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THE COMPLEMENTS OF LOWER CONES OF DEGREES AND
THE DEGREE SPECTRA OF STRUCTURES

URI ANDREWS,MINGZHONGCAI, ISKANDER SH. KALIMULLIN, STEFFEN LEMPP,
JOSEPH S. MILLER, AND ANTONIOMONTALBÁN

Abstract. We study Turing degrees a for which there is a countable structureA whose degree spectrum
is the collection {x : x �≤ a}. In particular, for degrees a from the interval [0′, 0′′], such a structure exists
if a′ = 0′′, and there are no such structures if a′′ > 0′′′ .

§1. Introduction. The degree spectrum of a countable structure A in a finite
language is the set of all Turing degrees of isomorphic copies ofA on the universe�:

Sp (A) = {deg(B) : A ∼= B & dom(B) = �}.
Knight [7] showed that each degree spectrum is either the singleton {0} (the trivial
case), or closed upward. Therefore, the degree spectrum of a noncomputable struc-
tureA can be alternatively defined as the collection of degrees that compute copies
of A.
Slaman [12] andWehner [13] have proved independently that there exist noncom-
putable structures that are computable in all nonzero degrees, i.e., the collection
{x : x �≤ 0} is a degree spectrum of a structure.Wehner’s solution used the following
theorem:
Theorem 1.1 (Wehner [13]). There is a family G of sets such that G is uniformly
X -c.e. if and only if X is not computable.
To get a structure with the desired degree spectrum, it is enough now to use a
coding G �→ ΓG of families of sets into undirected graphs such that G is uniformly
X -c.e. if andonly if ΓG has anX -computable copy. For example, we can let ΓG be the
disconnected union of infinitely repeated graphs ΓA, for eachA ∈ G, where each ΓA
consists of a single vertex connected with independent (n+3)-cycles for each n ∈ A.
Note that this coding can be carried over to produce partial orderings, lattices,
rings, integral domains, commutative semigroups, and 2-step nilpotent groups with
the degree spectrum {x : x �≤ 0} (see [2]). For linear orderings [10], equivalence
structures, and abelian p-groups [6], we only know that degree spectra can be equal
to {x : x �≤ 0} within the Δ02-degrees.
Using a coding of families into structures, Kalimullin [3,4] generalized the result
of Slaman andWehner to the complements of lower cones of some nonzero degrees:
if a degree a is low or c.e. then the collection {x : x �≤ a} is the degree spectrum
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of a structure. In the next section, we will give an alternative proof for the c.e. case
and, after that, we will be able to combine both cases, finding an appropriate family
for a degree a that is low over a c.e. degree g ≤ a.
Kalimullin [5] has also proved that there is a degree a ≤ 0′′ such that the collection

{x : x �≤ a} is not the degree spectrum of any structure. In the last two sections, we
will see that there are large classes of degrees a with this property, and that we can
even take a = 0′′.

§2. Families that are uniformly c.e. in the complement of a cone.
Theorem 2.1 (Kalimullin [4]). For each c.e. set A, there is a family GA of c.e. sets
such that GA is uniformly X -c.e. if and only if X �≤T A.
Proof (Montalbán). Without loss of generality, we may assume that the set
A ⊆ � is infinite. Fix a computable bijection f : � → A and let g be the true stage
function for A defined by

g(0) = 0, g(n + 1) = (�s > g(n))[(∀t > s)[f(t) > f(s)]].
Then g ≡T A and the set of strings Cg = {� ∈ �<� : � �⊆ g} is c.e.
Consider the family of c.e. sets

GA =
{
{n} ⊕ (Cg ∪ g

F
) : n ∈ � & F is finite & F �=Wg

n

}
,

where g
F
= {g � x : x ∈ F } = {� ⊂ g : |�| ∈ F } ⊆ �<� − Cg , and

{n} ⊕ X = {2n} ∪ {2x + 1 : x ∈ X}.
The main idea of this definition is to diagonalize against all A-c.e. setsWg

n , n ∈ �,
along the co-c.e. path g. This ensures that the family is not A-c.e.; if it were A-c.e.,
then knowing g we could effectively enumerate a set not equal toWg

n , for each n,
which contradicts the Recursion Theorem. On the other hand, if a string has not
yet been enumerated into Cg , then it might be an initial segment of g, so we can
use it to estimateWg

n . Based on this estimation, we code a finite part of given set
X �≤T A into F to eventually ensure the diagonalization F �=Wg

n . We explain both
parts of the proof more formally below.
First, we show that GA is not uniformly A-c.e. Suppose otherwise. Since g ≡T A,
there is a computable function a such that

GA =
{
WA
a(k) : k ∈ �

}
.

