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INTRODUCTION

Over the last three decades, double lithium–rare�
earth fluorides LiLnF4 (Ln denotes the rare�earth ion)
have been studied intensely due to a variety of their
magnetic properties [1–5]. Simulation of magnetic�
field effects in LiLnF4 single crystals is an important
problem for the development of the theory of magne�
toelastic effects in magnetically concentrated crystals
that contain rare�earth ions.

LiLnF4 crystals have a tetragonal structure of

scheelite CaWO4; their space�symmetry group is 
(I41/a); the unit cell contains two magnetically equiv�
alent Ln3+ ions at sites with the S4 point�symmetry
group [6]. LiTmF4 is a dielectric van Vleck paramagnet
[7], a distinctive feature of which is a strong magne�
toelastic interaction, which is evidenced by a giant
magnetostriction, which was revealed in [8], and char�
acteristic extrema in temperature dependences of elas�
tic constants [9, 10]. The authors of [11, 12], using
optical�spectroscopy methods, have observed a sub�
stantially nonlinear and anisotropic dependence of the
splitting of the first excited doublet of Tm3+ ions on the
external magnetic field that was oriented in the base
plane of the LiTmF4 crystal, which is caused by the
magnetoelastic interaction. Later, the authors of [13,
14] measured the dependences of the magnetization of
LiTmF4 single crystals on the magnitude and direction
of the magnetic field at different temperatures. Results
of calculations of piezospectroscopic effects [15],
magnetostriction [8, 10], and nonlinear Zeeman
effect [11, 12], which were done in terms of the model
of a linear electron–deformation interaction, agree
well with measurement data; however, the values of
coupling parameters of thulium ions with lattice
deformations that were used in these works differ con�

C4h
6

siderably from the values of corresponding parameters
that were found from the analysis of the data of
piezospectroscopic investigations of thulium and hol�
mium impurity ions in an isostructural crystal LiYF4

[16, 17]. It should be noted that the previous analysis
of the experimental data was performed taking into
account only the magnetic�dipole–dipole interaction
between rare�earth ions, which, in the case of the van
Vleck paramagnet, plays an insignificant role at low
temperatures. The revealed strong interaction of Tm3+

ions with static lattice deformations is indicative of the
possibility of an efficient multipole interaction
between thulium ions that is caused by exchange of
phonons. The multipole interaction leads to the
renormalization of parameters of an effective one�par�
ticle Hamiltonian and, as was noted in [15], can be the
reason for the difference between parameters of the
electron–phonon interaction in magnetically concen�
trated and diluted systems. The objective of this work
is to calculate the parameters of the Hamiltonian of
the interaction between thulium ions using previously
found characteristics of the electron–phonon interac�
tion and the lattice dynamics of LiLnF4 crystals [18–
20] and to construct a self�consistent model for the
calculation of magnetic and magnetoelastic charac�
teristics of the LiTmF4 crystal taking into account
multipole interactions.

THEORETICAL SUBSTANTIATION 
OF THE MODEL

The Hamiltonian of the magnetic subsystem,
which consists of thulium ions interacting with the
crystal lattice with a free surface, will be written as
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(1)

Here, HL, s is the Hamiltonian of the thulium ion with
radius vector RLs from the sth sublattice (s = 1, 2) in
the Lth unit cell in a static crystal field, Hlat is the
energy of the crystal lattice in the harmonic approxi�
mation with normal coordinates Q(q j) (q is the wave
vector of a phonon with frequency , j is the number
of the branch of the vibrational spectrum), the last
term in (1) is the energy of the electron–phonon inter�
action in the linear approximation with respect to dis�
placements of ions from the equilibrium position; N is

the number of cells,  are linear combinations of
spherical tensor operators [21] that act in the space of
electronic states of the thulium ion at the site Ls, and

 are interaction parameters that are deter�
mined by derivatives of corresponding parameters of
the crystal field with respect to displacements of ions
[1].

