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ABSTRACT

Background Plasmacytoid dendritic cells (pDCs) are multifunctional bone-marrow-derived immune cells that
are key players in bridging the innate and adaptive immune systems. Activation of pDCs through toll-like
receptor agonists has proven to be an effective treatment for some neoplastic disorders.

Materials and methods In this mini-review, we will explore the fascinating contribution of pDCs to neoplastic
pathology and discuss their potential utilization in cancer immunotherapy.

Results Current research suggests that pDCs have cytotoxic potential and can effectively induce apoptosis of
tumour-derived cells lines. They are also reported to display tolerogenic function with the ability to suppress
T-cell proliferation, analogous to regulatory T cells. In this capacity, they are critical in the suppression of
autoimmunity but can be exploited by tumour cells to circumvent the expansion of tumour-specific T cells,
thereby allowing tumours to persist.

Conclusion Several forms of skin cancer are successfully treated with the topical drug Imiquimod, which
activates pDCs through toll-like receptor 7 engagement. Additionally, pDC-based anticancer vaccines have
shown encouraging results for the treatment of melanoma in early trials. Future studies regarding the contri-
butions of pDCs to malignancy will likely afford many opportunities for immunotherapy strategies.
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Introduction

Plasmacytoid dendritic cells (pDCs) are a unique population of

bone-marrow-derived immune cells that bridge the innate and

adaptive immune systems. They are remarkable in that they are

the only immune cell to serve two professional roles, one as

interferon (IFN)-producing cells and the other as antigen-

presenting cells (APCs). Although accounting for only 0�3–0�5%
of peripheral blood cells, pDCs are responsible for over 95% of

type I IFN produced by circulating lymphocytes [1]. Activation

of pDCs and the subsequent production of IFN occur as the

result of a signalling cascade that initiates through the receptor-

ligand interactions of pattern recognition receptors (reviewed

by Lombardi and Khaiboullina [2]). pDCs are primarily acti-

vated through the engagement of endosomally located toll-like

receptors (TLR)-7 and TLR-9, by ssRNA [3,4] or nonmethylated

and CpG DNA [5,6], respectively (Fig. 1a), which are common

to microbial genomes, such as viruses or their replicative

intermediates. pDCs are also known to produce type I IFN in

response to double-stranded dsRNA, probably through the

engagement of protein kinase R (PRK) [7], although their

response to dsRNA is less well characterized. Similar to other

TLRs, (with the notable exception of TLR-3), TLR-7 and TLR-9

utilize the universal adapter protein MyD88 (myeloid differ-

entiation primary response 88), which acts via the constitu-

tively expressed transcription factor IRF7 and the inflammatory

transcription factor NF-jB, thereby initiating transcription of

type I and III IFN, or inflammatory cytokines and chemokines,

respectively [8–10]. Upon activation, pDCs also undergo phe-

notypic changes resulting in the upregulation of costimulatory

molecules, including CD40, CD80, CD86. They ultimately

develop into more ‘conventional’ dendritic cells (cDC) with

classical DC morphology and the ability to present and

cross-present antigens in the context of MHC and costimulatory

molecules to na€ıve and memory T cells [11].

Over the last decade, our understanding of pDCs biology has

greatly expanded but this expansion has also resulted in many

unanswered questions. Indeed, it is now evident that pDCs

play a much larger role in immunology than originally realized.

In addition to their ability to produce IFN, pDCs contribute to
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tolerance but when dysregulated can also contribute to

autoimmunity. Current research suggests that pDCs have the

capacity to induce apoptosis of neoplastic cells and, therefore,

may also contribute to cancer surveillance. Conversely, it has

also been shown that the tolerogenic functions of pDCs may be

utilized by tumours to their advantage, allowing them a way to

evade the immune system. For these reasons, an understanding

of pDC function in the context of neoplastic pathology and the

tumour microenvironment will likely provide a greater

understanding of malignancy in general and suggest potential

treatment strategies.

