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Abstract. Let f be a polynomial degree of n ≥ 2 with f(0) = 0
and f ′(0) = 1. We prove that there is a critical point ζ of f with
|f(ζ)/ζ| ≤ 1/2 provided that the critical points of f lie in the
sector {reiθ : r > 0, |θ| ≤ π/6}, and |f(ζ)/ζ| < 2/3 if they lie in
the union of the two rays {1 + re±iθ : r ≥ 0}, where 0 < θ ≤ π/2.

1. Introduction and results

In 1981, Smale [13] made the following well-known conjecture. Let f
be a polynomial degree of n ≥ 2 normalized by f(0) = 0 and f ′(0) = 1.
Unless otherwise mentioned, we assume that our polynomials f satisfy
these normalizations. Let us set

S(f) = min

{∣∣∣∣f(ζ)ζ
∣∣∣∣ : f ′(ζ) = 0

}
and

Kn = sup{S(f) : deg f = n, f(0) = 0, f ′(0) = 1}.

The conjecture is that then Kn = 1−1/n. Smale proved that S(f) < 4
for all f like this. If f(z) = z + czn for some non-zero c, then S(f) =
1− 1/n. Thus

1− 1

n
≤ Kn < 4.

Many improvements have been obtained since, either for all f or for
f in special classes of functions. Nonetheless, the number 4 remains the
best known upper bound that is an absolute constant and is applicable
to all f .

2000 Mathematics Subject Classification. Primary: 30C10; Secondary: 30C15.
This material is based upon work supported by the National Science Foundation
under Grant No. 0758226. The second author was supported by RFBR (grants
No. 08-01-00381, 09-01-12188 ofi-m) and by Russian Federal Agency of Education,
grant No. P 944.

1



2 AIMO HINKKANEN AND ILGIZ KAYUMOV

It was proved by J.-C. Sikorav (see [14]) that if n ≤ 4, then Kn =
1− 1/n, and furthermore that

(1)

∣∣∣∣f(ζ)ζ
∣∣∣∣ < 1− 1

n

for some critical point ζ of f unless f(z) = z + czn. Numerical exper-
iments by Sendov and Marinov [9] suggest that the same conclusion
holds for n ≤ 10.

Beardon, Minda and Ng [1] obtainedKn ≤ 41−1/n, which was slightly
improved in [2] and [8]. The best known upped bound is due to Crane
(see [4], [5]). If the critical points of f all have the same modulus,
or if the values of f at the critical points have equal modulus, then a
theorem of Sheil-Small ([11], pp. 361–362) whose proof uses the method
of Córdova and Rusheweyh [3], shows that S(f) < 1. Dubinin [6]
improved this to S(f) ≤ 1 − 1/n when the critical points have equal
modulus. Tischler [14] proved S(f) < 1 when the non-zero zeros of f
have equal modulus.

In the case when the f has only real zeros, Palais (see [12], p. 159)
proved that S(f) < 1 while Tischler [14] obtained S(f) ≤ 1−1/n. If f
has only real zeros, it follows from Rolle’s theorem that f ′ has only real
zeros. Since the converse does not hold, the case when f has only real
critical points is more general than that when f has only real zeros.

Under the assumption that the f has only real critical points, Sheil-
Small ([11], p. 368) obtained S(f) < e−2 while Rahman and Schmeisser
([10], p. 217) proved the slightly better result

S(f) ≤ n− 2

n

((
n− 1

n− 2

)n−1

− 2

)
< e− 2,

where n ≥ 3.
Suppose that the critical points of f , that is, the zeros of f ′, are

contained in the union of k rays from the origin to infinity. In [7] we
conjectured that for such a function f , we have S(f) ≤ 1− 1/(k + 1),
which would imply that Kn = 1− 1/n, and proved that this is true for
k = 1 and k = 2.