Considering corrections to the energy of thulium
ions in the second order with respect to the electron–
phonon interaction at low temperatures (kBT  ,
where kB is the Boltzmann constant and ω0 is the lim�
iting phonon frequency) and taking into account only
mixing of electronic states with the energy difference
Δ  , we can introduce an effective Hamiltonian
of interaction between thulium ions [22]

(2)

where  and

(3)

Two�particle interactions will be considered in the
self�consistent field approximation, neglecting terms
of the second order with respect to deviations of the

operators  from their average values  =

 (the latter equality is valid if all magnetic ions are

equivalent, in particular, Tm3+ ions in LiTmF4).
The free energy of an elastically deformed crystal in

external magnetic field B (per unit cell with the vol�
ume v) will be written as
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where C ' is the tensor of “seed” elastic constants, е is
the tensor of deformations, w(r) is the displacement
vector of the rth sublattice, b(r) is the tensor of cou�
pling constants of macro� and microdeformations,

 are elements of the dynamic matrix of the lat�

tice at the center of the Brillouin zone,  is the
matrix of constants of coupling via the phonon field, n
is the number of equivalent magnetic sublattices (n =
2 for LiTmF4 crystals), and Hef, s is the single�ion
Hamiltonian. This Hamiltonian is given by

, (5)

, (6)

(7)

The first term in (6) is Hamiltonian H0 of the free
ion; the second term is the crystal field energy; and the
third term is the electron Zeeman energy  =

, where µB is the Bohr magneton and L
and S are the orbital and spin moments of the ion,
respectively. The first and second terms in (7) deter�
mine the linear interaction of the rare�earth ion with
homogeneous macro� and microdeformations,
respectively. We will represent the electron operators
Vαβ and Vα(r) by linear combinations of spherical ten�
sor operators,

, . (8)

Taking into account the translational symmetry of
the lattice, we can obtain from Eqs. (2) and (3) the fol�
lowing expression for elements of the matrix λ in the
last term in (7):

(9)

In the first term of (9), the summation is performed
only over the optical branches of the vibrational spec�
trum. The one�ion contribution to the free energy (see
Eq. (4)) will be written with an accuracy of up to terms
of the second order with respect to deformation char�
acteristics of the lattice and deviations of the average

values of the operators  from corresponding equilib�
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rium values in a zero magnetic field (to simplify for�

mulas written below, we assume that  = 0).

Considering operator (7) as a perturbation and writing

it as  = = , we obtain

, (10)

where  is the free energy of the ion

with Hamiltonian , Z =  is the
statistical sum, the symbol  denotes averaging
with the equilibrium density matrix of the ion  =

, and the elements of matrix q are
given by

(11)

Here,  and  are the eigenvalues and eigenfunctions

of the operator .
Using the conditions of the thermodynamic equi�

librium  = 0 and  = 0 and the des�
ignation of the convolution over the indices p and k
introduced above, we obtain the free energy of the
crystal in the form

(12)

where  is the tensor of
elastic constants, and the following notation for the
quantities that are renormalized by the electron–
deformation and electron–phonon interactions is
introduced:
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It should be noted that, with an accuracy of up to
terms of the second order with respect to the parame�
ters of the electron–deformation interaction, the
dependence of the elastic constants on temperature
and magnetic field can be represented by the expres�
sion

, (17)

where the contributions of the magnetic subsystem are
determined by the second term and the renormalized
constants of coupling with macrodeformations are
given by

. (18)

Changes of elastic constants (rates and polariza�
tions of acoustic waves, respectively) in an external
magnetic field are determined by corresponding
changes of elements of the matrix q (see (11)). It
should be noted that, here, we do not consider magne�
toelastic effects that are caused by the electron–rota�
tional interaction.

A magnetic field�induced relative change in the
dimension of the crystal in the direction that is speci�
fied by the unit vector with the direction cosines n

α
 is

 = , where the components of the
deformation tensor are determined from the mini�
mum condition of free energy (12),

. (19)

Here,

,

 is the tensor of elastic compliances.
Energy levels of ions and their magnetic moments

in the external magnetic field are determined by
above�introduced effective single�particle Hamilto�
nian  in which the perturbation operator takes the
form

(20)

In the next section, the expressions that were intro�
duced above for elastic constants, lattice deformations
induced by the magnetic field, and the effective
Hamiltonian of the paramagnetic ion will be used to
calculate corresponding characteristics of the crystal
LiTmF4.
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ELASTIC CONSTANTS, MAGNETIZATION, 
AND MAGNETOSTRICTION OF LiTmF4