Neoplastic progression and the tumour
microenvironment

The historical paradigm of cancer development and propaga-

tion is based upon the presence of mutations that lead to cell

cycle dysregulation. According to this model, a single mutation

in a cell cycle gene allows the cell to grow uncontrolled

whereby it rapidly expands to form a tumour. However, this

model is an oversimplification in that as the tumour expands, it

forms its own microenvironment that differs from that of

healthy non-malignant tissue [12]. Indeed, cross-talk between

stromal and epithelial cells is essential for maintaining

homoeostasis of malignant as well as non-malignant tissue

[13,14]. In the last three decades, our knowledge regarding the

role of immune effector cells in maintaining a protumorigenic

microenvironment has increased substantially. For instance,

tumour-derived colony-stimulating factor-1 (CSF-1), VEGF and

endothelial monocyte activating polypeptide II (EMARII) have

been shown to facilitate the infiltration of tumour tissue by

monocytes [15–17]. Within the tumour, monocyte-derived

macrophages polarize into the M2 stage, which is strongly

associated with proangiogenic and protumorigenic properties

[18,19]. Furthermore, tumour-associated macrophages contrib-

ute to an immunosuppressive environment by releasing

interleukin (IL)-10 and TGF-b [20] and additionally, promote

the infiltration of T regulatory cells (Tregs) by releasing the

(a) (b)

Figure 1 Plasmacytoid dendritic cell (pDC) involvement in tumour inhibition and promotion. (a) Activation of pDCs through the
engagement of endosomally located toll-like receptors (TLR) 7 and 9 by ssRNA or nonmethylated CpG DNA, respectively, leads to
the MyD88-dependent upregulation of type I interferon (IFN) and inflammatory cytokines as well as expression of costimulatory
molecules such as CD80, CD83 and CD86. Type I IFN expression also occurs through the engagement of protein kinase R (PKR) by
dsRNA. pDCs possess direct tumoricidal activity in a granzyme B and TRAIL-dependent manner and indirectly through the
activation of natural killer (NK) cells by type I IFN. (b) Mechanisms suggested to explain tumour-associated pDC dysfunction include
the recruitment of immature pDCs as characterized by the lack of expression of costimulatory molecules and tumour secretion of
immunosuppressive factors. In addition to being immature, these pDCs are shown to promote tolerance by activating Tregs,
express anti-inflammatory cytokines such as IL-13 and are refractory in IFN production.
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chemoattractant CCL22 [21,22]. A positive correlation has been

observed between inducible costimulator (ICOS)-expressing

Tregs and pDCs in the peripheral blood and peritumour tissue

of subjects with gastric cancer [23] (Fig. 1b). Additionally,

ICOS-driven interaction between CD4+ T cells and pDCs has

been reported to lead to the upregulation of Tregs and IL-10

secretion in breast tumours [24]. These observations underscore

the contributions of immune effector cells to an immunosup-

pressive tumour microenvironment, thus supporting the

maintenance and propagation of malignancy.

Plasmacytoid dendritic cells, immunity and
cancer

All DCs are professional APCs with the capacity to prime and

activate na€ıve T lymphocytes [25]. By controlling the outcome

of antigen presentation to T cells, DCs also play a central role

in the maintenance of peripheral tolerance. Through the

activation of pattern recognition receptors, such as TLRs, they

also produce cytokines such as interferons and interleukins,

thus modulating the balance between humoral immunity,

cell-mediated immunity and tolerance [26]. For these reasons,

it is not surprising that DCs may play a pivotal role in antit-

umour immunity. Involvement of pDCs in neoplastic disor-

ders became evident upon the observation that several

tumours including ovarian, head and neck, and breast

tumours and primary melanoma are infiltrated with pDCs

[27–32]. In some instances, the presence of infiltrating pDCs is

associated with a poor prognosis; for example, while

investigating epithelial ovarian cancer (EOC), Conrad and

co-workers observed that a significant number of Foxp3+
Tregs present in the tumour microenvironment expressed

ICOS [33]. They further observed that the ability of these cells

to suppress T-cell proliferation was strictly dependent on

ICOS-L costimulation provided by infiltrating pDCs and

therefore suggested that pDCs and ICOS+ Foxp3+ Tregs were

strong predictors of EOC progression. As a further example,

Aspord et al. reported that Th2-promoting pDCs were

associated with the progression of melanoma and that the

frequency of IL-5, 10 and 13-producing T cells in melanoma

cases was correlated with a high proportions of OX40L- and

ICOSL-expressing pDCs [34].

