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Введение

Настоящее пособие представляет собой вторую часть сборника задач

по курсу линейной алгебры. Назначение данного пособия состоит в том,

чтобы активизировать самостоятельную работу студентов при изучении

курса, помочь активному и неформальному усвоению этого предмета.

Весь материал пособия разбит на три части. Части разбиты на разде-

лы. Каждый раздел – это отдельная тема и его материал может исполь-

зоваться при проведении практических занятий. Каждый раздел также

содержит два пункта: ”Основные понятия и теоремы”, "Задачи для само-

стоятельного решения".

Заметим, что основная работа над теоретическим материалом с про-

работкой доказательств теорем должна осуществляться студентами по од-

ному из учебников (например, [1]) или конспектам лекций. Однако для ре-

шения задач часто достаточно понять смысл теоремы, формулы или опре-

деления. С этой целью в разделе ”Основные понятия и теоремы” приво-

дятся без доказательства основные теоретические сведения, необходимые

для решения задач. Эти сведения иногда сопровождаются поясняющими

примерами или замечаниями, направленными на то, чтобы облегчить сту-

дентам восприятие новых понятий.

Назначение пункта ”Задачи для самостоятельного решения” отражено

в его названии. В этом разделе приведен определенный минимум упраж-

нений, достаточный для усвоения основных приемов решения задач по

каждой теме. Из данного пункта преподаватель может черпать упражне-

ния и задачи для проведения практических занятий.

Теоретической поддержкой данного учебно-методического пособия яв-

ляется учебник А.Г. Куроша [1], в котором заложены методические основы

курса алгебры. При подборе задач и упражнений использовались различ-



ные источники, в том числе известные задачники по алгебре И.В. Проску-

рякова [2], Д.К. Фадеева, И.С. Соминского [3], В.Д. Кряквина [4] и

Е.М. Карчевского, Е.Е. Лаврентьевой, И.Л. Александровой [5].

Пособие будет полезным как для студентов, так и для преподавателей,

ведущих занятия по курсу ”Линейная алгебра”.
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Линейные пространства

1. Линейные пространства

Основные понятия, формулы и теоремы

Определение 1. Говорят, что множество V является вещественным

линейным пространством, если для любых элементов x, y ∈ V определе-

на операция сложения, т. е. определен элемент z = x+y ∈ V , называемый

суммой элементов x, y; для любого элемента x ∈ V и любого веществен-

ного числа α определен элемент αx ∈ V , называемый произведением α

и x. Предполагается, что для этих двух операций выполнены аксиомы

линейного пространства:

1) x+ y = y + x — коммутативность операции сложения;

2) (x+ y) + z = x+ (y + z) — ассоциативность операции сложения;

3) существует элемент 0 ∈ V такой, что x+0 = x для любого элемента

x ∈ V ; элемент 0 называют нулевым элементом пространства V ;

4) для любого элемента x ∈ V существует элемент x′ такой, что x +

x′ = 0; элемент x′ называют противоположным элементу x;

5) α(x+ y) = αx+ αy — дистрибутивность по сложению векторов;

6) (α+ β)x = αx+ βx — дистрибутивность по сложению скаляров;

7) (αβ)x = α(βx) — ассоциативность по умножению скаляров;

8) 1x = x — нейтральность единичного скаляра.

Если в определении линейного пространства взять комплексные чис-

ла α, β, то множество V называется комплексным линейным простран-

ством.
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Основные линейные пространства

1. Вещественное пространство Rn – множество всех вектор-столбцов

с вещественными координатами вида

x =


x1

x2

. . .

xn


где n > 1 — фиксированное целое число. Линейные операции на про-

странстве Rn вводятся следующим образом. По определению для любого

вещественного числа α и любого x ∈ Rn положим

αx =


αx1

αx2

. . .

αxn

 .

Для любых x, y ∈ Rn по определению

x+ y =


x1 + y1

x2 + y2

. . .

xn + yn

 .

2. Множество всех вещественных матриц размера m×n с введенными

на нем операциями умножения матрицы на число и сложения двух матриц

Mmn является вещественным линейным пространством.

3. Множество Pn всех многочленов с вещественными коэффициентами

степени не выше n, где n > 0, есть фиксированное целое число, является

вещественным линейным пространством.
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Задачи для самостоятельного решения

Множества из пространства Rn

1. Пусть G — множество всех вектор-столбцов линейного простран-

ства Rn с положительными элементами, то есть

G = {x : x =


x1

x2

. . .

xn

 ∈ Rn, xi > 0, i = 1, 2, . . . , n}.

