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Лекция 1. 
 

Неопределенный интеграл. 

Первообразная, основное свойство первообразных 
 

Первообразной функции ( )f x  называется функция  F x , 

производная которой равна  f x , т.е.    'F x f x . 

Поскольку     'F x C f x  , где C  – постоянная, 

первообразных функции  f x  бесчисленное множество. 

Теорема 1. У любой функции ( )f x , непрерывной на 

отрезке [ ; ]a b , существует первообразная. 

Теорема 2. Любые две первообразные функции  f x  на 

числовом промежутке могут отличаться только на 

постоянную. Другими словами, если    'F x f x  и 

   x f x  , то     const.F x x C    

Множество всех первообразных одной функции 

называется неопределенным интегралом этой функции и 

обозначается  f x dx , причем  f x  называется 

подынтегральной функцией, а  f x dx  – подынтегральным 

выражением. 

Очевидно, что если    'F x f x , то 

    ( )f x dx F x dx F x С    , где С  – произвольная 

постоянная интегрирования, то есть С  может принимать 

любые значения. 

 Приведем таблицу неопределенных интегралов с 

проверкой того, что действительно производная от правой 

части совпадает с подынтегральной функцией. 
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Основные свойства неопределенного интеграла (НИ) 

1. Постоянный множитель можно выносить за знак интеграла: 

   c f x dx c f x dx    , если 0c  постоянная. 

2. Неопределенный интеграл от алгебраической суммы 

конечного числа непрерывных функций равен алгебраической 

сумме интегралов от слагаемых функций: 

 ( ) ( ) ( ) ( )f x g x dx f x dx g x dx     . 

 

Таблица неопределенных интегралов 
 

1. 0 dx C     0C    

2. 1 dx dx x C        1x C    

3. 
1

( 1)
1

n
n x

x dx C n
n



   


 
1

1

n
nx

C x
n

  
  

 
 ( 1)n    

4. ln
dx

x C
x
    

1
ln x C

x

   

5. 
ln

x
x a

a dx C
a

   

ln

x
xa

C a
a

 
  

 
 

6. x xe dx e C    x xe C e


   

7.   

8.   

sin cosxdx x C    cos sinx C x  

cos sinxdx x C   sin cosx С x 
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9.   

10.   

11.  
 

 

12.  
 

 

13. а)  

б)  

а)  

б)  

14.  

       

 

 

15. а)  

       

а)  

     

2
tg

cos

dx
x C

x
   

2

1
tg

cos
x C

x
 

2
ctg

sin

dx
x C

x
    

2

1
ctg

sin
x C

x
  

2

1

arcsin
1

arccos

dx
x C

x

x C

  


  

  
2

1
arcsin

1
x C

x

 


 1
2

1
arccos

1
x C

x

  


2

1

arctg
1

arcctg

dx
x C

x

x C

  


  

  
2

1
arctg

1
x C

x
 



 1 2

1
arcctg

1
x C

x
  



2

1 1
ln

1 2 1

dx x
C

x x


 

 

2

1 1
ln

1 2 1

dx x
C

x x


 

 

2

1 1 1
ln

2 1 1

x
C

x x

  
  

  

2

1 1 1
ln

2 1 1

x
C

x x

  
  

  

2 2

1
arctg

dx x
C

x a a a
 



( 0).a 

2 2

1 1
arctg

x
C

a a x a

 
  

 

( 0).a 

2 2

1
ln

2

dx x a
C

x a a x a


 

 

( 0)a 

2 2

1 1
ln

2

x a
C

a x a x a

  
  

  

( 0)a 
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б)  

       

б)  

( 0)a   

16. а)  

б)  

а)  

б)  

17.  

       

 

 

18. а)  

       

б)  

       

а)  

 

б)  2

2

1
ln x x k C

x k


   



 

 

При интегрировании функций мы будем проверять 

результат с помощью пакета математических программ 

MAXIMA. Чтобы сосчитать с помощью компьютера ( )f x dx , 

мы должны ввести на экран задание в виде integrate( ( ),  )f x x  

и нажать одновременно клавиши Shift и Enter. Компьютер 

содержит все известные формулы и приемы интегрирования, 

в том числе, таблицу интегралов. Ответ компьютер выдает в 

следующей после задания строке, но без произвольной 

постоянной C. Следует помнить, что некоторые 

2 2

1
ln

2

dx a x
C

a x a a x


 

 

( 0)a 

2 2

1 1
ln

2

a x
C

a a x a x

  
  

  

2 2

2 2

1
ln

2

xdx
x a C

x a
  



2 2

2 2

1
ln

2

xdx
x a C

x a
  



2 2

2 2

1
ln

2

x
x a C

x a

 
   

 

2 2

2 2

1
ln

2

x
x a C

x a

 
   

 

2 2
arcsin

dx x
C

aa x
 




( 0)a 

2 2

1
arcsin

x
C

a a x

 
  

  

( 0)a 

2

2
ln

dx
x x k C

x k
   




( 0)k 

2

2
ln

dx
x x k C

x k
   




( 0)k 

 2

2

1
ln x x k C

x k


   



( 0)k 

( 0)k 
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математические функции имеют отличное от привычного 

выражение, например, tg  заменен на tan , ctg  – на cot , arctg  – 

на atan . Функция ln  имеет представление log , а логарифмы 

по основаниям, отличным от числа e , не рассматриваются, 

либо должны быть приведены к основанию e . Замечательные 

числа, такие как то же e , записываются со значком % перед 

ними. То есть, e  записывается как %e ,   – как %pi . Все 

функции записываются со строчной буквы и переменные в 

функциях вводятся в скобках. Например, sin x  запишется как 

sin( )x . Знак умножения вводится знаком « ». Степень 

вводится при помощи значка «^». 
 

Приемы интегрирования 

Тождественные преобразования подынтегрального 

выражения и использование свойств интегралов 

(непосредственное интегрирование неопределенного 

интеграла) 
 

Пример 1. Найти неопределенный интеграл 

 3 22 5 7 3 .x x x dx    

Решение. 

 

 

 

 

 

 

*

 3 2 3 2

4 3 2
4 3 2

2 5 7 3 2 5 7 3

1 5 7
2 5 7 3 3 .

4 3 2 2 3 2

x x x dx x dx x dx xdx dx

x x x
x C x x x x C

       

         

    
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Решение в MAXIMA. 
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Пример 2. Найти неопределенный интеграл 

 2cos .x x x dx   

Решение. 