Dendritic cells play a central role in orchestrating immune

responses, and numerous studies have reported that tumour

tissue is often infiltrated with various populations of DCs

including pDCs. For example, as previously stated, pDCs have

been reported to be among the cellular infiltrate of several

tumours [27–32]. It is believed that the recruitment of pDCs into

tumour tissue is governed by chemokines secreted by

neoplastic cells. Zou et al., as well as others, have reported that

tumours infiltrated with pDCs express high levels of

chemokines such as CXCL12 (stromal cell-derived factor 1) and

CCL20 (macrophage inflammatory protein-3) [29,32,35]. Zou

and co-workers additionally reported that tumour-derived

pDCs express high levels of CXCR4 [29], the specific

receptor for CXCL12 [36,37]. Charles et al. reported that

tumour-associated pDCs express high levels of the chemokine

receptor CCR6, the receptor for CCL20 [35], a requirement for

the rapid recruitment of dendritic cells into tissue [38]. Indeed,

the multiple receptor-ligand interactions that occur between

tumour cells and immune effector cells contribute to the

complex microenvironment that allows tumours to maintain

their own persistence.

pDCs are essential for recognition of altered self-antigens

and for triggering immune responses directed towards trans-

formed cell. Therefore, it would be expected that the increased

presence of pDCs in tumour tissue should promote immune

recognition of tumour antigens and, in turn, lead to tumour

rejection. Contrary to this supposition and unexpectedly,

increased pDC tumour infiltration is often associated with

tumour progression and persistence [24,39]. Furthermore, it

has been shown that increased pDC infiltration is associated

with poor prognosis in some cancer cases [40,41]. Therefore, it

has been suggested that tumour-associated pDCs are often

incompetent with respect to tumour-specific immune surveil-

lance.

Several mechanisms have been suggested to explain tumour-

associated pDC dysfunction including the recruitment of

immature pDCs, promotion of pDC tolerance and tumour

secretion of immunosuppressive factors. Numerous studies

have shown that tumour-associated pDCs are immature as

characterized by the lack of expression of costimulatory mole-

cules such as CD80, CD83 and CD86 [32,42,43]. In addition to

being immature, these pDCs are shown to be defective in IFNa
production [32,44] and it has been suggested that defective

IFNa production is the result of a downregulation of Flt3, TLR9

or IRF7 [44–47]. Tsukamoto et al. [48] proposed that tumour-

associated immunoglobulin-like transcript 7 ligands (ILT7L)

can downregulate IFNa production in pDCs via interaction

with the ILT7 receptor. IFNa is a pleotropic cytokine with

strong tumour inhibitory activity [49]. Therefore, by producing

less IFNa, pDCs may significantly impair local immune

surveillance allowing tumours to escape IFNa-associated
immune responses. Several studies have suggested that

tumour-associated pDCs are indeed tolerogenic [28,50]. For

example, animal tumour models have shown that tumour-

infiltrating pDCs can activate mature Tregs [51,52]. Addition-

ally, it is well documented that malignant cells and tumour-

associated pDCs release indoleamine 2,3-dioxygenase (IDO)

which is a powerful promoter of Treg activation, and can lead

to anergy, thus allowing tumour cell to escape immune

surveillance [50,53,54].
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Although pDC infiltration of tumours is often associated

with disease progression, their activation with TLR-agonists is

proving to be an effective treatment for some forms of

neoplasm. For instance, the topical treatment of basal cell

carcinoma, superficial squamous cell carcinoma and some

superficial malignant melanomas, with the synthetic TLR-7

agonist Imiquimod, has been shown to lead to the increased

infiltration of activated pDCs and a significant reduction in

neoplastic cells and in some cases, a complete regression

[31,55–58].