Проверить, является ли линейным пространством множество G, если опе-

рации сложения векторов и умножения вектора на число определяются

следующим образом

x+ y =


x1 · y1
x2 · y2
. . .

xn · yn

 и αx =


xα1

xα2

. . .

xαn

 ,

где α ∈ R.

2. Образует ли множество векторов из Rn линейное пространство,

если операция суммы векторов определяется следующим образом:

x+ y =


0

x2 + y2

. . .

xn + yn

 ∀x, y ∈ Rn,

а операция произведения вектора на число задается так же, как в про-

странстве Rn. Если данное множество не является линейным простран-

ством, то указать какие условия в определении линейного пространства

нарушаются.

3. Образует ли множество векторов из Rn линейное пространство,

если операция произведения вектора на вещественное число определяется
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следующим образом:

αx =


|α|x1
|α|x2
. . .

|α|xn

 ∀α ∈ R ∀x ∈ Rn,

а операция суммы векторов задается так же, как в пространстве Rn. Если

данное множество не является линейным пространством, то указать какие

условия в определении линейного пространства нарушаются.

4. Образует ли множество векторов из Rn линейное пространство,

если операция суммы векторов определяется следующим образом:

x+ y =


x1 + 2y1

x2 + 2y2

. . .

xn + 2yn

 ∀x, y ∈ Rn,

а операция произведения вектора на число задается так же, как в про-

странстве Rn. Если данное множество не является линейным простран-

ством, то указать какие условия в определении линейного пространства

нарушаются.

5. Образует ли множество векторов из Rn линейное пространство,

если операция суммы векторов определяется следующим образом:

x+ y =


x1y1

x2y2

. . .

xnyn

 ∀x, y ∈ Rn,

а операция произведения вектора на число задается так же, как в про-

странстве Rn. Если данное множество не является линейным простран-

ством, то указать какие условия в определении линейного пространства

нарушаются.
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6. Образует ли множество векторов из Rn линейное пространство,

если операция произведения вектора на вещественное число определяется

следующим образом:

αx = x ∀α ∈ R и ∀x ∈ Rn,

а операция суммы векторов задается так же, как в пространстве Rn. Если

данное множество не является линейным пространством, то указать какие

условия в определении линейного пространства нарушаются.

7. Образует ли множество векторов из Rn линейное пространство,

если операция произведения вектора на вещественное число определяется

следующим образом:

αx =


eα−1x1

. . .

eα−1xn

 ∀α ∈ R и ∀x ∈ Rn,

а операция суммы векторов задается так же, как в пространстве Rn. Если

данное множество не является линейным пространством, то указать какие

условия в определении линейного пространства нарушаются.

8. Образует ли множество векторов из Rn линейное пространство,

если операция суммы векторов определяется следующим образом:

x+ y =


xn + yn

xn−1 + yn−1

. . .

x1 + y1

 ∀x =


x1

x2

. . .

xn

 , y =


y1

y2

. . .

yn

 ∈ Rn,

а операция произведения вектора на число задается так же, как в про-

странстве Rn. Если данное множество не является линейным простран-

ством, то указать какие условия в определении линейного пространства

нарушаются.

9. Образует ли множество векторов из Rn линейное пространство,
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если операция суммы векторов определяется следующим образом:

x+ y =


x1 − y1

x2 − y2

. . .

xn − yn

 ∀x, y ∈ Rn,

а операция произведения вектора на число задается так же, как в про-

странстве Rn. Если данное множество не является линейным простран-

ством, то указать какие условия в определении линейного пространства

нарушаются.

Множества из пространства Mmn

10. Пусть задано множество G = Mmn, а операция сложения матриц

вводится следующим образом: для любых матриц A,B ∈ G с элемента-

ми aij и bij соответственно их сумма C = A + B есть матрица того же

размера с элементами cij = −aij − bij, где i = 1,m, j = 1, n. Операция

произведения матрицы на вещественное число определяется так же, как

и в пространстве Mmn. Выяснить, является ли множество G линейным

пространством.

11. Выяснить, является ли множество всех невырожденных квадрат-

ных матриц M nn линейным пространством, если операция сложения мат-

риц определяется следующим образом:

A+B = A ·B ∀A,B ∈ M nn,

а операция умножения на число вводится также, как в пространстве M nn.

Если данное множество не является линейным пространством, то указать

какие условия в определении линейного пространства нарушаются.

12. Выяснить, является ли множество всех квадратных диагональных

матриц M nn линейным пространством, если операция сложения матриц

введена следующим образом:

A+B = A ·B ∀A,B ∈ M nn,
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а операция умножения на число определена также, как в пространстве

M nn.