 

Решение в MAXIMA. 

 

 

Замена переменной в неопределенном интеграле 

Докажем, что если , то 

. Функция  непрерывна на 

отрезке , а функция  непрерывно дифференцируема 

(т.е. имеет непрерывную производную) на некотором отрезке 

и принимает значения из отрезка . 

Доказательство: Имеем: . Тогда 

. 

Формула интегрирования заменой переменной: 

 

 
1

2

3

2 2
2 3

2cos 2 cos

1 2
2sin 2sin .

32 2 3

2

x x x dx xdx x dx xdx

x x
x C x x x C

     

       

   

( ) ( )F x C f x dx  
( ( )) '( ) ( ( ))f t t dt F t C     ( )f x

[ ; ]a b ( )t

[ ; ]a b

( ( ) ) ' ( )F x C f x 

( ( ( )) )' '( ( )) '( ) ( ( )) '( )F t C F t t f t t        

( )
( ) ( ( )) '( ) .

'( )

x t
f x dx f t t dt

dx t dt


 



 
   

 
 
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После нахождения интеграла правой части этого 

равенства следует перейти от новой переменной 

интегрирования  назад к старой переменной . 

 При подходящей замене переменной мы сводим заданный 

интеграл к табличному. 

 

Пример 1. Найти неопределенный интеграл  
20

2 1 .x dx  

Решение. 

 

Решение в MAXIMA. 

 
 

Пример 2. Найти неопределенный интеграл 

2
.

4 5

dx

x x


 
 

Решение. 

 

Решение в MAXIMA. 

. 

t x

20 20 21 21

2 1
1 1 1 1

(2 1) 2 (2 1) .
2 2 21 42

1

2

x t

x dx dx dt t dt t C x C

dx dt

 
  
 

          
 
 
 

 

 

 

2 2 2

22

2

4 5 12 1

ln 1 ln 2 2 1

x tdx dx dt

dx dtx x tx

t t C x x C

  
    

    

          

  

2ln 2 4 5x x x C     
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В ответе получилась функция 
2 4

asinh
2

x  
 
 

 или 

arsh( 2)x  , которая называется ареа-синус 

(см. Математическая справка). Это обратная функция к 

гиперболическому синусу. Очевидно, что оба решения дают 

одинаковые ответы. 

 

Математическая справка: 

ареасинус 2arsh ln 1x x x   , 

ареакосинус 2arch ln 1 ln 1 1x x x x x x       , 

ареатангенс 
1 1

arth ln
2 1

x
x

x

 
  

 
, 

ареакотангенс 
1 1

arcth ln
2 1

x
x

x

 
  

 
, 

синус гиперболический sh
2

x xe e
x


 , 

косинус гиперболический ch
2

x xe e
x


 , 

тангенс гиперболический th
x x

x x

e e
x

e e









, 

котангенс гиперболический cth
x x

x x

e e
x

e e









. 
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Пример 3. Найти неопределенный интеграл 

cos(3 5) .x dx  

Решение. 

 

Решение в MAXIMA. 

 

Введем данную функцию 

3 5
1 1 1

cos(3 5) 3 cos sin sin(3 5) .
3 3 3

3

x t

x dx dx dt tdt t C x C

dt
dx

 
  
 

         
 
 
 

 
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Получим ответ 

 

Интегрирование по частям 

Пусть ,  – функции, имеющие непрерывные 

производные. Тогда 

 

(или ). 

Доказательство. Справедливы соотношения: 

 и 

 

Сравнивая правые части, получим приведенную выше 

формулу. 

Типы интегралов, которые удобно вычислять этим 

методом: 

( )u u x ( )v v x

( ) '( ) ( ) ( ) ( ) '( ) .u x v x dx u x v x v x u x dx C      

udv uv vdu  

( ( ) ( )) ' ( ) ( )u x v x dx u x v x C   

( ( ) ( )) ' ( ) '( ) '( ) ( ) .u x v x dx u x v x dx u x v x dx      
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1. , , , где  – 

многочлен,  – число. Удобно положить , а за  

обозначить все остальные сомножители. 

2. , , , , 

. Удобно положить , а за  

обозначить остальные сомножители. 

3. , , где  и  – числа. За  можно 

принять функцию . В этом случае приходится дважды 

интегрировать по частям. Повторное интегрирование по 

частям приводит к первоначальному интегралу и тогда 

получается равенство, из которого находят выражение для 

искомого интеграла. 

 

Пример 1. Найти неопределенный интеграл cos .x xdx  

Решение. 

 

Решение в MAXIMA. 

 

 

Пример 2. Найти неопределенный интеграл arctg .xdx  

Решение. 

( ) k xP x e dx ( )sinP x k xdx ( )cosP x k xdx ( )P x

k ( )u P x dv

( )arcsinP x xdx ( )arccosP x xdx ( )lnP x xdx ( )arctgP x xdx
( )arcсtgP x xdx ( )P x dx dv u

sina xe b xdx cosa xe b xdx a b u

a xu e

, cos
cos sin sin

, sin

sin cos .

u x dv xdx
x xdx x x xdx

du dx v x

x x x C

  
    

  

  

 
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Решение в MAXIMA. 

 

 

 

 

 

2

2

2

arctg ,

arctg arctg
1,

1

1
arctg ln(1 ) .

2

u x dv dx
xdx

xdx x xdx
xdu v x

x

x x x C

  
 

    
   

   

 
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Лекция 2. 
 

Некоторые классы интегрируемых функций. 

Интегрирование простейших дробно-рациональных 

функций 
 

Известны четыре типа простейших дробно-рациональных 

функций. Интегралы от них вычисляются следующим 

образом: 

I.  

Доказательство. . 

II. , где  – натуральное число, 

большее единицы. 

Доказательство. . 

III. 
2

Mx N
dx

x px q




 
, ( 2 4 0p q  ). 

IV. 

 2
,

m

Mx N
dx

x px q




   

( 2 4 0p q  , 1m  ). 

(при  эти два интеграла могут быть сведены к более 

простому виду). 