Antineoplastic functions of pDCs

DCs have the potential to invoke antitumour immunity in

multiple ways. Similar to cytotoxic CD8 T lymphocytes (CTLs),

natural killer (NK) cells and gamma/delta T cells; DCs have the

capacity for direct cytotoxic killing of susceptible target cells

such as virus-infected cells and transformed cells. The focus of

our discussion is the contribution of pDCs to anticancer

immunity; notwithstanding, significant body of research also

addresses the cytotoxic capacity of cDCs. These topics are

excellently reviewed by Tel et al., and Larmonier et al., with

respect to humans and animal models [59,60] and thus we will

only discuss their tumoricidal activity in conjunction with, or in

comparison to pDCs.

Classic cytotoxic cells, such as NK cells and CTLs, express

perforin (PRF1) and the proapototic enzyme granzyme B

(GZMB). Although initially believed that PRF1 was required

for entry of GZMB into target cells, current research suggests

that both proteins may enter cells through an alternative

mechanism. For instance, Veugelers and colleagues proposed

a mannose 6-phosphate receptor as a potential entry

mechanism for PRF1 and GRZB [61]. The definitive role for

pDC-GRZB is currently the subject of ongoing investigations.

However, as pDCs do not express PRF1, an alternative

PRF1-independent entry method would support the

possibility of pDC cytotoxicity in a GZMB-dependent but

PRF1-independent manner. Indeed, using a human asthma

model of segmental allergen challenge, Bratke and co-workers

reported that pDCs upregulate GRZB in response to IL-3 and

additionally showed that IL-3 activated pDCs killed MHC

deficient K562 cells [62]. Furthermore, they reported that the

observed killing was abrogated in the presence of GRZB and

caspase inhibitors. Interestingly, they also observed that

engagement of the TLR-7 or -9 receptor suppressed GRZB

expression, suggesting that the classical IFN-induced pathway

of pDCs is not involved in GRZB-associated cytotoxicity. Tel

et al. reported that human pDCs activated with the preventa-

tive vaccine to tick-borne encephalitis virus FSME upregulated

the neural cell adhesion marker CD56, a classic NK marker,

and were empowered with the tumoricidal ability to lyse

K562 and Daudi cells in a contact-dependent manner [63].

They additionally reported that the expression of CD56 on the

surface of pDCs coincided with elevated expression of

programmed death-ligand 1 (PD-L1), GRZB and TNF-related

apoptosis-inducing ligand (TRAIL).

TRAIL-dependent apoptosis has been implicated in the

tumoricidal capacity of pDCs by other researchers as well. For

instance, Stary and co-workers reported that, upon treatment of

basal cell carcinoma with Imiquimod, a cellular infiltrate of

GRZB and PRF1 positive cDCs and TRAIL positive pDCs was

observed [64]. However, in contrast to the observations of Bratke

et al., the contribution of pDC killing was strictly TRAIL

dependent, as TRAIL neutralizing antibody abrogated the

killing of TRAIL-sensitive Jurket cells. Consistent with the

observations of Stary et al., Kalb and co-workers reported that

pDCs stimulated with agonists for TLR-7 and 9, but not other

TLRs, upregulated the surface expression of TRAIL in a type I

IFN-dependent manner [65]. They additionally reported that

pDCs treatedwith TLR7/9 agonists as well as pDCs treatedwith

type I IFN efficiently lysed Jurkat cells, as well as the melanoma

cell lines SKMel2 and WM793, in a TRAIL and contact-

dependent manner. Using a mouse model of melanoma, Drobits

and co-workers showed that topical Imiquimod treatment

resulted in tumour clearance in a TLR7/MyD88-dependent and

IFN-a/b receptor 1-dependent manner, with a concomitant

upregulation of the chemokine CCL2 in mast cells [66]. They

additionally observed that Imiquimod treatment promoted the

secretion of both TRAIL and GRZB and that blocking these

molecules led to impaired pDC-mediated tumour killing. These

data strongly implicate both TRAIL andGRZB in pDC-mediated

tumour killing and further suggest that the tumoricidal ability of

pDCs is independent of adaptive immunity.