Множества из пространства Pn

13. Выяснить, является ли множество всех многочленов с веществен-

ными коэффициентами из пространства Pn линейным пространством, ес-

ли операция суммы многочленов задается так же как и в пространстве Pn

и для ∀α ∈ R и ∀f(x) = a0x
n+a1x

n−1+ . . .+an ∈ Pn операция умножения

на вещественное число определяется следующим образом:

αf(x) = αa1x
n−1 + αa2x

n−2 + . . .+ αan.

14. Выяснить, является ли множество всех многочленов с веществен-

ными коэффициентами из пространства Pn линейным пространством, ес-

ли операция суммы многчленов определяется так же как и в пространстве

Pn, а операция умножения на вещественное число вводится иначе:

αf(x) = (α+ an)x
n + (α+ an−1)x

n−1 + . . .+ (α + a0),

здесь f(x) = anx
n + an−1x

n−1 + . . . + a0 — произвольный многочлен из

пространства Pn, α ∈ R. Если данное множество не является линейным

пространством, то указать какие условия в определении линейного про-

странства нарушаются.

15. Выяснить, является ли множество всех многочленов с веществен-

ными коэффициентами из пространства Pn линейным пространством, ес-

ли операция суммы многочленов определена так же как и в пространстве

Pn, а операция умножения на вещественное число определена иначе:

αf(x) = αanx
n + αan−1x

n−1 + . . .+ αa1x.

здесь f(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0 — произвольный многочлен

из пространства Pn, α ∈ R. Если данное множество не является линей-

ным пространством, то указать какие условия в определении линейного

пространства нарушаются.
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16. Выяснить, является ли множество всех многочленов с веществен-

ными коэффициентами из пространства Pn линейным пространством, ес-

ли операция суммы многочленов определена так же как и в пространстве

Pn, а операция умножения на вещественное число определена иначе:

αf(x) = αa0x
n + αa1x

n−1 + . . .+ αan−1x+ αan,

здесь f(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0 — произвольный многочлен

из пространства Pn, α ∈ R. Если данное множество не является линей-

ным пространством, то указать какие условия в определении линейного

пространства нарушаются.

2. Линейная зависимость и линейная независимость систем

векторов

Основные понятия, формулы и теоремы

Определение 2. Система векторов {ai}mi=1 = {a1, a2, . . ., am}, m ≥ 1

линейного пространства V называется линейно зависимой, если существу-

ют числа x1, x2, . . . , xm, среди которых хотя бы одно отлично от нуля,

такие, что

x1a
1 + x2a

2 + . . .+ xna
n = 0. (1)

Система векторов {ai}mi=1 = {a1, a2, . . ., am}, m ≥ 1 называется ли-

нейно независимой, если равенство (1) имеет место только тогда, когда

xi = 0, i = 1, 2, . . ., n.

Системы векторов имеют следующие свойства.

1. Система, состоящая из одного вектора линейно зависима тогда и

только тогда, когда этот вектор равен нулю.

2. Система, состоящая из двух векторов a1 и a2, линейно зависима

тогда и только тогда, когда эти векторы, пропорциональны, то есть либо

a1 = αa2 для некоторого числа α, либо a2 = βa1 для некоторого числа
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β (если оба вектора отличны от нуля, то имеет место и первое и второе

равенство).

4. Система векторов, содержащая линейно зависимую подсистему, яв-

ляется линейно зависимой.

5. Любая подсистема линейно независимой системы векторов является

линейно независимой.

6. Система, содержащая более одного вектора, линейно зависима тогда

и только тогда, когда один из ее элементов является линейной комбина-

цией остальных.

Определение 3. Будем говорить, что вектор a ∈ V линейно выра-

жается через векторы b1, b2, . . . , bp, p > 1 (является линейной комбина-

цией этих векторов), если существуют числа x1, x2, . . . , xp такие, что

a = x1b
1 + x2b

2 + . . .+ xpb
p. (2)

Задачи для самостоятельного решения

17. Исследовать на линейную зависимость в пространстве R3 следу-

ющие системы векторов

a) a1 =


1

4

6

 , a2 =


1

−1

1

 , a3 =


1

1

3

 ;

b) a1 =


1

2

3

 , a2 =


4

5

6

 , a3 =


7

8

9

;

c) a1 =


1

−1

2

 , a2 =


−1

1

−1

 , a3 =


2

−1

1

;

d) a1 =


2

−3

1

 , a2 =


3

−1

5

 , a3 =


1

−4

3

;
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e) a1 =


5

4

3

 , a2 =


3

3

2

 , a3 =


8

1

3

.

