7,19-диэтил-7,19-диазониа-1(1,3),13(1,3)-дипиримидинациклотетракозафана (5b). Выход 90%. Гигроскопичное вещество с т.пл. >55 °С (разл.). Найдено (%): С, 60.55; Н, 9.31; Br, 15.01; N, 7.78. С₅₄Н₁₀₀Вr₂N₆O₅. Вычислено (%): С, 60.43; H, 9.39; Br, 14.89; N, 7.83. Спектр ЯМР ¹Н (б, м.д.): 0.86—0.90 (м, 6 H, 2 CH₃); 1.26 (м, 16 H, 2 CH₃ + 5 CH₂); 1.37-1.50 (м, 18 Н, 9 СН₂); 1.70-1.83 (м, 22 Н, 11 СН₂); 1.88—1.94 (м, 6 H, 3 CH₂); 2.31 (с, 3 H, C(6)_{ur}CH₃); 3.34—3.55 (м, 16 H, 8 NCH₂); 3.83 (с, 3 H, OCH₃); 3.87-4.02 (м, 8 H, 4 N_{ur}CH₂); 5.56 (c, 1 H, C(6)_{ur}H); 7.04 (c, 1 H, C(6)_{ur}H). Maccспектр MALDI-TOF, m/z, найдено: 912.9 [M – 2 Br]⁺; C₅₄H₁₀₀Br₂N₆O₅; вычислено: 912.8.

13⁵-аллил-7,19-дидецил-1⁴,13⁴-диметил-Дибромид 12,16,132,136-тетраоксо-7,19-диэтил-7,19-диазониа-1(1,3),13(1,3)-дипиримидинациклотетракозафана (6а) и ди-13⁵-аллил-7,19-дидецил-1⁴,13⁶-диметилбромил 12,16,132,134-тетраоксо-7,19-диэтил-7,19-диазониа-1(1,3),13(1,3)-дипиримидинациклотетракозафана (6b). Выход 60%. Гигроскопичное вещество с т.пл. >78 °С (разл.). Найдено (%): C, 62.27; H, 9.64; Br, 14.45; N, 7.73. C₅₇H₁₀₄Br₂N₆O₄. Вычислено (%): C, 62.39; H, 9.55; Br, 14.56; N, 7.66. Спектр ЯМР ¹Н (б, м.д.): 0.86—0.89 (м, 6 Н, 2 СН₃); 1.26 (м, 18 Н, 2 СН₃, 6 СН₂); 1.37—1.51 (м, 22 Н, 11 СН₂); 1.70—1.80 (м, 22 H, 11 CH₂); 2.25 (c, 3 H, C(6)_{ur}CH₃); 2.32 (c, 3 H, C(6)_{ur}CH₃); 3.20 (м, 2 H, C(5)_{ur}CH₂); 3.26–3.56 (м, 16 H, 8 NCH₂); 3.88– 3.95 (м, 8 H, 4 N_{ur}CH₂); 4.99–5.03 (м, 2 H, CH₂=); 5.56 (с, 1 H, С(6)_{ur}H); 5.76-5.83 (м, 1 H, CH=). Масс-спектр MALDI-ТОF, *m/z*, найдено: 1015.5 [M – Br]⁺; С₅₇H₁₀₄Br₂N₆O₄; вычислено: 1015.7.

Дибромид 7,19-дидецил-1⁴,13⁴-диметил-1²,1⁶,13²,13⁶тетраоксо-135-пропаргил-7,19-диэтил-7,19-диазониа-1(1,3),13(1,3)-дипиримидинациклотетракозафана (7а) и дибромид 7,19-дидецил-1⁴,13⁶-диметил-1²,1⁶,13²,13⁴-тетраоксо-135-пропаргил-7,19-диэтил-7,19-диазониа-1(1,3),13(1,3)дипиримидинациклотетракозафана (7b). Выход 60%. Гигроскопичное вещество с т.пл. >80 °С (разл.). Найдено (%): С, 62.40; Н, 9.48; Br, 14.46; N, 7.61. С₅₇Н₁₀₂Br₂N₆O₄. Вычислено (%): С, 62.51; Н, 9.39; Вг, 14.59; N, 7.67. Спектр ЯМР ¹Н (б, м.д.): 0.86—0.89 (м, 6 Н, 2 СН₃); 1.26 (м, 18 Н, 2 СН₃, 6 СН₂); 1.38–1.50 (м, 22 Н, 11 СН₂); 1.65–1.80 (м, 22 H, 11 CH₂); 1.99 (м, 1 H, CH); 2.26 (с, 3 H, C(6)_{ur}CH₃); 2.32 (с, 3 H, C(6)_{ur}CH₃); 3.20–3.52 (м, 18 H, C(5)_{ur}CH₂, 8 NCH₂); 3.89—3.99 (м, 8 H, 4 N_{ur}CH₂); 5.56 (с, 1 H, C(6)_{ur}H). Массспектр MALDI-TOF, m/z, найдено: 1013.3 [M – Br]⁺; С₅₇Н₁₀₂Вг₂N₆O₄; вычислено: 1013.7.