Простейшие дроби III и IV типов преобразуются 

одинаково по следующей схеме: 

ln
dx

x a C
x a

  


 
1

ln x a
x a


 



    
1

1

1
m m

dx
C

x a m x a


 
  

 m

 
 

 
  

11 1
1

1 1

m m
x a m x a

m m

 


 

    
  

2 4 0p q 
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1) Выделяется полный квадрат в знаменателе 

подынтегральной функции 

, 

где 

. 

2) Делается замена переменной ,
2

p
x t dx dt

 
   

 
, и 

интеграл разбивается на два. 

Тогда интеграл III типа сводится к следующим простым 

интегралам: 

 
2 2 2 2

2

2

2

p
M t N

Mx N dxMx N
dx dx

x px q t ap
x a

 
        

   
  

 

 

 

 

. 

2 2 2

2 2

2 2 2

p p p
x px q x q x a

     
             

     

2 2
2 4

0
2 4

p q p
a q

 
    

 

 

2 2 2 2

2 2

2

2 2

1
ln arctg

2 2

M tdt Mp dt
N

t a t a

M Mp t
t a N C

a a

 
    

  

 
      

 

 

2

2 1 2
ln arctg

2 2 2

p
x

M p Mp
x a N C

a a

 
       

               

 
   2
2 2

ln arctg
2 2 2

N Mp x pM
x px q C

a a

 
    



21 

Пример. Найти неопределенный интеграл 
2

4 3

4 5

x
dx

x x




 
. 

Решение. Поскольку , данный 

интеграл является интегралом третьего типа. Решаем его, 

используя вышеприведенную процедуру 

 
2 2

24 3 4 3

4 5 2 1

x tx x
dx dx

dx dtx x x

   
     

     
 

 

2 2 2 2

4 8 3 4 5 4 5

1 1 1 1

t t t
dt dt dt dt

t t t t

   
       

   
 

2

2 2 2 2

2 1 ( 1) 1
2 5 2 5

1 1 1 1

t d t
dt dt dt

t t t t


       

   
 

2 22ln 1 5arctg 2ln 4 5 5arctg( 2) .t t C x x x C           

Решение в MAXIMA. 

 

 

Мы будем рассматривать только первые три типа 

интегралов, решение четвертого типа можно изучить 

самостоятельно: 

http://www.cleverstudents.ru/integral/partial_fractions_integration

.html 

 

 

 

2 4 16 20 4 0p q     

http://www.cleverstudents.ru/integral/partial_fractions_integration.html
http://www.cleverstudents.ru/integral/partial_fractions_integration.html
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Дробно-рациональные функции, их интегрирование 

Дробно-рациональной функцией называется выражение 

вида 

, где многочлены степеней  и . 

Дробно-рациональная функция называется правильной, 

если степень многочлена, находящегося в числителе, меньше 

степени многочлена в знаменателе, то есть , в противном 

случае дробь неправильная. 

При вычислении интегралов от дробно-рациональных 

функций  необходимо руководствоваться 

следующими правилами: 

1) Установить, является ли подынтегральная функция 

правильной или неправильной дробью. Если дробь 

неправильная, представить ее в виде суммы целой части (т.е. 

многочлена) и правильной дроби. 

2) Выяснить, является ли правильная дробь простейшей, 

если да, то приступить к ее интегрированию. 

3) Если дробь не является простейшей, представить ее в 

виде суммы простейших дробей и после этого приступить к 

интегрированию. 

 

Пример. Рассмотрим интеграл 

5 4 33 2 6 5

2

x x x x
dx

x

   



. 

 

 
m

n

Q x

P x
   ,n mP x Q x  n m

m n

 

 
m

n

Q x
dx

P x
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Решение. 

Дробь неправильная, значит необходимо выделить целую 

часть: 

     _   5 4 33 2 6 5x x x x      2x   

   5 43 6x x          4 3 23 4 9 18 42x x x x     

                _ 4 34 6 5x x x    

                   4 34 8x x  

                          _ 39 6 5x x   

                             3 29 18x x  

                                   _ 218 6 5x x   

                                      218 36x x  

                                               _ 42 5x   

                                                  42 84x   

                                                            79 

В результате 

5 4 33 2 6 5

2

x x x x
dx

x

   



 

4 3 2 79
3 4 9 18 42

2
x x x x dx

x

 
       

 
 

5 4 3 23
3 9 42 79ln 2 .

5
x x x x x x C         

Примечание. Интегрирование целой части, выделенной из 

неправильной дроби, сложности не представляет, поскольку 

приводит к интегралам от степенных функций. 
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Решение в MAXIMA. 

 

 

 

Теорема. Правильная несократимая дробно-рациональная 

функция  ( ) может быть 

представлена в виде суммы простейших дробей 

. 

 

Правила определения коэффициентов разложения: 

1) После представления правильной дробно-рациональной 

функции в виде суммы простейших дробей приводим правую 

часть формулы к общему знаменателю, следя за тем, чтобы 

 

   2

m

ks

Q x

x a x px q  
2km s 

 

         
31 2

1 2
2

m s

k s s ss

Q x A AA A

x ax a x a x ax a x px q
 

     
    

     
3 31 1 2 2

1 2 22 2 2

k k

k k k

M x N M x NM x N M x N

x px qx px q x px q x px q
 

  
    

      
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общий знаменатель суммы дробей совпадал со знаменателем 

разлагаемой дроби. 

2) Так как знаменатели дробей в левой и правой частях 

равенства совпадают, приравняем их числители, в результате 

получаем равенство многочленов, расположенных в левой и 

правой частях формулы. 

3) Из условия, что многочлены равны только тогда, когда 

совпадают коэффициенты при одинаковых степенях 

переменной, получаем систему уравнений относительно 

коэффициентов разложения, причем доказано, что она имеет 

единственное решение. 

4) После определения из полученной системы значений 

коэффициентов разложения интегрируем простейшие дроби. 

 

Пример. Вычислить неопределенный интеграл 

. 

Решение. 

Это – интеграл от дробно-рациональной функции, дробь 

правильная, несократимая и не являющаяся простейшей. 

Тогда 

. 

После приведения правой части равенства к общему 

знаменателю имеем 

. 

  
2

3 2

2 3

x
dx

x x



 


        2 2

3 2

2 32 3 3

x A B D

x xx x x


  

   

  

      

  

2

2 2

3 2 2 33 2

2 3 2 3

A x B x D x xx

x x x x

     


   
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Приравниваем числители дробей 

, 

откуда следует 

. (*) 

Требуем равенства коэффициентов при одинаковых степенях 

многочленов, в результате приходим к системе уравнений 

относительно коэффициентов разложения 

 

Итак, получена система трех уравнений относительно 

. Известно, что ее решение единственно. Решение 

может быть получено разными способами. 