The original question of Smale did not initially have the above nor-
malization. So let us now assume merely that f is a polynomial of
degree n ≥ 2. Pick any t in the complex plane C such that f ′(t) ̸= 0.
Then we consider

S(f, t) = min

{∣∣∣∣f(ζ)− f(t)

(ζ − t)f ′(t)

∣∣∣∣ : f ′(ζ) = 0

}
.
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Since we may replace f by af + b and the variable z by cz + d for any
complex numbers a, b, c, d with ac ̸= 0, it is easily seen that S(f, t) =
S(g, 0) for a polynomial g of degree n with g(0) = 0 and g′(0) = 1.
Namely, we may take g(z) = (f(βz + t) − f(t))/(βf ′(t)) for any β ∈
C \ {0}. However, the critical points of g are not at the same locations
as those of f , so if those of f are taken to lie in the union of k rays
from the particular point 0 to infinity, then those of g will lie in the
union of k rays merely from some point α (usually not 0) to infinity.
Note that if α ̸= 0, by an appropriate choice of β, we may assume that
α = 1.

In this paper we only consider the case when k = 1 or k = 2. If
α = 0 after passing to g, our problem has already been solved in [7].
Therefore we limit ourselves to the case when α ̸= 0.

Suppose that k = 1, so that there is only one ray which is part of
a certain straight line, or that k = 2 and the two rays form a straight
line. If this line passes through the origin, then again we are reduced
to the case covered in [7]. Therefore we will assume that under these
circumstances this line does not go through the origin. Then we may
replace α by that point on the line that is closest to the origin. By a
further rotation and dilation, we may then assume that α = 1 and that
the line is vertical. We will take these comments to be understood in
the sequel.

In this paper we study the problem of estimating S(g, 0) when the
critical points of g lie in the union of one or two rays from a finite point
to infinity, and in one case the same problem when the critical points
lie in a certain sector. Now, after explaining the motivation for our
study, we revert back to writing f instead of g and assume again that
f is normalized by f(0) = 0 and f ′(0) = 1.

If n = 5 and the critical points of f are at ±1 and ±i, then S(f) =
4/5. By moving the critical point at z = 1 slightly to obtain a new
normalized polynomial f1, we can still arrange to have S(f) arbitrarily
close to 4/5. Then the line L1 containing the points −1 and i and the
line L2 containing −i and the new critical point close to 1 but not on
the line from −i to 1 will intersect at a point α. Thus the critical points
of f1 lie in the union of two rays from α to infinity. This shows that
the best constant when k = 2 is at least 4/5. In this paper, when we
take k = 2, we impose further restrictions on the configuration of the
two rays and obtain a better estimate in those cases.

We prove the following results.

Theorem 1.1. Let f be a polynomial degree of n ≥ 2 with f(0) = 0
and f ′(0) = 1. Suppose that the critical points of f lie in the sector
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{reiθ : r > 0, |θ| ≤ π/6}. Then S(f) ≤ 1/2, and equality holds if, and
only if, n = 2.

Theorem 1.2. Let f be a polynomial degree of n ≥ 2 with f(0) = 0
and f ′(0) = 1. Suppose that the critical points of f lie on the ray
{1 + reiθ : r ≥ 0}, where 0 ≤ θ ≤ π/2. Then S(f) ≤ 1/2, and equality
holds if, and only if, n = 2.

Theorem 1.3. Let f be a polynomial degree of n ≥ 2 with f(0) = 0
and f ′(0) = 1. Suppose that the critical points of f lie in the union of
the rays {1 + re±iθ : r ≥ 0}, where 0 < θ ≤ π/2. Then S(f) < 2/3.

Of course, if 0 ≤ θ ≤ π/6 in Theorem 1.3, then we are in a situation
already covered by Theorem 1.1 or Theorem 1.2, in which case one of
those theorems yields the upper bound 1/2 instead of 2/3.

The proofs use methods similar to those introduced by us in [7].

2. Proof of Theorem 1.1

Let the assumptions of Theorem 1.1 be satisfied. Let the critical
points of f be denoted by zj for 1 ≤ j ≤ n − 1, listing each critical
point according to its multiplicity. Let z1 be a critical point of f with
minimal modulus. As in [7], we may write

f(z)

z
=

∫ 1

0

n−1∏
j=1

(
1− tz

zj

)
dt.