18. Проверить, будут ли следующие матрицы линейно независимыми

в соответствующем линейном пространстве Mmn.

a)

A1 =

(
1 0 0

0 0 0

)
, A2 =

(
2 −1 0

0 0 0

)
, A3 =

(
−3 2 2

0 0 0

)
,

A4 =

(
4 −5 3

2 0 0

)
, A5 =

(
5 2 −1

3 2 0

)
, A6 =

(
6 1 2

−2 3 1

)
;

b) A1 =

(
−1 3

3 −2

)
, A2 =

(
2 1

0 3

)
, A3 =

(
3 1

−1 −1

)
, A4 =

(
1 3

1 2

)
;

c) A1 =

(
2 3

1 −1

)
, A2 =

(
−1 3

−2 3

)
, A3 =

(
1 2

1 1

)
, A4 =

(
3 4

1 −3

)
;

d)A1 =

(
0 3

3 1

)
, A2 =

(
−1 2

2 1

)
, A3 =

(
0 2

2 3

)
, A4 =

(
−1 −1

1 3

)
.

e)A1 =

(
3 2

3 3

)
, A2 =

(
1 1

2 −1

)
, A3 =

(
3 −1

1 3

)
, A4 =

(
−2 5

3 −4

)
.

19. Проверить, будут ли следующие системы полиномов линейно

независимыми в линейном пространстве P3:

a) p1(x) = 1, p2(x) = x− 1, p3(x) = (x+ 3)2;

b) p1(x) = x2 + 4x, p2(x) = 2x2 − x+ 4, p3(x) = 4x2 − 4x+ 1;

c) p1(x) = 4x2 − 3x− 1, p2(x) = 4x− 3, p3(x) = 4x2 + 9x− 10;

d) p1(x) = 4x2 − 3x+ 2, p2(x) = −3x2 + 2x+ 3, p3(x) = 7x2 − 5x− 1;

e) p1(x) = 3x− 4, p2(x) = 3x2 − 2x− 3, p3(x) = x2 + 3x+ 3.

20. Найти максимальные линейно независимые подсистемы следую-

щих систем векторов

a) a1 =


0

0

0

0

 , a2 =


0

1

−1

−2

 , a3 =


0

−2

2

4

 , a4 =


0

2

−2

−4

 ,
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a5 =


1

−2

1

0

 , a6 =


3

−3

0

−6

 ;

b) a1 =


0

3

−1

3

 , a2 =


0

−6

2

−6

 , a3 =


−1

3

−1

1

 , a4 =


−2

3

−1

−1

 ,

a5 =


2

0

1

−1

 , a6 =


4

−9

4

−6

 .

21. Найти максимальные линейно независимые подсистемы следую-

щих систем многочленов:

a) p1(x) = −x2 − x − 1, p2(x) = 2x2 + 2x + 2, p3(x) = x2 + x + 1,

p4(x) = −x2 + 3x+ 1, p5(x) = −2x2 + 2x;

b) p1(x) = x2 + x + 2, p2(x) = −2x2 − 2x − 4, p3(x) = −x2 + x − 1,

p4(x) = 2x2 + 4x+ 5, p5(x) = 3x2 − x− 1.

22. Найти максимальные линейно независимые подсистемы следую-

щих систем матриц:

a) A1 =

(
1 0

1 −2

)
, A2 =

(
−2 0

−2 4

)
, A3 =

(
0 −3

−1 2

)
,

A4 =

(
−1 3

0 0

)
;

b) A1 =

(
3 0

1 2

)
, A2 =

(
−3 0

−1 −2

)
, A3 =

(
6 0

2 4

)
, A4 =

(
−3 −1

0 3

)
,

A5 =

(
−3 −2

1 8

)
.

23. Известно, что вектор a4 линейно выражается через векторы a1,

a2, a3. Найти линейное выражение a4 через a1, a2, a3, если
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a) a1 =


2

1

1

 , a2 =


−1

1

0

 , a3 =


2

−2

3

 ; a4 =


1

−4

5

;

b) a1 =


1

1

1

 , a2 =


1

2

1

 , a3 =


0

0

1

 ; a4 =


1

0

4

.

3. Базисы. Конечномерные пространства

Основные понятия, формулы и теоремы

Определение 4. Система векторов e = {e1, e2, . . . , en} называется

базисом линейного пространства V , если e линейно независима и любой

вектор x ∈ V представим в виде линейной комбинации

x = x1e1 + x2e2 + . . .+ xnen. (3)

Вектор-столбец xe =


x1

x2

. . .

xn

 называеся координатами вектора x в

базисе e.