Представляет особый интерес добавление к этой системе 

дополнительных, «лишних» уравнений, упрощающих 

получение решения. Рассуждают при этом следующим 

образом. Тождество (*) предполагает, что равенство 

справедливо при любых значениях переменной , 

следовательно, его можно использовать и при конкретных 

значениях переменной. 

Примем , тогда тождество приводит к уравнению  

, 

откуда следует . Из первого уравнения полученной 

выше системы следует , после чего из второго 

      
2

3 2 3 2 2 3x A x B x D x x       

     2 23 2 6 9 2 6x A x x B x D x x        

2 0

6 3

1 9 2 6 2

x A D

x A B D

A B D

 

  

  

, ,A B D

x

2x 

8 25 0 0A B D    

8

25
A 

8

25
D  
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получаем . Поскольку к решению 

системы привлекалось дополнительное уравнение, третье 

уравнение системы оказалось лишним. Используем его для 

проверки полученного результата . 

Теперь 

 

 

Решение в MAXIMA. 

 

 

48 8 35 7
3

25 25 25 5
B      

72 70 48 50
2

25 25 25 25
   

        2 2

3 2 8 7 8

25 2 5 25 32 3 3

x dx dx dx
dx

x xx x x


   

   
   

   

8 7 8 8 2 7
ln 2 ln 3 ln .

25 5 3 25 25 3 5 3

x
x x C C

x x x


        

  
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Лекция 3. 
 

Определенный интеграл. 

Формула Ньютона-Лейбница 
 

Представим, что мы должны подсчитать площадь 

земельного участка, изображенного на рисунке 1. 
 

 

Рис. 1 
 

Такая фигура, ограниченная с трех сторон отрезками 

прямых, два из которых перпендикулярны третьему, а 

четвертая сторона пересекается прямой, перпендикулярной 

противоположному отрезку, только в одной точке, называется 

криволинейной трапецией. Очевидно, что любая плоская 

фигура может быть разбита на конечное число 

криволинейных трапеций. Будем считать, что прямолинейные 

участки сторон нашей криволинейной трапеции так же, как на 

рисунке, параллельны координатным осям. В этом случае 

можно нижний отрезок считать отрезком оси абсцисс, где 

a x b  , и точки криволинейного участка задать с помощью 

непрерывной функции ( ), [ , ].y f x x a b    

Для того чтобы найти площадь криволинейной трапеции, 

заменим трапецию объединением прямоугольников по 

следующей схеме. 

Отрезок [ , ]a b  разделен на n  отрезков 1[ , ], 0,...,i ix x i n  , 

где 0 , nx a x b   (Рис. 2). 
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Рис. 2 

 

На каждом отрезке выбрана точка i  и в этой точке 

восстановлен перпендикуляр (прерывистая линия) до 

пересечения с кривой ( )y f x . Таким образом, вершиной 

перпендикуляра является точка с координатами ( , ( ))i if  . 

На каждом отрезке 1[ , ]i ix x   как на основании построен 

прямоугольник высотой ( )if  . Очевидно, что чем меньше 

отрезок 1[ , ]i ix x  , тем меньше площадь прямоугольника 

отличается от площади криволинейной трапеции с 

основанием 1[ , ]i ix x  . Обозначим   длину наибольшего из 

отрезков 1[ , ]i ix x  .   называется диаметром разбиения. Чем 

меньше диаметр разбиения, тем ближе сумма площадей 

построенных прямоугольников к площади исходной 

криволинейной трапеции с основанием [ , ]a b . 

Итак, за приближенное значение площади исходной 

криволинейной трапеции возьмем 

1
1

( , , ) ( )( )
n

i ii
i

f R f x x   


  . 

1 

a=x0   

0 

x1   x2   x3   xi   xi+1   

2 i 

b=xn   0 x  

  y 
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Здесь   R    означает   способ   выбора   точек   разбиения   ix , 

  – выбор отмеченных точек i . Введенная сумма называется 

интегральной суммой Римана. Если существует предел 

0
lim ( , , )f R I 


 , причем этот предел не зависит ни от R , ни 

от  , то функция ( )f x  называется интегрируемой на отрезке 

[ , ]a b , а сам предел называется определенным интегралом по 

отрезку и обозначается ( )
b

a

f x dx . Этот интеграл и будет 

равен площади криволинейной трапеции с основанием [ , ]a b , 

ограниченной кривой ( )y f x . 

 

 Пусть функция ( )y f x  интегрируема на отрезке [ ; ]a b . 

 Теорема. Если функция ( )y f x  непрерывна на отрезке 

[ ; ]a b  и ( )F x  – какая-либо ее первообразная на [ ; ]a b  

 ( ) ( )F x f x  , то имеет место формула 

( ) ( ) ( ) ( )
b

b

a
a

f x dx F x F b F a   ,   (1) 

где вертикальная черта и индексы обозначают разность 

значений функций, соответственно, при верхнем и нижнем 

значениях переменной. 

Равенство (1) называется формулой Ньютона-Лейбница. 

 Формула дает удобный способ вычисления 

определенного интеграла. Чтобы вычислить определенный 

интеграл от непрерывной функции ( )f x  на отрезке [ ; ]a b , 

надо найти ее первообразную функции ( )F x  и взять разность 
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( ) ( )F b F a  значений этой первообразной на концах отрезка 

[ ; ]a b . 

 Пример. Вычислить определенный интеграл 
3

2

0

.x dx  

 Решение. 

3
3 33

2

0
0

3 27
0 0 9.

3 3 3

x
x dx        

 

 Решение в MAXIMA. 
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Основные свойства определенного интеграла 

1. Если c  – постоянное число и функция ( )f x  интегрируема 

на [ ; ]a b , то 

( ) ( ) ,
b b

a a

c f x dx c f x dx     

т.е. постоянный множитель можно выносить за знак 

интеграла. 

2. Если функции 1( )f x  и 2( )f x  интегрируемы на [ ; ]a b , тогда 

интегрируема на [ ; ]a b  их сумма (разность) и 

        1 2 1 2

b b b

a a a

f x f x dx f x dx f x dx     , 

т.е. интеграл от суммы (разности) равен сумме (разности) 

интегралов. 
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3.    
b a

a b

f x dx f x dx   , т.е. замена направления 

интегрирования приводит к замене знака у интеграла. 