Hence

(2)

∣∣∣∣f(z1)z1

∣∣∣∣ ≤ ∫ 1

0

(1− t)
n−1∏
j=2

∣∣∣∣1− tz1
zj

∣∣∣∣ dt.
For 2 ≤ j ≤ n− 1, we have∣∣∣∣1− tz1

zj

∣∣∣∣ ≤ 1.

To see this, it suffices to prove that |1− tz1/zj|2 ≤ 1, which is equiva-
lent to

(3) t2
∣∣∣∣z1zj
∣∣∣∣2 ≤ 2tRe

z1
zj

= 2t

∣∣∣∣z1zj
∣∣∣∣ cos(θ − ψ),

where we have written z1 = |z1|eiθ and zj = |zj|eiψ. Here |θ| ≤ π/6
and |ψ| ≤ π/6. Now 0 < |z1| ≤ |zj| and |θ − ψ| ≤ π/3 so that
cos(θ − ψ) ≥ 1/2. This implies (3).
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It follows that ∣∣∣∣f(z1)z1

∣∣∣∣ ≤ ∫ 1

0

(1− t) dt =
1

2
.

The equality |f(z1)/z1| = 1/2 can hold only if equality holds in (3) for
all t ∈ (0, 1), which is never the case, or if n − 1 = 1. Thus equality
holds at most when n = 2. On the other hand, if n = 2, it is easily
seen that |f(z1)/z1| = 1/2. This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

Let the assumptions of Theorem 1.2 be satisfied. Let the critical
points of f be denoted by zj for 1 ≤ j ≤ n − 1, listing each critical
point according to its multiplicity. Let z1 be a critical point of f with
minimal modulus. Then, if we write zj = 1+rje

iθ, we have 0 ≤ r1 ≤ rj
for 2 ≤ j ≤ n− 1. We again apply (2). Now we need to estimate∣∣∣∣1− tz1

zj

∣∣∣∣ = ∣∣∣∣1− t
1 + r1e

iθ

1 + rjeiθ

∣∣∣∣ .
We have, for 0 < t ≤ 1,

t−1

(∣∣∣∣1− t
1 + r1e

iθ

1 + rjeiθ

∣∣∣∣2 − 1

)
= t

∣∣∣∣1 + r1e
iθ

1 + rjeiθ

∣∣∣∣2 − 2Re
1 + r1e

iθ

1 + rjeiθ

≤
∣∣∣∣1 + r1e

iθ

1 + rjeiθ

∣∣∣∣2 − 2Re
1 + r1e

iθ

1 + rjeiθ
.

The last quantity multiplied by |1 + rje
iθ|2 is equal to

|1 + r1e
iθ|2 − 2Re (1 + r1e

iθ)(1 + rje
−iθ)

= 1 + r21 + 2r1 cos θ − 2(1 + r1rj + (r1 + rj) cos θ)

= −1 + r1(r1 − 2rj)− 2rj cos θ < 0

since 0 < r1 ≤ rj and cos θ ≥ 0. This proves that∣∣∣∣1− tz1
zj

∣∣∣∣ ≤ 1

for 0 ≤ t ≤ 1. In the same way as in the proof of Theorem 1.1 it now
follows that |f(z1)/z1| ≤ 1/2, with equality if, and only if, n = 2. This
completes the proof of Theorem 1.2.
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4. Proof of Theorem 1.3

The idea of the proof of Theorem 1.3 is to reduce the situation to
that considered in [7]. There we obtained the following result (see [7],
(4)).

Lemma 4.1. Suppose that A and u are real numbers with u ≥ 1.
Define

(4) h1(u,A) =

∫ 1

0

(1− t)

(
1 +

t

u

)
eAt/u dt

and

(5) h2(u,A) =

∫ 1

0

(1− t) (1 + tu) e−At dt.