Определение 5. Число векторов в базисе V называется размерно-

стью линейного пространства V и обозначается через dimV .

Определение 6. Линейное пространство V называется конечномер-

ным, если число векторов в базисе конечное число, иначе V – бесконеч-

номерное пространство.
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Естественные базисы основных линейных пространств

1. Система вектор-столбцов

e1 =



1

0

0

. . .

0


, e2 =



0

1

0

. . .

0


, e3 =



0

0

1

. . .

0


, . . . , en =



0

0

0

. . .

1


называется естественным базисом пространства Rn. Размерность про-

странства Rn равна n.

2. Система прямоугольных матриц размерности m× n

e1 =


1 0 . . . 0

0 0 . . . 0

. . . . . . . . . . .

0 0 . . . 0

 , e2 =


0 1 . . . 0

0 0 . . . 0

. . . . . . . . . . .

0 0 . . . 0

 , . . . , emn =


0 0 . . . 0

0 0 . . . 0

. . . . . . . . . . .

0 0 . . . 1


называется естественным базисом пространства Mmn. Таким образом,

размерность пространства Mmn равна mn.

3. Система многочленов

e1 = 1, e2 = x, e3 = x2, e4 = x3, . . . , en+1 = xn

называется естественным базисом пространства Pn. Размерность про-

странства Pn равна n+ 1.

Задачи для самостоятельного решения

24. Проверить, является ли система векторов e1, e2, e3 базисом в ли-

нейном пространстве R3.

a) e1 =


3

0

4

 , e2 =


2

4

4

 , e3 =


−3

−4

2

 ;

b) e1 =


2

3

−2

 , e2 =


−2

−2

−3

 , e3 =


6

7

4

 ;
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c) e1 =


0

1

1

 , e2 =


3

2

−1

 , e3 =


−6

−5

1

 ;

d) e1 =


−3

2

3

 , e2 =


−1

1

−1

 , e3 =


0

4

1

 .

25. Проверить, является ли система многочленов p1, p2, p3 базисом в

линейном пространстве P2.

a) p1 = 1− 3x− 2x2, p2 = 2− 4x+ x2, p3 = 2 + 3x+ 2x2;

b) p1 = −2 + 2x+ 3x2, p2 = x− 2x2, p3 = −2 + x+ 5x2;

c) p1 = −4 + 2x− x2, p2 = 4 + x+ 4x2, p3 = −3− 3x− 2x2;

d) p1 = −1 + 2x+ x2, p2 = −2− x+ x2, p3 = −7 + 4x+ 5x2.

26. Проверить, является ли система матриц A1, A2, A3, A4 базисом в

линейном пространстве M22.

a) A1 =

(
−1 3

3 −2

)
, A2 =

(
2 1

0 3

)
, A3 =

(
3 1

−1 −1

)
, A4 =

(
1 3

1 2

)
;

b) A1 =

(
2 3

1 −1

)
, A2 =

(
−1 3

−2 3

)
, A3 =

(
1 2

1 1

)
, A4 =

(
3 4

1 −3

)
;

c) A1 =

(
3 −2

−3 3

)
, A2 =

(
1 2

−2 −3

)
, A3 =

(
3 1

−2 1

)
, A4 =

(
1 −1

1 3

)
;

d) A1 =

(
3 2

3 3

)
, A2 =

(
1 1

2 −1

)
, A3 =

(
3 −1

1 3

)
, A4 =

(
−2 5

3 −4

)
.

27. Проверить, является ли система векторов e1, e2, e3 базисом в ли-

нейном пространстве R3, и найти координаты вектора x в этом базисе. По

известному координатному вектору ye найти вектор y:

a)e1=


−2

3

0

 , e2 =


2

−3

4

 , e3 =


−2

0

−3

 , x =


−4

3

−7

 , ye =


4

4

3

 ;
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b)e1 =


0

1

1

 , e2 =


−1

0

3

 , e3 =


0

1

2

 , x =


−1

−5

−3

 , ye =


4

−3

−2

 ;

c)e1=


3

−1

3

 , e2 =


−3

−1

−4

 , e3 =


3

2

−1

 , x =


6

5

−7

 , ye =


−2

0

1

 .

