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Abstract

The aim of this paper is to prove the existence and uniqueness of
solution for one class multiplicative-convolution equations in space A′

+,
where A′

+ is the space of distributions on R, which are boundary values
(in the sense tempered distributions) of functions analytic in upper half-
plane of complex plane.
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1 Introduction

In the theory of distributions is known that multiplicative product and convo-
lution of distributions not always exist. Therefore it is important to find the
space of distributions where these two operations exist simultaneously.
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2 Multiplicative Product and Convolution in

A′
+

The Carleman-Fourier transform is defined by [1]:

KF(f)(z) :=

⎧⎪⎪⎨
⎪⎪⎩

+∞∫
0

e2πitzf(t)dt, Imz > 0,

−
0∫

−∞
e2πitzf(t)dt, Imz < 0.

here f(t) is a function of slow growth (f(t) is a continuous on R function that
grows at infinity no faster than a polynomial).

Let S ′(R) be the space of tempered distributions. By S ′
+(R) denote the

space of tempered distributions on R with support in R+ = [0; +∞].
It is well known that any distribution T ∈ S ′(R) has the structure

T =
dm

dtm
f(t),

where dm

dtm
is derivative in the distribution sense, m ∈ N, f(t) is a function

of slow growth. Therefore, if T ∈ S ′(R), then Carleman-Fourier transform is
defined by

KF(T )(z) = (−2πiz)mKF(f)(z), Imz �= 0.

Let A+(z) be the space of analytic functions on Imz > 0 such that A+(z)
is an image of S ′

+(R) under the Carleman-Fourier transform.
It is known [2] that the space S ′

+(R) with the convolution operation is the
convolution algebra. It is also known [3] that the Carleman-Fourier transform
is an isomorphism from S ′

+(R) onto A+(z). This means that A+(z) is the
multiplicative algebra with usual unit.

Passing to the limit (in the sense of the weak topology of S ′) as Imz → 0
in A+(z), we obtain the space A′

+(R) = A′
+ of distributions on R.

The multiplicative product ∀M, N ∈ A′
+ is defined by the formula

〈MN, ϕ〉 := lim
ε→+0

∫
�

M+(x + iε)N+(x + iε)ϕ(x)dx, ∀ϕ ∈ S,

here S is the Schwartz space [2].
Obviously, the space A′

+ is the multiplicative algebra with usual unit.
Let O′

α be the spaces of distributions on R with the asymptotic behavior
O (|t|α), α ≥ −1 [1]. If M ∈ {A′

+

⋂O′
α, α ≥ −1

}
, then appropriate analytic

function M+(z) is determined by

M+(z) =
1

2πi

〈
M,

1

t − z

〉
, Imz > 0. (1)
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Note also that if a distribution M ∈ A′
+, then M+(z) is determined by

M+(z) = KF [F̄(M)
]
(z), Imz > 0, (2)

where F̄ is the Fourier cotransform.
Obviously, the multiplicative algebra A′

+ has no zero divisors and does not
contain distributions with compact support. For example, the Dirac measure
δ does not belong to A′

+.
We can also define a convolution operation in A′

+. Let us consider the
following cases.

Case 1. Let Θ′
c be the space of convolutors for S ′ [4]. If U ∈ (A′

+

⋂
Θ′

c

)
,

then ∀T ∈ A′
+ convolution is defined as

〈U ∗ T, ϕ〉 :=
〈
T, Ǔ ∗ ϕ

〉
, ∀ϕ ∈ S,

where
〈
Ǔ , ϕ

〉
:= 〈U, ϕ̌〉 , ϕ̌ := ϕ(−x).

Case 2. Let A′
c be a multiplicative algebra with usual unit and with the

asymptotic O
(|t|−1). If U, T ∈ (A′

+

⋂A′
c

)
, then convolution is defined as

〈U ∗ T, ϕ〉 :=
〈
U, Ť ∗ ϕ

〉
=

〈
T, Ǔ ∗ ϕ

〉
, ∀ϕ ∈ S.

Case 3. If U ∈ (A′
+

⋂A′
c

)
and T ∈ (A′

+

⋂O′
α

)
, then convolution is defined

like in case 1.
Thus A′

+ is the multiplicative algebra with unit and A′
+ is the convolution

module on convolution algebras
(A′

+

⋂
Θ′

c

)
and

(A′
+

⋂A′
c

)
.