Then
min{h1(u,A), h2(u,A)} ≤ 2/3.

Equality holds if, and only if, A = 0 and u = 1.

Let the assumptions of Theorem 1.3 be satisfied. Let the critical
points of f be denoted by zj = 1 + rje

±iθ for 1 ≤ j ≤ n − 1, where
rj ≥ 0, listing each critical point according to its multiplicity. If all
critical points lie on one of the two rays, a better conclusion with < 2/3
replaced by ≤ 1/2 follows from Theorem 1.2. Therefore we may assume
that each of the two rays contains a critical point of f . Hence n ≥ 3.

If z1 = 1 is a critical point of f , the proof is easier, for now

|f(1)| ≤
∫ 1

0

(1− t)
n−1∏
j=2

∣∣∣∣1− t

zj

∣∣∣∣ dt
and for 2 ≤ j ≤ n− 1 and 0 < t ≤ 1, we have

|zj|2

t

(∣∣∣∣1− t

zj

∣∣∣∣2 − 1

)
= t− 2Re (zj)

≤ 1− 2(1 + rj cos θ) = −1− 2rj cos θ < 0

since cos θ > 0. Hence |1 − t/zj| < 1, so that we obtain |f(1)| ≤ 1/2
in the same way as in the proof of Theorem 1.1. Thus we assume now
on that f ′(1) ̸= 0.

We label the critical points of f so that zj = 1+rje
iθ for 1 ≤ j ≤ k−1

and zj = 1 + rje
−iθ for k ≤ j ≤ n − 1, where 2 ≤ k ≤ n − 1, and so

that 0 < r1 ≤ r2 ≤ · · · ≤ rk−1 and 0 < rk ≤ rk+1 ≤ · · · ≤ rn−1.
We seek to prove that

(6) min

{∣∣∣∣f(z1)z1

∣∣∣∣ , ∣∣∣∣f(zk)zk

∣∣∣∣} ≤ 2

3
.
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After proving (6), we will discuss the possible cases of equality.
To complete the proof of Theorem 1.3, we need the following two

lemmas.

Lemma 4.2. Suppose that 0 < r ≤ ρ, |θ| ≤ π/2, and 0 ≤ t ≤ 1. Then

(7)

∣∣∣∣1− t
1 + reiθ

1 + ρeiθ

∣∣∣∣ ≤ 1− t
r

ρ
.

Lemma 4.3. Suppose that r > 0, ρ > 0, |θ| ≤ π/2, and 0 ≤ t ≤ 1.
Then

(8)

∣∣∣∣1− t
1 + reiθ

1 + ρe−iθ

∣∣∣∣ ≤ 1 + t
r

ρ
.

Proof of Lemma 4.2. If 0 < t ≤ 1, we have tr/ρ ≤ 1, so that

|1 + ρeiθ|2ρ2

t

(∣∣∣∣1− t
1 + reiθ

1 + ρeiθ

∣∣∣∣2 − (1− t
r

ρ

)2
)

= t
(
|1 + reiθ|2ρ2 − |1 + ρeiθ|2r2

)
−2Re

(
(1 + reiθ)(1 + ρe−iθ)ρ2 − rρ|1 + ρeiθ|2

)
= t(ρ− r)(ρ+ r + 2rρ cos θ)− 2(ρ2 + (ρ− r)ρ2 cos θ)

≤
(
ρ2 − r2 + 2rρ(ρ− r) cos θ

)
− 2ρ2(1 + (ρ− r) cos θ)

= −r2 − ρ2 − 2ρ(ρ− r)2 cos θ < 0.