28. Проверить, является ли система матриц A1, A2, A3, A4 базисом в

линейном пространстве M22 и найти в этом базисе координаты матрицы

Y . По известному координатному вектору XA найти матрицу X.

a)A1 =

(
2 2

−1 −1

)
, A2 =

(
3 −2

−3 2

)
, A3 =

(
−3 −3

−3 0

)
, A4 =

(
1 −3

4 3

)
,

XA =


−3

2

−2

−2

 , Y =

(
4 −2

−5 3

)
;

b) A1 =

(
1 3

−3 −2

)
, A2 =

(
−3 4

2 2

)
, A3 =

(
4 −2

3 2

)
, A4 =

(
3 1

0 −1

)
,

XA =


1

0

1

−1

 , Y =

(
5 −2

−5 −1

)
;

c) A1 =

(
1 4

1 0

)
, A2 =

(
−1 −3

−3 −3

)
, A3 =

(
−1 −1

−1 4

)
, A4 =

(
−2 −3

4 3

)
,

XA =


−2

−1

−1

−1

 , Y =

(
2 1

4 −5

)
;

29. Проверить, является ли система многочленов p1, p2, p3 базисом

в линейном пространстве P2 и найти координаты многочлена h в этом
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базисе. По известному координатному вектору gp найти многочлен g.

a) p1 = 4 + 4x+ 2x2, p2 = −3− 2x2, p3 = −1− x+ x2, gf =


0

−1

2

 ,

h(x) = 5− 4x+ 4x2;

b) p1 = −3 + 2x2, p2 = 2 + x+ 2x2, p3 = 4 + 4x− 2x2, gf =


−1

2

−1

 ,

h(x) = 5 + x;

c) p1 = 2 + 4x− 2x2, p2 = −1 + 2x+ x2, p3 = −2− 2x− x2,

gf =


0

−1

−2

 , h(x) = 2 + 4x2.

4. Линейное подпространство

Основные понятия, формулы и теоремы

Определение 7. Линейным подпространством линейного про-

странства V называется непустое множество L векторов из V , обладаю-

щее следующими свойствами:

1) сумма x+ y двух любых векторов из L снова принадлежит L;

2) произведение α · x любого вектора x из L на любое число α снова

принадлежит L.

Любое линейное подпространство является линейным пространством.

Определение 8. Размерностью линейного подпространства L назы-

вается число векторов в базисе. Размерность линейного подпространства

L обозначается через dimL.

Определение 9. Рассмотрим систему векторов a1, a2, . . ., ak из век-

торного пространства V . Множество всевозможных линейных комбина-

ций векторов a1, a2, . . ., ak называется линейным подпространством, на-
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тянутым на систему векторов a1, a2, . . ., ak или линейной оболочкой

ℓ(a1, a2, . . . , ak). Таким образом

ℓ(a1, a2, . . . , ak) = {x ∈ V | x = c1a1 + c2a2 + . . .+ ckak}

Определение 10. Суммой двух линейных подпространств L1 и L2

линейного пространства V называется совокупность L1+L2 всех векторов

из V , каждый из которых представляется в виде x = x1 + x2, где x1 ∈ L1

и x2 ∈ L2.

Определение 11. Пересечением двух линейных подпространств L1

и L2 линейного пространства V называется совокупность L1 ∩ L2 всех

векторов из V , каждый из которых принадлежит как L1, так и L2.

Теорема 1 (Грассмана). Пусть L1 и L2 – линейные подпростран-

ства пространства V , тогда

dim(L1 ∩ L2) = − dim(L1 + L2) + dim(L1) + dim(L2), (4)

здесь dim(L1), dim(L2) – размерности линейных подпространств L1 и

L2, а dim(L1 + L2), dim(L1 ∩ L2) – размерности суммы и пересечения

этих линейных подпространств соответственно.

Задачи для самостоятельного решения

30. Является ли линейным подпространством линейного простран-

ства Rn каждая из следующих совокупностей векторов:

a) Множество всех векторов, у которых сумма первого и второго эле-

ментов неотрицательна: x1 + x2 ≥ 0;

b) Множество всех векторов с рациональными коэффициентами: ∀i
xi ∈ Q;

c) Множество всех векторов с нулевыми первыми двумя коэффициен-

тами: x1 = x2 = 0.

31. Является ли подпространством линейного пространства

Mnn, n ≥ 2, следующие множества матриц n-го порядка:
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a) Множество всех трехдиагональных матриц, то есть матриц, у кото-

рых aij = 0 при |i− j| > 1;

b) Множество всех матриц, квадрат которых равен нулю: A2 = 0;

c) Множество всех вырожденных матриц: |A| = 0.

32. Является ли подпространством линейного пространства

Pn, n ≥ 1, следующие множества многочленов степени не выше n:

a) Множество Pm,m < n;

b) Множество всех многочленов f(x) степени не выше n, для которых

числа 2 и 3 являются корнями;

c) Множество всех многочленов f(x) степени не выше n, для которых

f(0) = f(1).