The results that are presented below were obtained
using the numerical diagonalization of the Hamilto�
nian of Tm3+ ions in the full space of states of the elec�
tronic configuration 4f 12 (the number of states is 91).
The Hamiltonian of the free ion was written in the
standard form taking the parameters of the electro�
static, spin–orbit, and interconfigurational interac�
tions from [23]. In the crystallographic coordinate sys�
tem, the crystal field that acts on the Tm3+ ion in the
LiTmF4 crystal is determined by a set of seven param�

eters 

(21)

The values of the crystal field parameters that were
used in this work are presented in Table 1. The calcu�
lated energy levels of the Tm3+ ion (see Table 2, where
the sublevels of the lowest multiplet 3H6 are given)

k
pB

0 0 0 0 4 4
2 2 4 4 4 4

4 4 0 0 4 4 4 4
4 4 6 6 6 6 6 6 .

cfH B O B O B O

B O B O B O B O− − − −

= + +

+ + + +

agree well with experimental data. The ground state of
the Tm3+ ions in the crystal field is the singlet Γ2(1),
the nearest levels are the doublet Γ34(1) and the singlet
Γ1(1) (the wave functions of different states of the elec�
tron shell 4f 12 of Tm3+ ions are transformed according
to the irreducible representations Γk of the S4 point
group). Comparison of the calculated temperature
dependence of the longitudinal magnetic susceptibil�
ity with measurement data (Fig. 1a) indicates that the
investigated specimens of LiTmF4 contain paramag�
netic impurities, the contribution of which to the mag�
netization increases considerably at temperatures
lower than 10 K.

Calculations are significantly simplified if the sym�
metry properties of the system are taken into account.
Let us introduce linear combinations of components

of the deformation tensor  = ,  =  +

,  = ,  = ,  = , and
 = , which transform according to the irre�

ducible representations Γ = Ag, Bg, and Eg of the 
factor group symmetry of the lattice. A magnetic field
that is directed along the c axis induces only totally
symmetric deformations Ag, whereas field that is
directed in the ab plane induces totally symmetric and
rhombic deformations (Bg). Corresponding micro�
scopic deformations of the Ag and Bg symmetry are
determined by three and five independent linear com�
binations of displacements of sublattices ,
respectively. In the basis of symmetrized deforma�
tions, the operator of the electron–deformation inter�
action has the form

(22)

where  and  are independent variables,
and  and  are the number and the row of the repre�
sentation Γ, respectively. Results of calculations of
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Table 1.  Interaction parameters of Tm3+ ions with a crystal field and deformations of the Bg symmetry (in cm–1)

p k p k

2    0 184 2    2 1914 1571 4194 3646

4    0 –90 2 –2 1408 1337 –1030 –1169

4    4 –669 4    2 –600 –468 –1615 –1393

4 –4 –638 4 –2 1292 1141 1237 986

6    0 –4.06 6    2 –192 –164 –492 –443

6    4 –328 6 –2 –569 –480 –590 –424

6 –4 –294 6    6 –963 –858 –1375 –795

6 –6 –1067 –974 –1500 –910

* In a zero magnetic field at a temperature of 4.2 K
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Table 2.  Energy levels (in cm–1) of the 3H6 multiplet of the
Tm3+ ion in a crystal LiTmF4

Symmetry
Experiment Calculation

[7] [24] LiYF4 : Tm [25] (this work)

Γ2(1) 0 0 0 0

Γ34(1) 32 – 30 31

Γ1(1) 57 71 55 62

Γ2(2) – 281 275 282

Γ2(3) – 319 305 313

Γ1(2) – 363 – 362

Γ34(2) – – – 381

Γ34(3) – – – 402

Γ1(3) – – – 415

Γ2(4) – – – 430
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coupling constants in operator (22) in terms of the
model of exchange charges [20] and optical
piezospectroscopy of the LiTmF4 crystal [15] show
that the interaction of Tm3+ ions with deformations of
the Bg symmetry plays a dominant role. As a conse�
quence, we can expect that dynamic deformations of
the Bg symmetry make the main contribution to the
multipole interaction between Tm3+ ions, the interac�
tion with which can be represented by linear combina�

tions of eight electronic operators , ,

, , ,  = O6, , and

. In accordance with (8), neglecting the dis�
persion of optical branches of the vibrational spec�
trum, we obtain the following expression for the ele�
ments of the matrix λij (i, j = 1 : 8), which is deter�
mined in the space of the operators indicated:

(23)

Multipole interaction parameters (23) were esti�

mated using frequencies of gerade ( ) and trans�

verse ungerade ( ) optical vibrations of the Bg

and Au symmetry, respectively, of the LiTmF4 crystal at
the center of the Brillouin zone, which were measured
in [19], and coupling constants of thulium ions with

corresponding vibrations  and , which
were found from the analysis of temperature and mag�

 2
2 1O O= 2

2
2O O−

=

3
2
4O O=

2
4 4O O−

= 5
2
6O O=

2
6O−

7
6
6O O=

8
6

6O O−

=

2 2

1:5 1:4

2

( ) ( ) ( ) ( )

( ) ( )

(1, ) (1, )1 .
aa

i g j g i u j u
ij

g u

i a j a

jj

B B B B B A B A

B A

B j B j

N

υ υ υ υ

υ υ

υ= υ=

λ = −
ω ω

−
−

ω

∑ ∑

∑
qq

q q

( )gBυ

ω

( )uA TOυ

ω

( )i gB Bυ ( )i uB A TOυ

netic�field effects in Raman spectra [18, 19] and cal�
culations in terms of the exchange�charge model. The
summation over acoustic vibrations in the last term in
(23) was performed in terms of the long�wavelength
approximation, which made it possible to relate the
constants of the electron–phonon interaction

 with parameters (18) of the electron–defor�
mation interaction. The corresponding contributions
to elements of the matrix λij are given by (in units of
10–6 (cm–1)–1)

The coupling constants with homogeneous defor�
mations of the Bg symmetry are given in Table 2 (see
[16, 20]). Table 3 presents parameters of the multipole
interaction, which were reduced twofold compared to
calculated ones in order to match results of calcula�
tions of temperature dependences of the elastic con�
stants С11–С12, С16, and С66, which determine a
change in the lattice energy caused by deformations of
the Bg symmetry, with data of measurements of [9, 10]
(see Fig. 2). We note that contributions to multipole
interaction parameters that are caused by the interac�
tion of Tm3+ ions with acoustic vibrations (the last
term in (23)) and that induce long�range correlations
between states of paramagnetic ions play a dominant
role. As a consequence, due to renormalization (16),
the absolute values of the parameters of the effective

electron–deformation interaction  decrease

compared to the parameters  (Table 1).
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Fig. 1. Temperature dependences of the magnetization of a single crystal LiTmF4 measured in [14] (symbols) and calculated
(solid curves): (a) in a magnetic field B = 0.1 T that is parallel to the с axis and (b) in magnetic fields B = (1) 5.5 and (2, 3) 3 T
that are perpendicular to the с axis and make an angle of 12.5° with the a axis. Dashed curve 3 represents the magnetization in the
field with a strength of 3 T that was calculated without taking into account the multipole interaction between thulium ions.
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In calculations of magnetic�field effects, magnetic
dipole–dipole interactions were taken into account in
terms of the self�consistent field approximation. The
local magnetic field that acts on Tm3+ ions in the sth
sublattice was given by

, (24)

where  is the magnetic moment of the ion in the
sth sublattice;  are the lattice sums, which were
calculated by the Ewald method; and Nm is the demag�
netization factor. The main attention was concen�
trated on effects that manifest themselves in magnetic
fields that are oriented in the base plane of the lattice
and that induce deformations of the Bg symmetry. In the
magnetic field , which makes angle  with the

loc

'

4( ) ( , ') ( ')
3

m

s

s s s N sπ⎡ ⎤= + −
⎢ ⎥⎣ ⎦∑B B Q M

v

( )sM
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c⊥B ϕ

crystallographic а�axis, the relative change in the
dimension of the crystal  along the field direction is

. (25)

Values of  that were obtained upon substitution
into (25) of components of the deformation tensor
calculated in accordance with Eq. (19) agree satisfac�
torily with data on the longitudinal magnetostriction
of cylindrical specimens of LiTmF4 with their genera�
trices along directions [100] and [110] that were mea�
sured at a temperature of 4.2 K in fields with a strength
of up to 3 T (see Fig. 3a).