Define computable functions b and c such that, for every n ∈ �,
2n ∈Wg

a(b(n)) andW
g
a(b(n)) = {n} ⊕Wg

c(n) ∈ GA.
Now, define a computable function d such that, for every n ∈ �,

Wg
d(n) =

{
x : g � x ∈Wg

c(n)

}
.

Then Wg
d(n) �= Wg

n for every n ∈ �, sinceWg
c(n) = Cg ∪ gF with F = Wg

d(n). This
contradicts the Recursion Theorem, so GA is not uniformly A-c.e.
Next, let X �≤T A. To prove that GA is uniformly X -c.e., we fix an infinite
X -computable setU that does not contain any infiniteA-c.e. subsets. (For example,
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a set consisting of codes of initial segments of X will suffice.) Let U = {u(0) <
u(1) < u(2) < · · · } for anX -computable function u. We may assume that u(s) > s
for every s .
Fix integers n,m, s ∈ �. Below we X -computably define the sequence H� =
Hn,m,s� by induction on � ∈ �<� , beginning with the empty string � = �:

H� = Dm;

H�∗i =

{
H� ∪ {u(|�|)}, if H� =W�

n and s < |�|,
H� otherwise,

whereDm is them-th finite set, andW�
n is the set containing all numbers enumerated

by the Wn-operator with the use at most � before the end of the stage t = |�|.
Let Hn,m,s =

⋃
�⊂g H

n,m,s
� .

Suppose that Dm �= Wg
n , and the stage s is large enough that Dm �= W�

n , for
every � ⊂ g with |�| > s . Then the definition ensures thatHn,m,s = Dm. Note also
that for arbitrary n,m, s ∈ �, the set Hn,m,s is finite, and therefore Hn,m,s �= Wg

n ;
otherwiseHn,m,s −Dm =Wg

n −Dm would be an infinite A-c.e. subset of U . Thus,
{Hn,m,s : m, s ∈ �} = {F : F is finite & F �=Wg

n }
for every n ∈ �. We also have

{� ⊂ g : (∃� ⊆ �)[|�| ∈ Hn,m,s� ]} = {� ⊂ g : |�| ∈ Hn,m,s} = g
Hn,m,s
,

since u ∈ Hn,m,s�∗i −Hn,m,s� implies u > |�|; and
Cg ∪ {�:(∃�⊆ �)[|�|∈Hn,m,s� ]} = Cg ∪ {�⊂g:(∃� ⊆ �)[|�|∈Hn,m,s� ]} = Cg ∪ g

Hn,m,s
.

Therefore, the family

GA = {{n} ⊕ (Cg ∪ {� : (∃� ⊆ �)[|�| ∈ Hn,m,s� ]}) : n,m, s ∈ �}
is uniformly X -c.e. �
Corollary 2.2 (Kalimullin [4]). For every c.e. degree a (in particular, for a = 0′),
there exists a structureA such that Sp (A) = {x : x �≤ a}.
Theorem 2.3. LetG be a c.e. set. Then for each setAwithG ≤T A andA′ ≤T G ′,
there is a family GA of c.e. sets such that GA is uniformlyX -c.e. if and only if X �≤T A.
Proof. As in the previous proof, we take a function g ≡T G such that the set
Cg = {� ∈ �<� : � �⊆ g} is c.e.
Consider the family of c.e. sets

GA =
{{n} ⊕ (Cg ∪ gF ) : n ∈ � & F is finite & F �=WA

n

}
,

where gF = {g � x : x ∈ F } ⊆ �<� − Cg .
Again, GA is not uniformly A-c.e. Indeed, if GA = {WA

a(n) : n ∈ �} for a
computable function a, then we have computable functions b and c such that
WA
a(b(n)) = {n}⊕WA

c(n) ∈ GA, so that using g ≤T A we have a computable function
d such that, for all n ∈ �,

WA
d(n) =

{
x : g � x ∈WA

c(n)

}
�=WA

n .