pDCs as potential targets in cancer
immunotherapy

CTLs are considered to be the most critical mediators of

anticancer immune responses, and CTL infiltration of tumours

is typically associated with a positive diagnostic outcome

[67,68]. The use of immunomodulating drugs to increase CTL

responses has been shown to be an effective strategy for

improving the induction of long-term memory CTLs. For

instance, one strategy targets the blockade of the inhibitory

receptors such as the cytotoxic T lymphocyte-associated anti-

gen 4, the programmed death-1 receptor (PD-1) or its ligand,

PD-L1. This approach is often referred to as ‘immune-check-

point blockade’. The use of anti-PD1 antibodies in combination

with the anti-B cell drug rituximab has led to encouraging

results both in preclinical models and in clinical applications

[69,70]. However, the nonspecific nature of these ‘check point

inhibiting’ drugs and the broad mechanism by which they exert
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their actions can lead to activation of autoreactive T cells and, in

turn, lead to potentially severe side effects [71,72]. DC therapies

are an attractive alternative to check point-inhibiting drugs in

that they have few side effects, and natural DC therapy is

generally less costly.

Ex vivo DCs are capable of inducing CTL responses against

tumours when loaded with tumour-associated antigens and

given as a vaccine. Therefore, the primary goal of cancer

vaccine immunotherapy is the induction of long-term mem-

ory CTLs that are capable of facilitating immune surveillance

and promoting tumour rejection. Although the use of cancer

vaccines to generate antitumour immune responses is theo-

retically promising and appears fairly straightforward, the

clinical success of such vaccines has been less than encour-

aging [73]. Although previous studies have largely employed

monocyte-derived DCs (moDCs) for this purpose, a pioneer-

ing study conducted in the laboratory of Dr. Jolanda De Vries

utilized activated pDCs preloaded with tumour-associated

antigens to vaccinate subjects with melanoma [74]. Although

the overall magnitude of antimelanoma immune responses

was comparable to that of previous moDC trials, a number of

encouraging observations were made as a result of this study.

The pDC vaccine produced a systemic type I IFN response,

which is critical to NK activation and subsequent inhibition

of tumour metastasis [75]. Additionally, pDCs were observed

to migrate efficiently to the lymph nodes and, subsequently,

T-cell clones with high avidity could be identified after vac-

cination, indicative of a strong functional response. Lastly and

most importantly, the overall survival of subjects treated with

the vaccine greatly increased when compared to matched

controls that only received a standard chemotherapy treat-

ment. With regard to the mechanism of the observed efficacy,

one could speculate that the improved treatment outcome

may have been the result of pDC-mediated activation of

innate immune cells such as NK cells, or perhaps T cells

induced by pDCs may be more potent immune effectors.

Nevertheless, these observations clearly suggest that pDC-

based anticancer vaccines will likely provide advantages over

moDC vaccinations or may even supplement moDC vacci-

nations when used in combination therapy.

Concluding remarks

The current model of tumour neogenesis holds that the

tumour microenvironment provides favourable conditions that

support malignant cell growth and propagation, while at the

same time, allows them to evade the immune system. pDCs

that infiltrate tumours are often dysfunctional and, accord-

ingly, do not produce IFNa. Furthermore, they often display

an immature or na€ıve phenotype and promote a tolerogenic

microenvironment through the activation of Tregs. In this

context, pDCs likely contribute to neoplastic homoeostasis

and, accordingly, represent a very attractive target in cancer

immunotherapy. Indeed, activating pDCs with the TLR-7

agonist, Imiquimod is highly effective in treating some forms

of skin cancer and exemplifies the potential impact of pDC

immunity in neoplastic disease. Additionally, pDCs have been

shown to have tumoricidal properties in culture; therefore,

potentiating this ability in vivo may prove to be an effective

treatment strategy. Future studies regarding the contributions

of pDCs to malignancy will likely afford many opportunities

for immunotherapy strategies.
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