The Dirac measure δ does not belong to A′
+. But the distribution of

Heisenberg-Bogolubov

δ+ :=
1

2
δ − 1

2πi
v.p.

1

x

belongs to A′
+, since δ+ is the Fourier transform of the Heaviside step function.

δ+ has the following properties:
1. δ+ ∈ (A′

+ ∩ A′
c

)
.

2. δ+ ∗ δ+ = δ+.
3. δ+ ∗ T = T , ∀T ∈ (A′

+ ∩O′
α

)
.

Thus δ+ is unit of the convolution algebra
(A′

+

⋂A′
c

)
.

From δ+ ∈ A′
+ it follows that there exists δα

+, ∀α ∈ R. If α ∈ N, then
multiplicative power and differentiation operation are related by the formula

δα
+ =

1

(2πi)α−1(α − 1)!
· dα−1

dtα−1
(δ+) , ∀α ∈ N.

Generally speaking, we can define the distributions of the form g(T ) ∀T ∈ A′
+,

where the condition for analytic function g is

g ◦ T+(z) ∈ A+(z),

here T+(z) is the appropriate analytic function for T .
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3 The Solution of the Multiplicative-Convolution

Equation in A′
+

Consider the multiplicative-convolution equation

M {S ∗ U} = W, (3)

where M, S, W are given distributions from A′
+, U is unknown distribution

from A′
+.

To solve the equation (3), we need to perform the following steps.
Step 1. Division in A′

+.
Step 2. Solution of a convolution equation in A′

+.
In step 1 we must solve an equation

M · V = W, (4)

where V is an unknown distribution from A′
+.

Let M+(z) be the analytic function appropriate to the distribution M . The
equation (4) has an solution (and this solution is unique) if M+(z) has no zeros
in Imz > 0. This solution is defined by the formula:

〈V, ϕ〉 = lim
ε→+0

∫
�

W+(x + iε)

M+(x + iε)
ϕ(x)dx, ∀ϕ ∈ S.

Further, consider the step 2. We have convolution equation in A′
+:

S ∗ U = V. (5)

It is known from the theory of convolution equations that if the equation
(5) has the elementary solution E ∈ (A′

+

⋂
Θ′

c

)
, then exists the unique solution

of equation (5). This solution is defined by the formula

U = E ∗ V (6)

and belongs to A′
+.

If the elementary solution E ∈ (A′
+

⋂A′
c

)
and V ∈ A′

+, then exists the
unique solution of equation (5). This solution can also defined by the formula
(6). In particular, if V ∈ (A′

+

⋂A′
c

)
, then solution U ∈ (A′

+

⋂A′
c

)
.

Thus, we have proven the following theorem.

Theorem 3.1 The equation (3) has the unique solution U ∈ A′
+ if M+(z)

has no zeros in Imz > 0 and if equation (5) has the elementary solution E in(A′
+

⋂
Θ′

c

)
. Solution U is defined by the formula

U = E ∗ {
M−1W

}
. (7)

If E ∈ (A′
+

⋂A′
c

)
and M−1W ∈ A′

+, then U ∈ A′
+.

If M−1W ∈ (A′
+

⋂A′
c

)
, then U ∈ (A′

+

⋂A′
c

)
.



On a class of multiplicative-convolution equations 499

Note that the equation (3) can be interpreted as the boundary condition
(in the sense of distributions) for finding analytic function U+(z) in Imz > 0.
The solution of this problem is determined by the formula (1) or (2).

Consider also the convolution-multiplicative equation in S ′
+ :

S ∗ {MV } = T (8)

In case
(A′

+ ∪O′
α

)
, α ≥ −1, equation (3) is isomorphic to the multiplicative-

convolution equation (8) under the Fourier transform. The solution of equation
(8) is an image of solution (7) under the Fourier cotransform F̄ .

4 Examples

Example 4.1 Consider the equation

(τασ+)−n {
(σ2

+ + γσ+) ∗ τβU
}

=
e2πikx

πx
sin 2πkx, (9)

where α, β ∈ R|α �= β, γ > 0, n ∈ N, σ+ = −2πiδ+, δ+ := 1
2
δ − 1

2πi
v.p. 1

x
, τα

and τβ are shift operators.