4.      
b c b

a a c

f x dx f x dx f x dx    , т.е. интеграл по всему 

отрезку равен сумме интегралов по частям этого отрезка. 

 

Замена переменной в определенном интеграле 

(интегрирование подстановкой) 
 

Пусть для вычисления интеграла ( )
b

a

f x dx  от непрерывной 

функции сделана подстановка ( )x t . 

Теорема. Если: 

1) функция ( )x t  и ее производная ( )x t   непрерывны 

при [ ; ]t   ; 

2) множеством значений функции ( )x t  при [ ; ]t    

является отрезок [ ; ]a b ; 

3) ( ) a    и ( ) b   , 

тогда 

( ) ( ( )) ( )
b

a

f x dx f t t dt




    . 

Доказательство. Пусть ( )F x  есть первообразная для 

( )f x  на отрезке [ ; ]a b . Тогда по формуле Ньютона-Лейбница 

( ) ( ) ( ).
b

a

f x dx F b F a   Так как ( ( ( ))) ( ( )) ( )F t f t t     , то 
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( ( ))F t  является первообразной для функции ( ( )) ( )f t t  , 

[ ; ]t   . Поэтому по формуле Ньютона-Лейбница 

( ( )) ( ) ( ( )) ( ( )) ( ( ))

( ) ( ) ( ) .
b

a

f t t dt F t F F

F b F a f x dx







          

   

 

Отметим, что: 

1) при вычислении определенного интеграла методом 

подстановки возвращаться к старой переменной не требуется; 

2) часто вместо подстановки ( )x t  применяют подстановку 

( )t g x ; 

3) не следует забывать менять пределы интегрирования при 

замене переменных! 

Пример. Вычислить определенный интеграл 
2

2

0

x

e dx . 

Решение. 

2 1 1 1
1 02

0
0 0 0

2

2
2 2 2 2( ) 2( 1).

2

0 2

0 1

x

t t t

x
t

x t
e dx e dt e dt e e e e

dx dt

x

t

 
 

 
 

          


 
 
 
 
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Интегрирование по частям определенного интеграла 
 

Теорема. Если функции ( )u u x  и ( )v v x  имеют 

непрерывные производные на отрезке [ ; ]a b , то имеет место 

формула 

.
b b

b

a
a a

udv uv vdu    

Доказательство. На отрезке [ ; ]a b  имеет место 

неравенство ( ) .uv u v uv     Следовательно, функция uv  есть 

первообразная для непрерывной функции u v uv  . Тогда по 

формуле Ньютона-Лейбница имеем: 

( ) .
b

b

a
a

u v uv dx uv    

Следовательно, 

.

b b
b

a
a a

b b b b
b b

a a
a a a a

vu dx uv dx uv

vdu udv uv udv uv vdu

    

        

 

 

Пример. Вычислить определенный интеграл 
0

sin .x xdx


  

Решение. 

0

, sin
sin

, sin cos

u x dv xdx
x xdx

du dx v xdx x

   
   

    
 

0
0

( cos ) ( cos )x x x dx



      
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0 0
0

cos cos cos 0 sinx x xdx x


 
          

( 1) 0 0 0 .         

 

Решение в MAXIMA. 

Выполняем следующие действия по порядку: 

Анализ → Integrate 

 

Вводим подынтегральное выражение, ставим «галку» для 

определенного интегрирования, кнопка «Дополнительно» 
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выбираем Pi 
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получаем результат 

 

 

Приложения определенного интеграла. 

Площадь области 

Вычислить площадь области, расположенной между 

двумя кривыми 1( )y f x  и 2( )y f x  и над отрезком [ ; ]a b , 

причем 1 2( ) ( ),f a f a  1 2( ) ( )f b f b  (Рис. 1). 

 

Рис. 1 

 2 1( ) ( ) .
b

a

S f x f x dx   
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Длина дуги кривой 

Вычислить длину дуги кривой  Длиной 

дуги кривой мы будем называть предел длин вписанных в 

дугу ломаных при стремлении этих ломаных к точкам 

(Рис. 5). 

 

Рис. 5 

Длина дуги данной кривой вычисляется по формуле: 

21 ( ( )) .
b

a

l f x dx   

 

Длина дуги пространственной кривой 
 

Вычислить длину дуги пространственной кривой, 

заданной параметрически в виде 

 

где ( )x t , ( )y t , ( )z t  непрерывно дифференцируемые на  0 ,t T . 

Для вычисления ее длины применяют формулу 

. 

( ), [ , ].y f x x a b 

0 ,( ), ( ), ( ), [ ,x x t y y t z z t t t T    

0

2 2 2( ( )) ( ( )) ( ( ))
T

t

S x t y t z t dt    

  

 

 

  

 

y  
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Объем тела вращения 

Вычислить объем тела вращения. 

Если граница тела образована вращением некоторой 

линии , заданной на отрезке , относительно оси 

, то тело называется телом вращения, и его объем может 

быть определен с помощью формулы . Здесь 

функция  является неотрицательной на отрезке  ,a b  

(Рис. 6). 

 

  

Рис. 6 

 

Пример. Вычислить объем тела, ограниченного 

поверхностью, получающейся вращением гиперболы  

вокруг оси  и расположенного между плоскостями  и 

. 

 y y x  ,a b

OX

 2

b

a

V y x dx 

( )y y x

4xy 

OX 1x 

4x 

  

 

 

 x

 ( )y x

x  

y  
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. 

 

1
2

3
4

-4

-2

0

2

4

-4

-2

0

2

4

1
2

3
4

-4

-2

0

2

4

2 44 4

2

11 1

4 1 1
16 16 16 1 12

4

dx
V dx

x x x
    

   
          

   
 
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Лекция 4. 
 

Функции нескольких переменных 
 

Если график функции одной переменной представляет 

собой плоскую кривую, характеризующую зависимость 

функции от переменной, то в случае двух переменных такую 

характеристику зависимости функции ( z ) от переменных ( x  и 

y ) выражает поверхность (Рис. 1). 

 

Рис. 1 

Для графического изображения зависимости функции 

трех и более переменных понадобилось бы пространство 

размерности, большей, чем 3. Поэтому такие графические 

изображения невозможны. 