This contradicts the Recursion Theorem.
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Let X �≤T A. We again fix an infiniteX -computable setU = {0 < u(0) < u(1) <
u(2) < · · · } that does not contain any infinite A-c.e. subsets. Since A′ ≤T g ′ there
is a Turing functional Φ such that

WA
n (z) = lims Φ

g(n, z, s)

for every n, z ∈ �. For finite uses � ∈ �<� , we introduce the following
approximation ofWA

n :

V �n = {z : (∃s < |�|)[Φ�(n, z, s) ↓= 1 & (∀t < |�|)[t > s =⇒ Φ�(n, z, t) ↑]]} ,
where Φ�(n, z, s) is the value (if any) computed before the stage |�|. It is clear that
WA
n = lim�⊂g V �n .
The definition of the sequencesH� , � ∈ �<� , is similar to one from the previous
proof. In contrast with the previous proof, we have onlyWA

n = lim�⊂g V
�
n instead

of Wg
n =

⋃
�⊂g W

�
n . This forces us to add to the list of parameters n,m, s ∈ �

one more parameter x ∈ � that acts as a witness of Dm �= WA
n . Also we need to

use standard length functions �� to estimate and to control the agreement between
H� andWA

n .
Below is the formal inductive X -computable definition of the sequence H� =
Hn,m,x,s� , for � ∈ �<� :

H� = Dm;

H�∗i =

⎧⎪⎨
⎪⎩
H� ∪ {u(|�|)}, if x /∈ Dm�V �n , x < |�|, s < |�|, and

(∀� ⊂ �)[�� > ��],
H� otherwise,

where Dm � V �n = (Dm − V �n ) ∪ (V �n −Dm), and
�� = max {y ≤ |�| : (∀z < y)[z ∈ H� ⇐⇒ z ∈ V �n ]} .

Let Hn,m,x,s =
⋃
�⊂g H

n,m,x,s
� . We must prove that

{Hn,m,x,s : m,x, s ∈ �} = {
F : F is finite & F �=WA

n

}
for every n ∈ �. IfDm �=WA

n , then take an x such that x ∈ Dm�WA
n . Take s large

enough that x ∈ Dm�V �n for every � ⊂ g with |�| > s . The definition ensures that
Hn,m,x,s = Dm.
It remains to prove thatHn,m,x,s is finite andHn,m,x,s �=WA

n , for every n,m, x, s .
Suppose thatHn,m,x,s is infinite. Then lim�⊂g �� =∞, and so

Hn,m,x,s = lim
�⊂g V

�
n =W

A
n

is an infiniteA-c.e. subset ofU ∪Dm =∗ U , contradicting our assumption aboutU .
Therefore, Hn,m,x,s is finite.
Suppose that Hn,m,x,s = WA

n . Then lim�⊂g �� = ∞. Since Hn,m,x,s is finite,
by definition we should have x ∈ Dm � WA

n = lim�⊂g(Dm � V �n ) and
Hn,m,x,s = Dm ∪ {u1, . . . , uk} with ui = u(|�i |) ≥ |�i | > x for each i = 1, . . . , k.
Then x ∈ Hn,m,x,s �WA

n , which is a contradiction.
We have proved that {Hn,m,x,s : m,x, s ∈ �} = {F : F is finite & F �= WA

n } for
every n ∈ �. As in the previous proof, this implies that the family

GA = {{n} ⊕ (Cg ∪ {� : (∃� ⊆ �)[|�| ∈ Hn,m,x,s� ]}) : n,m, x, s ∈ �}
is uniformly X -c.e. �
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Corollary 2.4. Suppose that for a degree a there exists a c.e. degree g ≤ a such
that a′ ≤ g′. Then there exists a structureA such that Sp (A) = {x : x �≤ a}.
Corollary 2.5 (Kalimullin [3]). If a′ ≤ 0′, then there exists a structure A such
that Sp (A) = {x : x �≤ a}.
Corollary 2.6. If 0′ ≤ a and a′ ≤ 0′′, then there exists a structure A such that
Sp (A) = {x : x �≤ a}.

§3. Impossible degree spectra: a highness property. A structure B has the c.e.
extension property if each existential type Th∃(B, 	b) is c.e. As we will explain later,
if the degree spectrum of B is the complement of a lower cone, then B must have
this property.