Дибромид 7,19-диаллил-7,19-дидецил-1⁴,13⁴-диметил-12,16,132,136-тетраоксо-7,19-диазониа-1(1,3),13(1,3)-дипиримидинациклотетракозафана (8а) и дибромид 7,19-диаллил-7,19-дидецил-1⁴,13⁶-диметил-1²,1⁶,13²,13⁴-тетраоксо-7,19диазониа-1(1,3),13(1,3)-дипиримидинациклотетракозафана (8b). Выход 70%. Масло. Найдено (%): С, 62.09; Н, 9.22; Br, 14.78; N, 7.66. С₅₆Н₁₀₀Br₂N₆O₄. Вычислено (%): С, 62.21; H, 9.32; Br, 14.59; N, 7.77. Спектр ЯМР ¹Н (δ, м.д.): 0.92-0.95 (м, 6 H, 2 CH₃); 1.26 (м, 12 H, 6 CH₂); 1.38–1.51 (м, 22 H, 11 СН₂); 1.63-1.77 (м, 22 Н, 11 СН₂); 2.23 (с, 6 Н, 2 С(6)_{иг}СН₃); 3.08–3.12 (м, 4 H, 2 NCH₂); 3.27–3.50 (м, 12 H, 8 NCH₂); 3.77–3.86 (м, 4 H, 2 N_{ur}CH₂); 3.88–3.95 (м, 4 H, 2 N_{ur}CH₂); 5.11-5.19 (м, 4 Н, 2 CH₂=); 5.56 (с, 2 Н, 2 C(5)_{ur}H); 5.80-5.86 (м, 2 H, 2 CH=). Масс-спектр MALDI-ТОF, *m/z*, найдено: 920.6 [M – 2 Br]⁺; C₅₆H₁₀₀Br₂N₆O₄; вычислено: 920.8.

Тетрабромид 1,6-бис(1,3-бис{5-[*и*-децил(диэтил)аммонио]пентил}-6-метилурацил-5-ил)гекса-2,4-диина (9). Выход 70%. Масло. Найдено (%): С, 62.12; Н, 10.00; Вг, 18.12; N, 6.36. С₉₂H₁₇₄Br₄N₈O₄. Вычислено (%): С, 62.22; Н, 9.87; Вг, 18.00; N, 6.31. Спектр ЯМР ¹H (8, м.д.): 0.86—0.90 (м, 12 H, 4 CH₃); 1.26 (м, 48 H, 8 CH₃, 12 CH₂); 1.38 (м, 42 H, 21 CH₂); 1.70— 1.90 (м, 22 H, 11 CH₂); 2.44 (с, 6 H, 2 C(6)_{ur}CH₃); 3.28—3.55 (м, 36 H, 2 C(5)_{ur}CH₂, 16 NCH₂); 3.92—3.96 (м, 8 H, 4 N_{ur}CH₂). Масс-спектр MALDI-TOF, *m/z*, найдено: 1696.1 [M – Br]⁺; С₉₂H₁₇₄Br₄N₈O₄; вычислено 1695.1.