It is clear that (τασ+)−n ∈ A′
+(R). Multiplying both sides of (8) by (τασ+)n,

we obtain

(σ2
+ + γσ+) ∗ τβU = (τασ+)n W,

here W = e2πikx

πx
sin 2πkx.

Since σ2
+ = −2πiδ′+ and σ+ = −2πiδ+, we obtain the equation

(
δ′+ + γδ+

) ∗ τβU = − 1

2πi
(τασ+)n W. (10)

Operator
(
δ′+ + γδ+

) ∗ has the elementary solution E ∈ (A′
+

⋂A′
c

)
:

E = δ+ ∗ Y (x)e−γx,

where Y (x) is the Heaviside step function. Hence, exists the unique solution
of the equation (10):

τβU = E ∗
[
− 1

2πi
(τασ+)n W

]
.

Whence

U = τ−β

{
E ∗

[
− 1

2πi
(τασ+)n W

]}
. (11)
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The solution (11) belongs to A′
+

⋂A′
c.

Solution for the appropriate boundary value problem

(x − α)n

{(
d

dx
+ γ

)
τβU

}
= − 1

2πi
W

follows from (1) and (2). This solution has the form

U+(z) = − 1
4π3

e2πik(z+β)

z+β
sin 2πk(z + β) 1

[z−(α−β)]n(z+β+ iγ
2π )

, Imz > 0. (12)

From (12) it follows that the solution (11) can be represented in the form:

U = − 1

4π3

e2πik(x+β)

x + β
sin 2πk(x + β) (τα−βσ+)n 1(

x + β + iγ
2π

) . (13)

Since

∣∣(Imz)n · U+(z)
∣∣ ≤ C

in the neighborhood of the line Imz = 0, we see that U ∈
(
A′

+(R)
⋂A′(n+1)

c

)
[5].

Consider the following equation

e−2πitα dn

dtn
{
(γ + it) Y (t)e−2πitβV

}
= (−2πi)n−2Y [k − |t − k|] , (14)

in S ′
+, here V = F̄U .

Equation (14) is isomorphic to the equation (9) under the Fourier trans-
form. The solution of equation (14) is the image of (13) under the Fourier
cotransform F̄ , i.e.

V =
(2πi)n−1

π(n − 1)!
e2πixY [k − |t − k|] ∗ Y (x)e−2πix(α−β)xn−1 ∗ Y (x)e−2πixβ−γx,

∀k, n ∈ N, ∀α, β ∈ R, γ > 0.

Example 4.2 Consider the equation

(
σ−1

+ − α2σ+

) {[
σ3

+ − (2π)3βσ2
+ − (2π)3i

(
β2 + γ2

)
σ+

] ∗ U
}

= 1 + e
πix
α (15)

in A′
+, where α > 0, β > 0, γ ∈ R\ {0}, σ+ = −2πiδ+, δ+ := 1

2
δ − 1

2πi
v.p. 1

x
.
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The solution for this equation is

U =

(
Y (x)e−2πβx sin 2πγx

2πγ
∗ δ+

)
∗

[
− 1

2πi
(1 + e)

πix
α x (τασ+) (τ−ασ+)

]
.

Appropriate boundary value problem is

(
σ−1

+ − α2σ+

){[(
d

dx
+ 2πβ

)(2)

+ (2πγ)2

]
U

}
= − 1

2πi

(
1 + e

πix
α

)
,

and solution for this problem is

U+(z) =
1

(2π)2

γ

(z + iβ)2 − γ2
·

z
(
1 + e

πiz
α

)
2πi (z2 − α2)

, Imz > 0.

Equation

{δ′ + 2πiα2Y (x)} ∗ {Y (x) [(2πix + 2πβ)2 + (2πγ2)]V } =

= − 1
2πi

(
δ + τ 1

2α
δ
)

(16)

is isomorphic to the equation (15) under the Fourier transform in S ′
+.

The solution for (16) in S ′
+ is

V = −Y (x)

2π
e−2πxβ sin 2πγx ∗ Y

(
1

4α
−

∣∣∣∣x − 1

4α

∣∣∣∣
)

cos 2παx.
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