Theorem 3.1. Let A and B be sets such that B ′′ hasA-c.e. degree and B ′′′ ≤T A′.
Then each B-computable structure B with the c.e. extension property has an
A-computable copy A ∼= B.
Proof. Let B be a B-computable structure. Without loss of generality we can
assume that B has a relational signature and the universe of B is �. Since B has the
c.e. extension property, for each tuple of integers 	b the setTh∃(B, 	b) of all existential
facts about 	b in B is c.e. Note that the relation

R(	b, e) ⇐⇒ We = Th∃(B, 	b)
is ΠB2 ⊆ ΔB3 ⊆ ΔB′′

1 , so that we can fix a B
′′-computable function e(	b) such that

We(	b) = Th∃(B, 	b).

If C is a finite substructure of B, then we will write e(C) for e(	b), where 	b is the
sequence of elements of C written in increasing order (as integers).
It is easy to see by a direct back-and-forth strategy that the theorem follows
immediately if e(	b) is A-computable. In the general case we have e ≤T B ′′ ≤T
B ′′′ ≤T A′, but we also know that B ′′ has A-c.e. degree.
Now instead of each single back-and-forth step, we can use a straightforward
technical algorithm based on the Limit Lemma:

Lemma 3.2. Assume that the following data is given:

(1) a finite structure C;
(2) a monomorphism f : C → B;
(3) a value e(f(C)) such that Th∃(B, f(C)) =We(f(C));
(4) a finite structure D ⊇ C that is embeddable into B extending f (we can check
this fact using e(f(C)));

(5) an element b ∈ B.
Then there is an A-computable algorithm that generates, uniformly in the given data,
an infinite sequence of finite structures

D = E0 ⊆ E1 ⊆ E2 ⊆ · · ·
such that:

(1) E = ⋃
s Es is finite;

(2) there is a monomorphism g : E → B extending f such that b ∈ g(E).
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Fix an A-c.e. set X ≡T B ′′. Our construction of an A-computably copy A ∼= B
uses the Robinson low guessing method [11], which helps tame the process of guess-
ing facts that are computable from a low c.e. set (in this case, relative to A). To this
end, we will define a Turing operator ΓX . Using the Recursion Theorem and the
fact thatX ′ ≤T A′, we can fix a Turing operator Δ such that ΔA

′
= domΓX . We will

use Γ and Δ to certify A-computable guesses about computations from X ≡T B ′′.
The construction itself splits into simultaneously working modules Mn, n ∈ �;
each of them produces a finite structure An such that An ⊆ An+1. We will let
A = ⋃

n An .

The moduleMn executes the procedure from Lemma 3.2 with the input

(1) C = An−1 (we assume A−1 = ∅);
(2) the monomorphism fn−1 : An−1 → B provided byMn−1;
(3) the value e(fn−1(An−1)) provided byMn−1;
(4) the finite structureD ⊇ C equal to the union of allAm,m ∈ �, as they appear
at the moment the procedure starts;

(5) the element b = n from B
The output structureAn = E should satisfy the properties:
(1) An is finite;
(2) there is a monomorphism fn : E → B extending fn−1 such that b ∈ fn(An).
While the procedure is executing, we are trying to calculate both a monomorphism
fn : An → B extending fn−1 such that b ∈ fn(An), and the value e(fn(An)).
Precise calculation of this data requires the B ′′-oracle, so we can pass to Mn+1
only a limit approximation based on the current A-computable enumeration of
X ≡T B ′′. Before passing to Mn+1, we certify the current approximation: Define
ΓX (n) ↓ with the same use as the current calculation of fn and e(fn(An)), then
wait for ΔA

′
(n) = 1 for the currentA-computable enumeration ofA′. If our approx-

imation later becomes incorrect via inconsistency of the Γ-use, wait until we see
ΔA

′
(n) = 0 and then restart the procedures in allMm form ≥ n.
Since ΔA

′
= domΓX , there are only finitely many restarts for each Mn,

n ∈ �. Each module Mn successfully defines a finite structure An with embed-
ding fn : An → B. Since n ∈ fn(An), the function f =

⋃
n fn is an isomorphism

between the A-computable structure A = ⋃
n An and the structure B. �

Corollary 3.3. If a ≥ 0′ and a′ ≥ 0′′′ (in particular, if a = 0(n) for n ≥ 2), then
there is no countable structureA such that Sp (A) = {x : x �≤ a}.
Proof. Suppose for a contradiction that Sp (A) = {x : x �≤ a}. Then each
existential type of A is c.e. relative to every element of the co-null class

