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1. Нормы на пространстве матриц

1. Через Mn будем обозначать множество всех квадратных мат-
риц размера n с комплексными, вообще говоря, элементами. Опре-
делив на множестве Mn обычным образом операции сложения двух
матриц и умножения матрицы на число, мы превратим его в ком-
плексное линейное пространство размерности n2. На этом линейном
пространстве введем норму, т. е. поставим в соответствие каждой мат-
рице A ∈ Mn число ∥A∥ так, что:

1) ∥A∥ > 0; равенства ∥A∥ = 0 и A = 0 эквивалентны;
2) ∥αA∥ = |α|∥A∥ для любого α ∈ C;
3) ∥A+B∥ 6 ∥A∥+ ∥B∥ для любых матриц A,B ∈ Mn.
4) ∥AB∥ 6 ∥A∥∥B∥ для любых матриц A,B ∈ Mn.

Говорят в этом случае, что на пространстве матриц Mn введе-
на матричная норма. Понятно, что она обладает всеми свойствами,
которые были изучены в предыдущем параграфе применительно к
норме векторов. Аксиома 4 выделяет согласованные нормы на про-
странстве матриц.

Отметим следующие простейшие свойства нормы:
1) ∥I∥ > 1 (где I есть единичная матрица).

Действительно ∥I∥ = ∥I · I∥ 6 ∥I∥∥I∥ = ∥I∥2.

2) ∥A−1∥ > ∥I∥
∥A∥

и, в частности, ∥A∥∥A−1∥ > 1.

Действительно ∥I∥ = ∥A · A−1∥ 6 ∥A∥∥A−1∥.
Не всякие векторные нормы на пространстве матриц (удовлетво-

ряющие аксиомам 1–3) является согласованными. Пусть, например,

∥A∥ = max
16i,j6n

|aij| (1.1)

для A ∈ Mn. Очевидно, это — векторная норма, но она не является
согласованной на Mn. Действительно, если

A =

[
1 1
1 1

]
, то AA =

[
2 2
2 2

]
,

причем ∥A∥ = 1, ∥AA∥ = 2, и неравенство ∥AA∥ 6 ∥A∥∥A∥ не вы-
полнено.
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2. Приведем важные примеры матричных норм.

1) Положим ∥A∥l1 =
n∑

i,j=1

|aij| для A ∈ Mn. Очевидно, три первых

аксиомы нормы выполнены. Проверим аксиому 4). По определению
для A,B ∈ Mn имеем

∥AB∥l1 =
n∑

i,j=1

∣∣∣ n∑
k=1

aikbkj

∣∣∣,
следовательно,

∥AB∥l1 6
n∑

i,j,k=1

|aik||bkj|.

Добавляя к сумме в правой части последнего неравенства неотрица-
тельные слагаемые, усилим неравенство:

∥AB∥l1 6
n∑

i,j,k,m=1

|aik||bmj|.

Осталось заметить, что
n∑

i,j,k,m=1

|aik||bmj| =
n∑

i,k=1

|aik|
n∑

j,m=1

|bmj| = ∥A∥l1∥B∥l1.

2) Положим ∥A∥E =
( n∑

i,j=1

|aij|2
)1/2

для A ∈ Mn. Эта норма

порождается естественным скалярным произведением на простран-
стве Cnn, поэтому три первых аксиомы для нее выполняются. Нор-
му ∥A∥E обычно называют евклидовой нормой или нормой Фробени-
уса1). Докажем справедливость четвертой аксиомы для этой нормы,
опираясь на неравенство Коши (Гельдера с показателями p = q = 2):

∥AB∥2E =
n∑

i,j=1

∣∣∣ n∑
k=1

aikbkj

∣∣∣2 6 n∑
i,j=1

n∑
k=1

|aik|2
n∑

k=1

|bkj|2 =

=
n∑

i,k=1

|aik|2
n,p∑

k,j=1

|bkj|2 = ∥A∥2E∥B∥2E.