33. Найти базис в подпространстве ℓ(a1, a2, a3, a4, a5, a6) и коэффици-

енты разложения остальных векторов системы по этому базису.

a) a1 =


3

3

−1

5

 , a2 =


6

6

−2

10

 , a3 =


−3

−3

1

−5

 ,

a4 =


−1

−2

−1

3

 , a5 =


−4

−5

0

−2

 , a6 =


−7

−8

1

−7

 ;

b) a1 =


1

0

1

−3

 , a2 =


−3

0

−3

−9

 , a3 =


0

1

5

2

 ,

a4 =


−1

−2

−11

−1

 , a5 =


2

1

7

−4

 , a6 =


3

1

8

−7

 ;
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c) a1 =


0

−1

−2

1

 , a2 =


0

2

4

−2

 , a3 =


1

5

−3

−3

 ,

a4 =


−1

−7

−1

5

 , a5 =


−1

−5

3

3

 , a6 =


1

7

1

−5

 .

34. Найти однородную систему линейных алгебраических уравне-

ний, подпространство решений которой совпадает с линейной оболочкой

ℓ(a1, a2, ..., ak), порожденной следующими системами векторов:

a) a1 =


3

−3

1

−3

 , a2 =


−6

6

−2

6

 ;

b) a1 =


−2

−1

2

−3

 , a2 =


−1

−2

12

 ;

c) a1 =


−2

1

−1

1

 , a2 =


3

2

2

1

 , a3 =


7

0

4

−1

 ;

35. Найти базисы суммы и пересечения линейных подпространств,

натянутых на системы векторов a1, . . . ,ak и b1,. . . ,bl:

a) a1 =


1

2

1

 , a2 =


1

1

−1

 , a3 =


1

3

3

 ,
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b1 =


2

3

−1

 , b2 =


1

2

2

 , b3 =


1

1

−3

 ;

b) a1 =


1

2

1

−2

 , a2 =


2

3

1

0

 , a3 =


1

2

2

−3

 ,

b1 =


1

1

1

1

 , b2 =


1

0

1

−1

 , b3 =


1

3

0

−4

 .

5. Преобразование базиса и координат

Основные понятия, формулы и теоремы

Пусть V – линейное пространство размерности n.

Определение 12. Матрицей перехода от базиса e = {e1, e2, . . . , en}
к базису u = {u1, u2, . . . , un} называется квадратная матрица Te→u = (tij)

размера n × n, по столбцам которой стоят координаты новых базисных

векторов в старом базисе.

Таким образом, базисы e и u связаны матричным равенством

(u1, u2, . . . , un) = (e1, e2, . . . , en) · Te→u. (5)

Равенство (5) можно переписать в следующем виде:

(e1, e2, . . . , en) = (u1, u2, . . . , un) · Tu→e. (6)

Сравнивая равенства (5) и (6) получаем, что две матрицы перехода Te→u

и Tu→e являются обратными к друг другу, то есть

Tu→e = T−1
e→u, Te→u = T−1

u→e. (7)
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При таких обозначениях координаты xe вектора x в базисе e связаны

с координатами xu того же вектора в базисе u равенствами

xe = Te→u · xu (8)

или

xu = T−1
e→u · xe (9)

либо

xu = Tu→e · xe. (10)

Задачи для самостоятельного решения

36. Найти матрицу перехода от базиса e = {e1, e2, e3} к базису

u = {u1, u2, u3} в линейном пространстве R3. По известным координа-

там векторов x, y в одном базисе найти их координаты в другом базисе:

a) e1 =


2

−1

−1

 , e2 =


3

1

1

 , e3 =


−2

−1

−2

 , xe =


−2

2

−2

 ,

u1 =


−3

1

2

 , u2 =


1

1

3

 , u3 =


−2

−2

−1

 , yu =


2

−1

1

 .

b) e1 =


3

−1

−2

 , e2 =


−2

−1

0

 , e3 =


1

3

3

 , ye =


−2

−2

0

 ,

u1 =


−3

1

3

 , u2 =


−2

−1

1

 , u3 =


−2

−1

−1

 , xu =


1

−2

3

 .