{X ∈ 2� : X �≤T a}.
By [9], this is possible only if the existential type is c.e. Thus,A has the c.e. extension
property. By assumption,A has no a-computable copy.
Consider first the case when 0′′ �≤ a. By a modification of Friedberg’s Jump
Inversion Theorem (see [8, §13.3, Corollary X(b)]), there are degrees a0, a1 ≥ 0′
such that

0′′ = a′0 = a
′
1 = a0 ∪ a1.
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Applying the same result to each of the degrees a0 and a1, we get degrees b0, b1, b2,
and b3 such that

0′′ = b′′0 = b
′′
1 = b

′′
2 = b

′′
3 = b0 ∪ b1 ∪ b2 ∪ b3.

Since 0′′ �≤ a, there exists a degree b ∈ {b0, b1, b2, b3} such that b �≤ a. ThenA has a
b-computable copy, but b′′ = 0′′ has c.e. degree relative to a ≥ 0′ and b′′′ = 0′′′ ≤ a′.
This contradicts Theorem 3.1.
Suppose now that 0′′ ≤ a. Relativizing the low simple set construction, one can
find an a-c.e. degree c > a such that c′ = a′. By a double jump inversion argument,
as above, there exists a degree b �≤ a such that b′′ = c. Then A has a b-computable
copy but b′′ = c has a-c.e. degree and b′′′ = c′ ≤ a′. Again, this contradicts
Theorem 3.1. �

§4. Impossible degree spectra: a nonlowness property. Just for convenience, we
define C(x) as the class of degrees a ≥ x such that for every function f ≤T x′, there
is a g ≤T a that is not dominated by f.
Theorem 4.1. If a ∈ C(0′), then there is no countable structure A such that
Sp(A) = {x : x � a}.
Proof. We use the following forcing lemma. The proof follows from the proof of
a similar result for non-GL2 degrees in [1, Theorem 2.8] with the observation that
the function from the proof that we need to escape is computable from 0′′.
Lemma 4.2. Let P be a forcing notion computable from 0′ (i.e., both membership
and the partial order are computable from 0′) and let 〈Dn〉 be a class of dense sets
such that there is a 0′′-computable density function d (p, n) = q which gives a forcing
condition q that extends p and is in Dn. Then every a ∈ C(0′) computes a generic
sequence in P with respect to the dense sets 〈Dn〉.
We may assume that a is not above 0′′ (because the case a ≥T 0′′ is covered
in Corollary 3.3). As above, we can perform double jump inversion with cone
avoidance to get a degree b that is not below a and such that b′′ = 0′′.
For a contradiction, assume that {x : x � a} is the degree spectrumof a countable
structureA, and letM be a model ofA computable in b. As always, we assume that
models are defined on �. Again, the goal is to show that a can compute a model N
isomorphic toM using the fact thatM has the c.e. extension property.
The key idea is that using b′′ = 0′′ we could compute the correct c.e. indices for the
existential types of finite approximations to N , along with associated embeddings
intoM. This allows us to give a very robust construction of a structureN isomorphic
to M. The plan is to use this robustness and Lemma 4.2 to show that a can
approximate such a construction well enough to also compute an isomorphic copy
ofM. We need to define an appropriate forcing notion.
First, we define an auxiliary 0′-computable ordering Q; our forcing notion P
will be defined based on Q. Let Q be all 5-tuples (s, �, �, f, e) where s is a natural
number, � is an initial segment of the standard 0′-computable enumeration of ∅′′ at
stage s , � is an initial segment of the model N we want to build, coded as a binary
string, � verifies that f is a partial isomorphism fromN to the given modelM and
that e is the c.e. index of the existential type of the finitely many elements we have
decided in the range of f.



8 URI ANDREWS ET AL.

Given two tuples p = (s, �, �, f, e) and q = (s ′, �′, � ′, f′, e′), q extends p (q ≤Q
p) if the following holds:

(1) s ≤ s ′ and � ′ ⊇ �, i.e., the model is extended consistently.
(2) either at stage s ′, (computable in 0′) we see that the approximation to ∅′′
disagrees with � (in which case we believe p is wrong); or
(a) � ′, after coded as an existential formula over the free variables in the
(assumed) typeWe , is inWe (so � ′ extends � while respectingWe);

(b) �′ verifies thatWe′ extendsWe in the sense that for every formula inWe′ ,
after adding existential quantifiers for the last appropriate number of free
variables (depending on the numbers of free variables inWe andWe′ ), is
inWe ; and

(c) f′ extends f.
(i.e., we believe p is correct and we extend it to q appropriately for each
component.)