This proves (7) and hence Lemma 4.2.
Proof of Lemma 4.3. If 0 < t ≤ 1, we have

|1 + ρe−iθ|2ρ2

t

(∣∣∣∣1− t
1 + reiθ

1 + ρe−iθ

∣∣∣∣2 − (1 + t
r

ρ

)2
)

= t
(
|1 + reiθ|2ρ2 − |1 + ρe−iθ|2r2

)
−2Re

(
(1 + reiθ)(1 + ρeiθ)ρ2 + rρ|1 + ρe−iθ|2

)
= t(ρ− r)(ρ+ r + 2rρ cos θ)

−2(ρ2 + rρ+ rρ3(1 + cos 2θ) + ((r + ρ)ρ2 + 2rρ2) cos θ)(9)

If r ≥ ρ then the quantity in (9) is negative.
If r < ρ then the quantity in (9) does not exceed

(ρ− r)(ρ+ r + 2rρ cos θ)

−2ρ(ρ+ r + rρ2(1 + cos 2θ) + ((r + ρ)ρ+ 2rρ) cos θ)

= −(ρ+ r)2 − 2rρ3(1 + cos 2θ) + 2ρ((ρ− r)r − (3r + ρ)ρ) cos θ

= −(ρ+ r)2 − 2rρ3(1 + cos 2θ) + 2ρ(−r2 − ρ2 − 2rρ) cos θ < 0.

This completes the proof of Lemma 4.3.
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We now return to the proof of Theorem 1.3. Since our problem does
not change if we replace the polynomial f by f(z), we may assume that
r1 ≤ rk. Note that 1 + x ≤ ex for all real x. We have∣∣∣∣f(z1)z1

∣∣∣∣ ≤ ∫ 1

0

(1− t)
n−1∏
j=2

∣∣∣∣1− tz1
zj

∣∣∣∣ dt.
Applying Lemma 4.2 with r = r1 and ρ = rj for 2 ≤ j ≤ k − 1, and
applying Lemma 4.3 with r = r1 and ρ = rj for k ≤ j ≤ n − 1, we
obtain ∣∣∣∣f(z1)z1

∣∣∣∣ ≤ ∫ 1

0

(1− t)
k−1∏
j=2

(
1− tr1

rj

) n−1∏
j=k

(
1 +

tr1
rj

)
dt

≤
∫ 1

0

(1− t)

(
1 +

tr1
rk

)
exp

(
−

k−1∑
j=2

tr1
rj

+
n−1∑
j=k+1

tr1
rj

)
dt.

Similarly, we have∣∣∣∣f(zk)zk

∣∣∣∣ ≤ ∫ 1

0

(1− t)
n−1∏
j=1
j ̸=k

∣∣∣∣1− tzk
zj

∣∣∣∣ dt.
Applying Lemma 4.2 with r = rk and ρ = rj for 1 ≤ j ≤ k − 1, and
applying Lemma 4.3 with r = rk and ρ = rj for k + 1 ≤ j ≤ n− 1, we
obtain ∣∣∣∣f(zk)zk

∣∣∣∣ ≤ ∫ 1

0

(1− t)
k−1∏
j=1

(
1 +

trk
rj

) n−1∏
j=k+1

(
1− trk

rj

)
dt

≤
∫ 1

0

(1− t)

(
1 +

trk
r1

)
exp

(
k−1∑
j=2

trk
rj

−
n−1∑
j=k+1

trk
rj

)
dt.

Now define u = rk/r1 ≥ 1 and

A =
k−1∑
j=2

rk
rj

−
n−1∑
j=k+1

rk
rj
.

Any empty sum in the definition of A is taken to be zero. In particular,
A = 0 if n = 3. With h1(u,A) and h2(u,A) defined as in (4) and (5),
we see that ∣∣∣∣f(z1)z1

∣∣∣∣ ≤ h1(u,A),

∣∣∣∣f(zk)zk

∣∣∣∣ ≤ h2(u,A).

By Lemma 4.1, we obtain (6).
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The above proof together with the discussion of the cases of equality
in Lemma 4.1 show that we have strict inequality in (6) except possibly
when n = 3 and r1 = rk. However, even then we have strict inequality
in (7) and (8) when 0 < t ≤ 1. We conclude that we have strict
inequality in (6) in all cases.

This completes the proof of Theorem 1.3.
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