 

Функции двух переменных 
 

Пусть задано множество  упорядоченных пар чисел 

. 

Соответствие , которое каждой паре чисел  

сопоставляет одно и только одно число , называется 

функцией двух переменных, определенной на множестве  со 

D

( ; )x y

f ( ; )x y D

z

D



43 

значениями в , и записывается в виде  или

. При этом  и  называются независимыми 

переменными (аргументами), а  – зависимой переменной 

(функцией). 

 Множество  называется областью определения 

функции. Множество значений, принимаемых  в области 

определения, называется областью изменения этой функции, 

обозначается  или . 

 Функцию , где  можно рассматривать 

как функцию точки  координатной плоскости OXY. В 

частности, областью определения может быть вся плоскость 

или ее часть, ограниченная некоторыми линиями. 

Линию, ограничивающую область, называют границей 

области. Точки области, не лежащие на границе, называются 

внутренними. 

Область, состоящая из одних внутренних точек, 

называется открытой. Область с присоединенной к ней 

границей называется замкнутой, обозначается . Примером 

замкнутой области является круг с окружностью. 

Значение функции  в точке  обозначают 

 или . 

Функция двух переменных, как и функция одной 

переменной, может быть задана разными способами: 

таблицей, аналитически, графиком. 

 

 

( ; )z f x y

:f D x y

z

( )D D f

z

( )E f E

( ; )z f x y ( ; )x y D

( ; )M x y

D

( ; )z f x y
0 0 0( ; )M x y

0 0 0( ; )z f x y 0 0( )z f M
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Непрерывность функции двух переменных 
 

 Функция  (или ) называется непрерывной в 

точке , если точка  входит в область 

определения функции  и предел функции равен значению 

функции  в точке , т.е. 

 

или 

. 

 Функция, непрерывная в каждой точке некоторой 

области, называется непрерывной в этой области. Точки, в 

которых непрерывность нарушается (не выполняется хотя бы 

одно из условий непрерывности функции в точке), 

называются точками разрыва этой функции. Точки разрыва 

 могут образовывать целые линии разрыва. 

Например, функция   имеет линию разрыва . 

 Можно дать другое, равносильное приведенному выше, 

определение непрерывности функции  в точке. 

Обозначим , , . 

Величины  и  называются приращениями аргументов  

и , а  – полным приращением функции  в точке 

. 

 Функция  называется непрерывной в точке 

, если выполняется равенство . 

( ; )z f x y ( )f M

0 0 0( ; )M x y 0 0 0( ; )M x y

D

z
0M

0
0lim ( ) ( )

M M
f M f M




0

0

0 0lim ( ; ) ( ; )
x x
y y

f x y f x y





( ; )z f x y

yx
z




2

1
xy 2

( ; )z f x y

0x x x   0y y y   0 0( ; ) ( ; )z f x y f x y  

x y x

y z ( ; )f x y

0 0 0( ; )M x y

( ; )z f x y

0 0 0( ; )M x y D
0
0

lim 0
x
y

z
 
 

 
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Производные и дифференциалы функции нескольких 

переменных 
 

Остановимся теперь на дифференцировании функции 

двух переменных. По аналогии с производной функции одной 

переменной рассмотрим приращение функции двух  

переменных . Однако, здесь возникают вопросы. 

Очевидно, функция получает приращение, когда любой из ее 

аргументов x или y получает приращение, приращения 

функции при этом разные. Могут получать приращения сразу 

оба аргумента функции. Поэтому вводят понятия полного и 

частных приращений функции. Полное приращение функция 

имеет место, когда получают приращения оба аргумента 

функции 

, 

а частные приращения функции соответствуют приращению 

одного из аргументов: 

, 

. 

 

Если существует предел 

, 

то он называется частной производной функции  в 

точке  по переменной  и обозначается одним из 

символов: 

, , , . 

( ; )z f x y

( ; ) ( ; )z f x x y y f x y    

( ; ) ( ; )x z f x x y f x y   

( ; ) ( ; )y z f x y y f x y   

0 0

( ; ) ( ; )
lim limx

x x

z f x x y f x y

x x   

   


 

( ; )z f x y

( ; )M x y x

xz
z

x




xf 

f

x




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Частные производные по  в точке  обычно 

обозначают символами , . 

 Аналогично определяется и обозначается частная 

производная от  по переменной : 

 

Таким образом, частная производная функции нескольких 

(двух, трех и больше) переменных определяется как 

производная функции одной из этих переменных при условии 

постоянства значений остальных независимых переменных. 

Поэтому частные производные функции  находят по 

формулам и правилам вычисления производных функции 

одной переменной (при этом соответственно  или  

считается постоянной величиной). 

 

Пример. Найти частные производные функции  

Решение. 

, 

 

 

 

 

x 0 0 0( ; )M x y

0 0( ; )xf x y
0x Mf 

( ; )z f x y y

0 0

( ; ) ( ; )
lim lim .

y
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Решение в MAXIMA. 

 

 

 

 

 

Геометрический смысл частных производных 

функции двух переменных 
 

 Графиком непрерывной функции  является 

некоторая поверхность. График функции  есть 

линия пересечения этой поверхности с плоскостью . 

Исходя из геометрического смысла производной для функции 

одной переменной, заключаем, что , где  – 

угол между осью OX и касательной, проведенной к кривой 

 в точке  (Рис. 2). 

Аналогично, . 

 

( ; )z f x y

0( ; )z f x y

0y y

0 0( ; ) tgxf x y   

0( ; )z f x y 0 0 0 0 0( ; ; ( ; ))M x y f x y

0 0( ; ) tgyf x y  
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Рис. 2 

Замечание. Как уже говорилось выше, при вычислении 

частной производной функция ведет себя как функция одной 

переменной, следовательно, физический смысл частной 

производной – скорость движения тела (изменения функции) 

в направлении изменения этой переменной. 

 

Дифференцируемость функции 
 

 Пусть функция  определена в некоторой 

окрестности точки . Составим полное приращение 

функции в точке : 

. 

Функция  называется дифференцируемой в точке 

, если ее полное приращение в этой точке можно 

представить в виде 

, 

( ; )z f x y

( ; )M x y

M

( ; ) ( ; )z f x x y y f x y    

( ; )z f x y

( ; )M x y

z A x B y      
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где  настолько мала, что 

. 