Тетрабромид 1,6-бис (7,19-дидецил-1⁴,13⁶-диметил-1²,1⁶,13²,13⁴-тетраоксо-7,19-диэтил-7,19-диазониа-1(1,3),13(1,3)-дипиримидинациклотетракозафан-13⁵-ил)гекса-2,4-диина (10). Выход 75%. Гигроскопичное вещество с т.пл. >84 °C (разл.). Найдено (%): С, 40.36; Н, 6.14; Вг, 9.57; N, 5.03. С₁₁₄H₂₀₂Br₄N₁₂O₈. Вычислено (%): С, 40.22; Н, 5.98; Вг, 9.39; N, 4.94. Спектр ЯМР ¹Н (δ, м.д.): 0.79–0.84 (м, 12 H, 4 CH₃); 1.22 (м, 56 H, 8 CH₃ + 16 CH₂); 1.38 (м, 48 H, 24 CH₂); 1.60–1.85 (м, 28 H, 14 CH₂); 2.24 (с, 6 H, 2 C(6)_{ur}CH₃); 2.32 (с, 6 H, 2 C(6)_{ur}CH₃); 3.00–3.35 (м, 36 H, 2 C(5)_{ur}CH₂ + + 16 NCH₂); 3.80–3.95 (м, 8 H, 4 N_{ur}CH₂); 5.54 (с, 2 H, C(6)_{ur}H). Масс-спектр MALDI-TOF, *m/z*, найдено: 3242.8 [M – Br]⁺; C₁₁₄H₂₀₂Br₄N₁₂O₈₄; вычислено: 3244.0.

Бактериостатическую активность водных растворов соединений определяли методом двукратных серийных разведений²⁶ в жидкой питательной среде по отношению к штаммам Pseudomonas aeruginosa 9027, Escherichia coli F-50, Staphylococcus aureus 209-P, Bacillus cereus 8035 и Enterococcus faecalis ATCC 8043. Бактериальная нагрузка составляла 3.0 · 10⁵ микробных тел · мл⁻¹. Учет результатов проводили через каждые 24 ч в течение 5 суток при температуре 37 °С. Эксперимент повторяли 2 раза. Фунгистатическую активность водных растворов соединений по отношению к грибам Trichophyton mentagrophytes var. gypseum 1773, Aspergillus niger BKMF-1119 и Candida Albicans 885-653 определяли методом серийных разведений²⁷ на жидкой среде Сабуро. Время экспозиции в термостате при 26 °C с соответствующим соединением составляло 14 суток. За действующую дозу принимали МИК веществ, задерживающую рост соответствующего тест-микроба. Регистрировали наличие роста бактерий или гриба либо отсутствие его за счет бактериостатического или фунгистатического действия соединения. Бактерицидную и фунгицидную активности определяли описанным ранее методом²⁸.

Гемолитическое действие водных растворов соединений оценивали методом, основанным на сравнении оптической плотности раствора исследуемого вещества с кровью с оптической плотностью крови при 100%-ном гемолизе. В качестве объектов исследований использовали 10%-ную взвесь эритроцитов человека (I«+»): эритроцитарную массу с гепарином три раза отмывали физиологическим раствором (0.9%-ный NaCl) при центрифугировании в течение 10 мин при 800 об • мин⁻¹ и ресуспендировали в физиологическом растворе до концентрации 10%. Концентрации исследуемых веществ готовили в физиологическом растворе и 4.5 мл разведения добавляли к 0.5 мл 10%-ной взвеси эритроцитов. Пробы инкубировали 1 ч при 37 °C, а затем центрифугировали 10 мин при 2000 об · мин⁻¹. Высвобождение гемоглобина контролировали путем измерения оптической плотности надосадочной жидкости при λ = 540 нм. Параллельно готовили контрольные пробы: гемолиз (пустой) — 0.5 мл 10%-ной взвеси эритроцитов суспендировали в 4.5 мл физиологического раствора; 100%-ный гемолиз — 0.5 мл 10%-ной взвеси эритроцитов суспендировали в 4.5 мл дистиллированной воды.

Дегидрогеназную активность *S. aureus* 209-Р и *C. albicans* 885-653 определяли в анаэробных условиях по времени обесцвечивания метиленовой сини методом Тунберга²⁸⁻³⁰.

Липазную активность *S. aureus* 209-Р и *C. albicans* 885-653 исследовали методом, основанным на титрометрическом определении свободных жирных кислот, образовавшихся в результате гидролиза липидов^{28,31,32}.

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 14-50-00014).

Список литературы

- 1. K. Kuroda, W. F. DeGrado, J. Am. Chem. Soc., 2005, 127, 4128.
- 2. K. Kuroda, G. A. Caputo, W. F. DeGrado, *Chem. Eur. J.*, 2009, **15**, 1123.
- M. Firat Ilker, K. Nusslein, G. N. Tew, E. B. Coughlin, J. Am. Chem. Soc., 2004, 126, 15870.