1)Фердинанд Георг Фробениус (Ferdinand Georg Frobenius; 1849 — 1917) — немецкий матема-
тик.
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3. Пусть A ∈ Mn, ∥ · ∥ — некоторая норма на пространстве век-
торов Cn. Тогда существует неотрицательное число NA такое, что

∥Ax∥ 6 NA∥x∥ ∀ x ∈ Cn. (1.2)

В самом деле, поскольку всякая норма ∥ · ∥ на Cn эквивалентна нор-
ме ∥ · ∥∞, то c1∥x∥∞ 6 ∥x∥ ∀x ∈ Cn, ∥x∥ 6 c2∥x∥∞ ∀x ∈ Cn, где c1,
c2 — положительные не зависящие от x постоянные. Поэтому спра-
ведлива следующая цепочка неравенств:

∥Ax∥ 6 c2∥Ax∥∞ = c2 max
16i6m

∣∣∣ n∑
j=1

aijxj

∣∣∣ 6 c2∥x∥∞ max
16i6m

n∑
j=1

|aij| 6

6 (c2/c1) max
16i6m

n∑
j=1

|aij|∥x∥.

Обозначим через ∥A∥ точную нижнюю грань всех чисел NA, для
которых выполнено (1.2). Ясно, что

∥A∥ = sup
x∈Cn, x̸=0

∥Ax∥
∥x∥

= sup
x∈Cn, ∥x∥=1

∥Ax∥. (1.3)

Нетрудно убедиться в справедливости полезной оценки:

5) ∥Ax∥ 6 ∥A∥∥x∥ ∀x ∈ Cn.

Матричную норму ∥A∥, сконструированную указанным способом,
называют подчиненной норме векторов или операторной нормой.

Отметим, что при любом способе задания нормы на Cn подчинен-
ная норма единичной матрицы (порядка n) равна единице.

Не всякая норма, определенная на Mn, подчинена какой либо нор-
ме векторов. Например, норма Фробениуса не подчинена никакой нор-
ме векторов, так как ∥I∥E =

√
n. Норма (1.1) также не является опе-

раторной, так как она не согласованная норма на Mn

4. Определим при p = 1, 2,∞ матричную норму

∥A∥p = sup
x∈Cn, ∥x∥p=1

∥Ax∥p, (1.4)

подчиненную векторной норме x → ∥x∥p =
(∑n

i=1 |xi|p
)1/p

.
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1) Случай p = 1, ∥x∥1 =
n∑

k=1

|xk|. Тогда

∥A∥1 = max
x∈Cn, ∥x∥1=1

∥Ax∥1.

Нетрудно видеть, что для любого вектора x ∈ Cn, ∥x∥1 = 1,

∥Ax∥1 =
n∑

i=1

∣∣∣ n∑
j=1

aijxj

∣∣∣ 6 n∑
i=1

n∑
j=1

|aij||xj| =
n∑

j=1

|xj|
n∑

i=1

|aij| 6

6 max
16j6n

n∑
i=1

|aij|
n∑

j=1

|xj| = max
16j6n

n∑
i=1

|aij|.

Предположим, что max
16j6n

n∑
i=1

|aij| =
n∑

i=1

|aik|, и положим, что x̃ есть

вектор естественного базиса пространства Cn такой, что x̃k = 1, а все
остальные координаты вектора x̃ равны нулю. Ясно, что ∥x̃∥1 = 1, а

∥Ax̃∥1 =
n∑

i=1

|aik|. Таким образом, доказано, что

∥A∥1 = max
x∈Cn, ∥x∥1=1

∥Ax∥1 = max
16j6n

n∑
i=1

|aij|.

Поэтому норму ∥A∥1 часто называют столбцовой нормой матрицы A.

2) Случай p = ∞, ∥x∥∞ = max
16k6n

|xk|. Тогда

∥Ax∥∞ = max
16i6n

∣∣∣ n∑
j=1

aijxj

∣∣∣ 6 max
16i6n

n∑
j=1

|aij||xj| 6

6 max
16j6n

|xj| max
16i6n

n∑
j=1

|aij| = max
16i6n

n∑
j=1

|aij|.

Положим, что max
16i61

n∑
j=1

|aij| =
n∑

j=1

|akj| и определим вектор x̃ ∈ Cn при

помощи соотношений

x̃j =

{
ākj/|akj|, akj ̸= 0,

1, akj = 0,
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где j = 1, 2, . . . , n, черта, как обычно, есть знак комплексного сопря-
жения. Ясно, что ∥x̃∥∞ = 1, причем элементарные выкладки показы-
вают, что для любого i = 1, 2, . . . , n выполнено неравенство∣∣∣ n∑

j=1

aijx̃j

∣∣∣ 6 n∑
j=1

|aij| 6
n∑

j=1

|akj|,

а для i = k ∣∣∣ n∑
j=1

aijx̃j

∣∣∣ = n∑
j=1

|akj|,

т. е. ∥Ax̃∥∞ = max
16i61

n∑
j=1

|aij|. Таким образом,

∥A∥∞ = max
x∈Cn, ∥x∥∞=1

∥Ax∥∞ = max
16i6n

n∑
j=1

|aij|.