Сумма первых двух слагаемых  представляет 

собой главную часть приращения функции. 

 Главная часть приращения функции , линейная 

относительно  и , называется полным дифференциалом 

этой функции и обозначается символом : 

. 

 Выражения  и  называют частными 

дифференциалами. Для независимых переменных  и  

полагают  и . Поэтому последнее равенство 

можно переписать в виде 

. 

Выясним, чему равны A и B. Предположим, что функция 

 дифференцируема в точке . Рассмотрим 

сначала частное приращение функции соответствующее 

приращению только переменной x: 

. 

Тогда из определения дифференцируемости функции 

, 

где . Последние соотношения являются условием 

дифференцируемости функции одной 

переменной  в точке . 



0
22022

lim 
 yxyx



A x B y  
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x y
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x x
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0( ) ( , )g x f x y
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Теорема (необходимое условие дифференцируемости 

функции). Если функция  дифференцируема в точке 

 и dz Adx Bdy  , то она непрерывна в этой точке, 

имеет в ней частные производные  и , причем , 

. 

 

Теорема (достаточное условие дифференцируемости 

функции). Если функция  имеет частные 

производные  и  непрерывные в окрестности точки 

, то она дифференцируема в этой точке и ее полный 

дифференциал выражается формулой 

. 

  

( ; )z f x y

( ; )M x y

z

x





z

y





z
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




z
B

y






( ; )z f x y

xz yz

( ; )M x y

z z
dz dx dy

x y

 
 
 
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Лекция 5. 
 

Частные производные высших порядков. 

Частные производные второго порядка 
 

 Частные производные  и  называют 

частными производными первого порядка. Их можно 

рассматривать как функции от . Эти функции также 

могут иметь частные производные, которые называются 

частными производными второго порядка. Они 

определяются и обозначаются следующим образом: 

; 

; 

; 

. 

Аналогично определяются частные производные 3-го, 4-го и 

т.д. порядков. Так, ,  

(или ) и т.д. 

 Частная производная второго и более высокого порядка, 

взятая по различным переменным, называется смешанной 

( ; )f x y

x


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
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частной производной. Таковыми являются, например, , 

, . 

 

Пример 1. Найти частные производные второго порядка 

функции 

. 

Решение. 

, 

, 

, 

, 

, 

. 

 

Пример 2. Найти частные производные второго порядка 

функции 3 2cos 4 sin 3u x y x y  . 
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Решение в MAXIMA. 

 

 

 

 

 

 

 

Оказалось, что . Этот результат не случаен. 

 

Теорема Шварца. Если частные производные высшего 

порядка непрерывны, то смешанные производные одного 

порядка, отличающиеся лишь порядком дифференцирования, 

равны между собой. 

В частности, для  имеем: , если эти 

производные непрерывны. 
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Дифференциалы высших порядков 
 

 Полный дифференциал функции 

 

называют также дифференциалом первого порядка. 

 Пусть функция  имеет непрерывные частные 

производные второго порядка. Дифференциал второго 

порядка определяется по формуле . Найдем его: 

 

 

 

Отсюда:  Символически 

это записывается так: 

 

Аналогично можно получить формулу для дифференциала 

третьего порядка: 
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где 

 

 

 

 

  

3
3 2

3 2

3 2

2 3
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3 .
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Лекция 6. 
 

Локальный экстремум функции двух переменных 
 

Пусть функция  определена в некоторой области 

, точка . 

 Точка  называется точкой локального максимума 

функции , если существует такая окрестность 

точки , что для каждой точки , отличной от , 

из этой окрестности выполняется неравенство 

0 0( ; ) ( ; )f x y f x y . 

 Аналогично определяется точка локального минимума 

функции:  для  всех  точек  ,  отличных  от  ,  из 

  – окрестности точки  выполняется неравенство: 

0 0( ; ) ( ; )f x y f x y . 

 На рисунке 1: точка локального максимума, а 

точка локального минимума функции . 

 

Рис. 1 

 

 Значение функции в точке максимума (минимума) 

называется локальным максимумом (минимумом) функции. 

( ; )z f x y

D 0 0( ; )N x y D

0 0( ; )x y

( ; )z f x y  

0 0( ; )x y ( ; )x y
0 0( ; )x y

( ; )x y
0 0( ; )x y

0 0( ; )x y

1N  2N 

( ; )z f x y
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Локальный максимум и локальный минимум функции 

называют ее локальными экстремумами. 

Теорема (необходимые условия экстремума). Если в 

точке  дифференцируемая функция  имеет 

локальный экстремум, то ее частные производные в этой 

точке равны нулю: , . 

 Замечание. Функция может иметь локальный экстремум 

в точках, где хотя бы одна из частных производных не 

существует. Например, функция  имеет 

максимум в точке , но не имеет в этой точке 

производных (Рис. 2). 

 

 

 

 

 

Рис. 2 

 

Точка, в которой частные производные первого порядка 

функции  равны нулю, т.е. , , называется 

стационарной точкой функции . 

Стационарные точки и точки, в которых хотя бы одна 

частная производная не существует, называются 

критическими точками. 

Выполнение необходимого условия экстремума не 

обязательно обеспечивает действительное наличие 

0 0( ; )N x y ( ; )z f x y

'

0 0( ; ) 0xf x y 
'

0 0( ; ) 0yf x y 

2 21z x y  

(0;0)O

( ; )z f x y ' 0xf 
' 0yf 

z
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локального экстремума в точке, то есть, критическая точка 

функции может не быть точкой локального экстремума. 
 

Достаточное условие экстремума. Пусть в стационарной 

точке  и некоторой ее окрестности функция  

имеет непрерывные частные производные до второго порядка 

включительно. Вычислим в точке  значения 

. Обозначим 

 

Тогда: 

1. если , то функция  в точке  имеет 

локальный экстремум: максимум, если ; минимум, 

если ; 

2. если , то функция  в точке  экстремума 

не имеет. 

В случае  экстремум в точке  может быть, может 

не быть. Необходимы дополнительные исследования. 

 

Пример. Найти экстремум функции . 

Решение. 

Здесь , . Точки, в которых частные 

производные не существуют, отсутствуют. 

 Найдем стационарные точки, решая систему уравнений: 

 

 

0 0( ; )x y ( ; )f x y
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Отсюда получаем точки  и . 

 Находим частные производные второго порядка данной 

функции: 

, , . 