- 4. G. J. Gabriel, J. G. Pool, A. Som, J. M. Dabkowski, Langmuir, 2008, 24, 12489.
- 5. A. Som, A. O. Tezgel, G. J. Gabriel, G. N. Tew, Angew. Chem., Int. Ed., 2011, 50, 6147.
- F. Baudrion, A. Perichaud, S. Coen, J. Appl. Polym. Sci., 1998, 70, 2657.
- Yang, V. D. Gordon, A. Mishra, A. Som, K. R. Purdy, M. A. Davis, G. N. Tew, G. C. L. Wong, *J. Am. Chem. Soc.*, 2007, **129**, 12141.
- M. A. Gelman, B. Weisblum, D. M. Lynn, S. H. Gellman, Org. Lett., 2004, 6, 557.
- V. E. Semenov, A. D. Voloshina, E. M. Toroptzova, N. V. Kulik, V. V. Zobov, R. Kh. Giniyatullin, A. S. Mikhailov, A. E. Nikolaev, V. D. Akamsin, V. S. Reznik, *Eur. J. Med. Chem.*, 2006, **41**, 1093.
- В. Э. Семенов, А. Д. Волошина, Н. В. Кулик, С. Ю. Уралева, Р. Х. Гиниятуллин, А. С. Михайлов, В. Д. Акамсин, Ю. Я. Ефремов, В. С. Резник, *Хим.-фарм. журн.*, 2009, **43**, 21 [V. E. Semenov, A. D. Voloshina, N. V. Kulik, S. Yu. Uraleva, R. Kh. Giniyatullin, A. S. Mikhailov, V. D. Akamsin, Yu. Ya. Efremov, V. S. Reznik, *Pharm. Chem. J. (Engl. Transl.)*, 2009, **43**, 448].
- L. Ya. Zakharova, V. E. Semenov, V. V. Syakaev, M. A. Voronin, D. R. Gabdrakhmanov, F. G. Valeeva, A. S. Mikhailov, A. D. Voloshina, V. S. Reznik, Sh. K. Latypov, A. I. Konovalov, *Mater. Sci. Eng. C*, 2014, **38**, 143.
- В. Э. Семенов, А. Е. Николаев, А. В. Козлов, Ю. Я. Ефремов, Ш. К. Латыпов, В. С. Резник, *Журн. орган. химии*, 2008, 44, 890 [V. E. Semenov, A. E. Nikolaev, A. V. Kozlov, Yu. Ya. Efremov, Sh. K. Latypov, V. S. Reznik, *Russ. J. Org. Chem. (Engl. Transl.)*, 2008, 44, 882].
- Р. Х. Гиниятуллин, А. С. Михайлов, В. Э. Семенов, В. Д. Акамсин, В. С. Резник, А. В. Чернова, Г. М. Дорожкина, А. А. Нафикова, Ш. К. Латыпов, Ю. Я. Ефремов, Д. Р. Шарафутдинова, А. Т. Губайдуллин, И. А. Литвинов, *Изв. АН. Сер. хим.*, 2003, 1511 [R. Kh. Giniyatullin, А. S. Mikhailov, V. E. Semenov, V. D. Akamsin, V. S. Reznik, A. V. Chernova, G. M. Doroshkina, A. A. Nafikova, Sh. K. Latypov, Yu. Ya. Efremov, D. R. Sharafutdinova, A. T. Gubaidullin, I. A. Litvinov, *Russ. Chem. Bull. (Int. Ed.)*, 2003, 52, 1595].
- 14. G. Eglinton, J. Chem. Soc., 1959, 889.
- W. Gump, Disinfectants and Antiseptics, in Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., Eds M. Grayson, D. Eckroth, Wiley, New York, 1979, 7, 793.
- 16. H. Schott, J. Phys. Chem., 1966, 70, 2966.
- L. Ya. Zakharova, V. E. Semenov, M. A. Voronin, F. G. Valeeva, A. R. Ibragimova, R. Kh. Giniatullin, A. V. Chernova, S. V. Kharlamov, L. A. Kudryavtseva, S. K. Latypov, V. S. Reznik, A. I. Konovalov, *J. Phys. Chem. B*, 2007, **111**, 14152.
- L. Ya. Zakharova, V. E. Semenov, M. A. Voronin, F. G. Valeeva, L. A. Kudryavtseva, R. Kh. Giniatullin, V. S. Reznik, A. I. Konovalov, *Mendeleev Commun.*, 2008, 18, 158.
- М. А. Воронин, Ф. Г. Валеева, Л. Я. Захарова, Р. Х. Гиниятуллин, В. Э. Семенов, В. С. Резник, *Коллоид. журн.*, 2010, **72**, 314 [М. А. Voronin, F. G. Valeeva, L. Y. Zakharova, R. K. Giniyatullin, V. E. Semenov, V. S. Reznik, *Colloid. J. (Engl. Transl.)*, 2010, **72**, 323].
- L. Zakharova, M. Voronin, V. Semenov, D. Gabdrakhmanov,
 V. Syakaev, Y. Gogolev, R. Giniyatullin, S. Lukashenko,
 V. Reznik, S. Latypov, A. Konovalov, Y. Zuev,
 ChemPhysChem, 2012, 3, 788.
- Д. Р. Габдрахманов, Д. А. Самаркина, Ф. Г. Валеева, Л. Ф. Сайфина, В. Э. Семенов, В. С. Резник, Л. Я. Захарова, А. И. Коновалов, Изв. АН. Сер. хим., 2015, 573
 [D. R. Gabdrakhmanov, D. A. Samarkina, F. G. Valeeva, L. F.