Норму ∥A∥∞ часто называют строчной нормой матрицы A.

3) Случай p = 2, ∥x∥2 = (x, x)1/2 =
(∑n

i=1 x
2
i

)1/2

. Для любого
x ∈ Cn имеем ∥Ax∥22 = (Ax,Ax) = (A∗Ax, x). Матрица A∗A эрмито-
ва и неотрицательна. Поэтому существует ортонормированный базис
{ek}nk=1 такой, что A∗Aek = ρ2ke

k (ek есть собственные векторы, а ρ2k =
ρ2k(A) — неотрицательные собственные числа матрицы A∗A). Пред-

ставим вектор x в виде разложения по этому базису x =
n∑

k=1

ξke
k и

предположим, что ∥x∥2 = 1. Тогда
n∑

k=1

|ξk|2 = 1, ∥Ax∥22 =
n∑

k=1

ρ2k|ξk|2 6

max
16k6n

ρ2k. Пусть ρj = max
16k6n

ρk. Полагая x̃ = ej, получим ∥Ax̃∥2 = ρ2j .

Таким образом, доказано, что max
x∈Cn, ∥x∥2=1

∥Ax∥2 = max
16k6n

ρk, т. е.

∥A∥2 = max
16k6n

ρk(A). (1.5)

Отметим следующий интересный для многих приложений част-
ный случай. Будем считать, что матрица A ∈ Mn эрмитова, т. е.
A = A∗. Тогда, очевидно ρk(A) = |λk(A)|, k = 1, 2, . . . , n, где через
λk(A) обозначены собственные числа матрицы A. Число

ρ(A) = max
16k6n

|λk(A)|
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называют спектральным радиусом матрицы A. Таким образом, для
любой эрмитовой матрицы

∥A∥2 = max
16k6n

|λk(A)| = max
x∈Cn, x̸=0

|(Ax, x)|
(x, x)

= ρ(A). (1.6)

Норму ∥A∥2 в связи с этим часто называют спектральной.

5. Знание согласованной нормы матрицы оказывается, в частно-
сти, полезным при оценке ее спектрального радиуса, а именно, для
любой квадратной матрицы A справедливо неравенство

ρ(A) 6 ∥A∥, (1.7)

где ∥A∥ — любая согласованая норма матрицы A. В самом деле, пусть
λ, x — собственное число и соответствующий ей собственный вектор
матрицы A, а X — квадратная матрица, столбцами (одинаковыми)
которой служит вектор x. Тогда, очевидно, AX = λX и

|λ|∥X∥ = ∥AX∥ 6 ∥A∥∥X∥

для любой согласованной матричной нормы, причем ∥X∥ ̸= 0, так
как вектор x по определению собственного вектора не равен нулю.
Таким образом, для любого собственного числа λ матрицы A верно
неравенство |λ| 6 ∥A∥, а это эквивалентно (1.7).



2. Задачи и упражнения 7

2. Задачи и упражнения

Упражнение 2.1. Пусть ∥·∥ — матричная норма на Mn, S ∈ Mn — произвольная
невырожденная матрица. Покажите, что формула ∥A∥(s) = ∥SAS−1∥ ∀A ∈ Mn также
определяет матричную норму на Mn.

Упражнение 2.2. Доказать, что норма ∥A∥ = n max
16i,j6n

|aij | является согласован-

ной на пространстве Mn (т.е. справедлива аксиома 4).

Упражнение 2.3. Докажите, формула (1.3) действительно определяет матрич-
ную норму, т.е. выполнены все аксиомы матричной нормы.

Упражнение 2.4. Докажите, что при любом способе определения норм на про-
странствах Cn существует вектор x0 ∈ Cn такой, что ∥x0∥ = 1 и

∥Ax0∥ = sup
x∈Cn, ∥x∥=1

∥Ax∥,

т. е. в определении (1.3) символ точной верхней грани можно заменить на символ мак-
симума.

Упражнение 2.5. Докажите, что для любой матрицы A: 1) нормы ∥A∥2 и ∥A∥E
не меняются при умножении A (слева или справа) на любую унитарную матрицу;
2) ∥A∥2 = ∥A∗∥2.