 В точке  имеем: , ,  отсюда 

. 

 Так как , то в точке  функция имеет 

локальный минимум: . 

 В точке  имеем: , ,  отсюда 

. 

 Так как , то в точке  функция не имеет 

экстремума. 

 Решение в MAXIMA. 

 Зададим функцию 

 

Найдем стационарные точки, в которых выполняется 

необходимое условие экстремума функции: 

 

В результате получены две точки. Для каждой из них 

проверим выполнения условия экстремума. 
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Проделаем это для точки  1 1; 2M  . 

 

 

 

 

В точке  2 1; 2M   имеем: 18A , 4B  , 2C   

 

 

 

отсюда 20 0   . Так как 18 0A  , то в точке  2 1; 2M   

функция имеет локальный минимум: . 

Проделаем те же действия для точки 
2

1 2
;

9 9
M

 
 
 

. 

 

 

 

В точке 
2

1 2
;

9 9
M

 
 
 

 имеем: 2A  , 4B  , 2C   

0)2;1(min  zz
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отсюда 20 0    . Так как в точке 
2

1 2
;

9 9
M

 
 
 

: 2 0A   , то 

функция не имеет экстремума. 

 Построим график заданной функции. 

 

Рис. 3 

 

Комплексные числа 
 

Данная тема нам понадобится для решения 

дифференциальных уравнений в следующем семестре при 

изучении дисциплины «Дифференциальное и интегральное 

исчисление». 
 

При изучении алгебры и начал анализа в средней школе 

мы сталкивались с рядом запретов. Эти запреты были 

естественными для функций, имеющих значения в множестве 

вещественных чисел. Так, нельзя было извлекать квадратный 

корень из отрицательного числа, нельзя было рассматривать 
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логарифм отрицательного числа, нельзя было рассматривать 

арксинус числа, большего по модулю единицы. 

Действительно, в множестве вещественных чисел нет таких, 

которые удовлетворяли бы, например, уравнениям: 2 1,x    

1xe   . 

Возникает вопрос: если нет вещественных чисел, 

удовлетворяющих предыдущим уравнениям, то, может быть, 

следует расширить понятие числа, выйдя с вещественной оси 

на плоскость? 

Революцией в этой области явилось открытие формулы, 

называемой формулой Эйлера: 

cos sinie i    , 

где i  – мнимое число, 2 1i   . 

Комплексные числа – это числа, для геометрической 

интерпретации которых недостаточно одной прямой, а нужна 

вторая прямая, где можно было бы размещать вторую 

координату – коэффициент при мнимой единице. Поскольку 

элементы, задающиеся парой вещественных координат, 

проще всего представлять точками декартовой плоскости, 

наилучшей интерпретацией множества комплексных чисел 

является плоскость. 

Представим себе декартову плоскость, в которой роль 

оси   Ox    исполняет   вещественная   прямая,   а   роль   оси 

Oy  – «мнимая ось», вдоль которой откладывают 

коэффициент при чисто мнимой единице i . Предположим, 

мы решаем уравнение 2 2 5 0t t    с отрицательным 

дискриминантом. Применяя формулу для получения корней 
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этого уравнения, мы получим 1,2 1 4t    . Обозначая, 

следуя Эйлеру, 1 i  , имеем 
1,2

1 2t i  . В комплексной 

плоскости два этих комплексных числа выглядят так (Рис. 4): 

 

 

 

 

 

 

 

 

 

 

Рис. 4 

Таким образом, комплексное число z представляет собой 

сумму z x iy  , где компонента x называется вещественной 

частью z  ( Rex z ), компонента y называется мнимой частью 

z  ( Imy z ). Два комплексных числа равны тогда и только 

тогда, когда у них совпадают как действительные, так и 

мнимые части. Два комплексных числа называются взаимно 

сопряженными, если у них совпадают действительные части, 

а мнимые части различаются знаками. На нашем рисунке мы 

как раз имеем два взаимно сопряженных комплексных числа. 

Действие комплексного сопряжения означает смену знака у 
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мнимой части и обозначается надчеркиванием. Например, 

3 2 3 2 .i i    

Введенная форма записи комплексного числа в виде 

линейной комбинации действительной и мнимой частей 

называется алгебраической формой записи комплексного 

числа. 

Точка на плоскости необязательно задается с помощью 

декартовых координат. Другим возможным способом задания 

точки M  на плоскости является задание расстояния ( )r  от 

точки M  до фиксированной точки O , называемой полюсом, 

и угла ( ), который вектор OM  составляет с фиксированным 

лучом, исходящим из полюса O  и называемым полярной 

осью. Координаты ( ; )r   называются полярными 

координатами. Традиционно при сравнении декартовых ( ; )x y  

и полярных ( ; )r   координат полюс O  помещают в начало 

декартовых координат, а за полярную ось берут 

положительную часть оси Ox  (Рис. 5). 
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Рис. 5 

 

Легко видеть, что связь между декартовыми и 

полярными координатами такая: 

= cos ,

= sin .

x r

y r









 

Если комплексное число задавать полярными 

координатами, то координата 2 2r x y   называется 

модулем комплексного числа, а координата   называется 

аргументом комплексного числа. В случае задания 

комплексного числа с помощью его модуля и аргумента мы 

получаем тригонометрическую форму записи комплексного 

числа: 

z (cos sin )r i   . 
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Нетрудно заметить, что аргумент комплексного числа по 

известным значениям его вещественной и мнимой частей 

определяется неоднозначно – с точностью до слагаемого 

2 ,k  где Zk . 

Наконец, применяя формулу Эйлера, получим запись 

комплексного числа в показательной форме: 

z ire  . 

Множество комплексных чисел обозначается . 

 

Правила арифметических действий с комплексными 

числами: 

1. Для 1 2,z z   

1 2 1 2 1 2( ) ( )z z x x i y y      

2. Для 1 2,z z   

1 2 1 2 1 2( ) ( )z z x x i y y     . 

3. Для 1 2,z z   

1 2 1 2 1 2 1 2 2 1( )z z x x y y i x y x y     1 2( )

1 2

ir r e  
. 

4. Для 1 2,z z  , 2 0,z   

1 2( )1 1 2 1 2 1 2 1 2 2 1 1
2 2

2 22 22 2

.
( ) iz z z x x y y i x y x y r

e
z rx yz z

    
  


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