Saifina, V. E. Semenov, V. S. Reznik, L. Y. Zakharova, A. I. Konovalov, *Russ. Chem. Bull. (Int. Ed.)*, 2015, **64**, No. 3].

- 22. T. B. Johnson, A. J. Hill, J. Am. Chem. Soc., 1914, 36, 364.
- 23. А. Е. Николаев, В. Э. Семенов, В. С. Резник, *Журн. орган. химии*, 2011, **42**, 316 [А. Е. Nikolaev, V. E. Semenov, V. S. Reznik, *Russ. J. Org. Chem. (Engl. Transl.)*, 2011, **47**, 312].
- 24. R. C. Reynolds, T. W. Trask, W. D. Sedwick, *J. Org. Chem.*, 1991, **26**, 2391.
- В. Э. Семенов, А. Е. Николаев, Л. Ф. Галиуллина, О. А. Лодочникова, И. А. Литвинов, А. П. Тимошева, В. Е. Катаев, Д. Р. Шарафутдинова, Ю. Я. Ефремов, А. В. Чернова, Ш. К. Латыпов, В. С. Резник, Изв. АН. Сер. хим., 2006, 539 [V. E. Semenov, A. E. Nikolaev, L. F. Galiullina, O. A. Lodochnikova, I. A. Litvinov, A. P. Timosheva, V. E. Kataev, D. R. Sharafutdinova, Y. Y. Efremov, A. V. Chernova, S. K. Latypov, V. S. Reznik, Russ. Chem. Bull. (Int. Ed.), 2006, 55, 559].
- 26. National Committee for Clinical Laboratory Standards. Methods for Dilution Antimicrobial Susceptibility. Tests for Bacteria that

Grow Aerobically, 6th ed., Approved Standard, M7-A5, NCCLS, Wayne, USA, 2000.

- 27. National Committee for Clinical Laboratory Standards. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Conidium-forming Filamentous Fungi, Proposed Standard, M38-P, NCCLS, Wayne, USA, 1998.
- 28. V. E. Semenov, A. S. Mikhailov, A. D. Voloshina, N. V. Kulik, A. D. Nikitashina, V. V. Zobov, S. V. Kharlamov, S. K. Latypov, V. S. Reznik, *Eur. J. Med. Chem.*, 2011, 46, 4715.
- 29. R. Kumar, A. K. Banerjee, Cell. Mol. Life Sci., 1979, 35, 160.
- N. Rajvaidya, D. K. Markandey, *Microbiology*, S. B. Nangia APH Publ. Corp., New Delhi, 2006.
- 31. G. A. Macedo, Y. K. Park, Rev. Microbiol., 1997, 28, 90.
- 32. M. A. Kashmiri, A. Adnan, B. W. Butt, Afr. J. Biotechnol., 2006, 5, 878.

Поступила в редакцию 5 мая 2015; после доработки — 27 августа 2015