It is easy to see that 0′′ = b′′ computes a sequence in Q such that the limit of the
f’s is total and onto, and furthermore, such that the �’s are always correct initial
segments of ∅′′. Our plan is to use the degree a to approximate such a construction.
Note that in an approximation, we might figure out that some guess p ∈ Q is wrong
(i.e., discover that ∅′′ disagrees with �). In this case, we should ignore the restraints
(f, e) that p puts on extensions, but we still want to obey the restriction placed
by previous guesses that have not been proved wrong. (Note that previous guesses
are not automatically respected because our order on Q is not actually transitive.)
For this reason, we want to keep track of all guesses, so we define a forcing notion
P by taking “chains of conditions in Q”.
A forcing condition in P is a finite sequence p̄ of conditions 〈p0, p1, . . . , pn〉 such
that each pi is in Q and pi extends pj whenever i > j. Given two conditions p̄ and
q̄, we say q̄ extends p̄ if p̄ is an initial segment of q̄ (as sequences). It is easy to see
that the forcing notion P is computable from 0′.
Consider the dense sets

Dn = {p̄ : in the last condition pm of p̄, �m is a correct initial segment of ∅′′
and n is in both the domain and range of fm}.

We show that 0′′ computes a density functionf such thatf(p̄, n) extends a given p̄
and is in Dn. First of all, given p̄ = 〈p0, p1, . . . , pm〉, 0′′ can figure out whether the
� part of these conditions are correct or not, and find a stage s0 when we detect all
incorrect ones in the 0′-computable enumeration.Now for the last remaining correct
pi , �m is, by definition of the partial order, inWei . This means that the currentmodel
can still be consistently mapped to the given modelM by a partial isomorphism
extending the correct fi in pi . So we can extend the sequence by adding a new
condition (s, �, �, f, e) where � contains n in the universe; f is an extension of the
partial isomorphism as above by adding n into both the domain and range; e is the
correct existential type of the current elements in the domain (and range) of f; all
is witnessed by a correct initial segment � of ∅′′; and s is a stage number greater
than s0 and large enough to enumerate � in the 0′-computable enumeration.
Now applying Lemma 4.2, we get a generic sequence G computable in ameeting
all the dense setsDn’s. Let (p0, p1, p2, . . . ) be the sequence ofQ-conditions in p̄ ∈ G .
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This gives an a-computable model N by projecting the elements of G onto their �
coordinates, i.e.,N = ∪i �i . In addition, when wemeet a dense setDn, we guarantee
that the partial isomorphism f is correct and preserved in the construction by any
forcing extension, and we make sure that n is in the domain and range of f. So the
union of these correct partial isomorphisms is an isomorphism fromN toM. This
gives the desired contradiction. �
As a final remark, recall that a degree a ≥ 0′ is GL2 over 0′ if a′′ > (a ∨ 0′′)′.
It is well-known that all degrees GL2 over 0′ are in the class C(0′), and restricted
to the degrees in [0′, 0′′] they are exactly the degrees that are non-low2 over 0′, i.e.,
a′′ > 0′′′. Recall that if a degree d is low over 0′, then {x : x � a} is a degree
spectrum, so in the interval [0′, 0′′], we only have a very small gap left, namely the
degrees that are low2 but not low over 0′.

Corollary 4.3. If 0′ ≤ a ≤ 0′′ and a′′ > 0′′′, then there is no countable structure
A such that Sp (A) = {x : x �≤ a}.
Remark 4.4. It follows from Theorem 3.1 that every low2 algebraic structure
with the c.e. extension property has copies in the degrees a such that a ≥ 0′
and a′ ≥ 0′′′, i.e., in the degrees of functions dominating all 0′-computable
functions. Moreover, by the proof of Theorem 4.1, every low2 algebraic struc-
ture with the c.e. extension property has copies in the degrees a ∈ C(0′), i.e., in
the degrees a ≥ 0′ such that there is no 0′-computable function dominating all
a-computable functions. Note also that by Corollary 2.2, not every low algebraic
structure with the c.e. extension property has a copy in a c.e. degree a < 0′,
even if a′ = 0′′.
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