The inverse magnetostrictive effect, namely, a
change in the crystal field as a consequence of defor�
mations of the crystal lattice, is most clearly pro�
nounced in splittings of non�Kramers doublets in
fields that are oriented in directions to which a zero g

/l lΔ

/ 2 1 21( ) cos 2 ( ) sin 2 ( )
2

g g gl l e A e B e BΔ = + ϕ + ϕ

/l lΔ

Table 3.  Parameters of the multipole interaction λij = λji (in cm–1)

j
  i

1 2 3 4 5 6 7 8

1 –32.41 –24.64 21.82 –24.68 4.581 11.92 10.13 13.48

2 28.34 –7.994 4.897 –3.207 1.582 7.233 –2.955

3 –0.899 2.057 –1.417 –0.217 –6.138 –2.197

4 –12.85 –0.799 2.147 6.34 0.512

5 –0.87 –0.521 –1.866 –0.764

6 –0.869 –2.488 –3.06

7 –2.95 –4.074

8 –2.829

1.6
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Fig. 2. Measured (symbols) [9, 10] and calculated (curves) temperature dependences of the elastic constants (a) C16, (b) C66, and
(c) C11–C12 of a single crystal LiTmF4.
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factor corresponds. In this case, the direct (Zeeman)
interaction of a paramagnetic ion with the magnetic
field splits the Kramers doublet only in the second
order of the perturbation theory. Considerably larger
splittings can occur as a consequence of field�incident
changes in the lattice structure. In particular, anoma�
lous splittings dν of doublet Γ34(1) of thulium ions,
which significantly change with orientation of the

magnetic field in the base plane of the lattice, were
revealed in optical spectra of the crystal LiTmF4 [11,
12]. As can be seen from Fig. 4, neglect of multipole
interactions leads to a strong contradiction between
the results of calculations performed with the use of
parameters of the electron–deformation interaction
that were determined from piezospectroscopic mea�
surements [16] and the experimental data (the calcu�

10

420 B, T
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0

dν
, 

сm
−

1

(b)

10

210

5

0

Δ
l/

l ×
 1

04
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1

2

Fig. 3. (a) Field dependences of the longitudinal magnetostriction of a single crystal LiTmF4 at a temperature of 4.2 K in external
magnetic field B: (1) B || [100] and (2) B || [ [110]; (b) field dependence of the splitting of doublet Γ34(1) in a magnetic field that
oriented in the base plane of a single crystal LiTmF4 at an angle of ϕ = 10° to the a axis. Results of calculations are shown by solid
curves, and symbols correspond to experimental data from [1, 8, 12].
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Fig. 4. Measured (symbols) [11, 12] and calculated (curve 1) orientational dependence of the splitting of doublet Γ34(1) with an

energy of 31 cm–1 in external magnetic field В = 4.05 T in the base plane of a single crystal LiTmF4; T = 4.2 K. Curve 2 was
obtained without taking into account the multipole interaction.
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lated maximal splitting is more than two times greater
than the measured splitting). However, if operator (20)
is used, which contains renormalized effective con�
stants of the electron–deformation interaction, the
calculated field (Fig. 3b) and orientational (Fig. 4)
dependences of splitting dν of doublet Γ34(1) agree
well with the measured dependences.

Changes in the electronic structure of paramag�
netic ions that are caused by lattice deformations in a
magnetic field give rise to corresponding additional
contributions to the field�induced magnetization. As
in the case of the splitting of doublet Γ34(1) considered
above, without taking into account multipole interac�
tions, we obtained overestimated values of magnetic
moments of thulium ions in magnetic fields that were
perpendicular to the с axis and the strength of which
was above 1 T (Figs. 1b and 5). The measured temper�
ature, field, and orientational dependences of the
magnetization are reproduced well only in calcula�
tions that are performed using parameters of the elec�
tron–deformation and multipole interactions that are
the same as those that were used in the above�consid�
ered calculations of elastic constants, magnetostric�
tion, and spectrum of thulium ions.

CONCLUSIONS

We have calculated elastic, spectral, and magnetic
characteristics of a single crystal LiTmF4 taking into
account the electron–deformation and multipole
interactions. It has been shown that the entire set of
experimental data available at present on the field and
temperature dependences of elastic constants, magne�
tization, magnetostriction, and energy levels can be

reproduced not only qualitatively, but also quantita�
tively, with a satisfactory accuracy in terms of a self�
consistent theory that uses a unified set of parameters
of the crystal field and electron–deformation and
multipole interactions.
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