c) e1 =


1

−1

1

 , e2 =


−1

−1

1

 , e3 =


−1

0

2

 , ye =


−3

−4

1

 ,

u1 =


−2

−1

−1

 , u2 =


1

0

2

 , u3 =


1

−3

3

 , xu =


−1

2

−2

 .
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37. Найти матрицу перехода от базиса f = {f1, f2, f3} к базису

g = {g1, g2, g3} линейного пространства P2 :

a) f1(x) = 1 + x− 2x2, f2(x) = x− x2, f3(x) = −2− 2x+ 2x2,

g1(x) = −3− 2x+ 3x2, g2(x) = 2 + x− x2, g3(x) = 1− x− 2x2.

b) f1(x) = −1− x2, f2(x) = 2 + x− x2, f3(x) = −2− x+ 3x2,

g1(x) = 1 + 2x− 3x2, g2(x) = 3 + 2x− x2, g3(x) = 3 + 2x− 3x2.

c) f1(x) = 1 + 2x+ 3x2, f2(x) = 1 + x+ 2x2, f3(x) = 1− x2,

g1(x) = −2− x+ x2, g2(x) = 2− x− x2, g3(x) = −2− x− x2.

38. Найти матрицу перехода от базиса A = {A1, A2, A3, A4} к базису

B = {B1, B2, B3, B4} линейного пространства M 22 :

a) A1 =

(
0 2

1 2

)
, A2 =

(
3 2

2 1

)
, A3 =

(
1 2

−1 0

)
, A4 =

(
−1 −2

−2 −2

)
,

B1 =

(
−3 4

−2 3

)
, B2 =

(
−4 −2

−4 −2

)
, B3 =

(
−4 2

−2 2

)
, B4 =

(
−3 4

0 4

)
.

b) A1 =

(
0 1

−1 1

)
, A2 =

(
−2 2

−2 −1

)
, A3 =

(
−1 −1

0 1

)
, A4 =

(
−1 1

−1 1

)
,

B1 =

(
0 1

0 2

)
, B2 =

(
3 −2

2 4

)
, B3 =

(
−1 −2

1 3

)
, B4 =

(
2 2

−1 3

)
.

c) A1 =

(
1 −1

1 −1

)
, A2 =

(
1 1

1 2

)
, A3 =

(
2 1

1 0

)
, A4 =

(
2 1

3 2

)
,

B1 =

(
1 −1

−1 −3

)
, B2 =

(
2 −2

2 1

)
, B3 =

(
2 1

−1 1

)
, B4 =

(
3 0

4 4

)
.

39. Найти координаты вектора x в базисе u = {u1, u2, u3}, если он

задан в базисе e = {e1, e2, e3}:

a)


u1 = e1 + e2 + 2e3,

u2 = 2e1 − e2,

u3 = −e1 + e2 + e3,

, xe =


6

−1

3

 .

b)


u1 = e1 + e2 + 3e3,

u2 = (3/2)e1 − e2,

u3 = −e1 + e2 + e3,

, xe =


1

2

4

 .
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c)


u1 = e1 + e2 + 4e3,

u2 = (4/3)e1 − e2,

u3 = −e1 + e2 + e3,

, xe =


1

3

6

 .

40. Как изменится матрица перехода от одного базиса к другому,

если:

a) поменять местами два элемента первого базиса;

b) поменять местами два элемента второго базиса;

c) записать элементы обоих базисов в обратном порядке?

41. Даны базисы e = {e1, e2, e3}, g = {g1, g2, g3} пространства R3 и

матрица A. Найти базисы u = {u1, u2, u3} и f = {f1, f2, f3} такие, что

матрицы перехода Te→u = A и Tf→g = A :

a) e1 =


−2

2

−1

 , e2 =


2

−1

1

 , e3 =


0

1

1

 ,

g1 =


−1

−1

1

 , g2 =


−1

1

0

 , g3 =


−1

1

2

 , A =


−1 −1 1

−1 −2 2

−1 −2 1

 .

b) e1 =


−1

1

3

 , e2 =


−1

2

3

 , e3 =


−1

−2

−1

 ,

g1 =


−1

1

−2

 , g2 =


1

−1

−1

 , g3 =


0

−2

2

 , A =


1 1 −1

−2 −1 1

−2 −2 1

 .

c) e1 =


−1

0

−2

 , e2 =


−1

2

−1

 , e3 =


1

−2

−1

 ,

g1 =


1

−3

−3

 , g2 =


3

1

−1

 , g3 =


−3

−1

0

 , A =


−2 −2 1

1 3 −2

0 2 −2

 .
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Линейный оператор

6. Определение линейного оператора. Матрица линейного

оператора

Основные понятия, формулы и теоремы

Определение 13. Оператором, действующим в линейном простран-

стве V , называется правило φ, по которому каждому элементу x из V

ставится в соответствие некоторый элемент y из V . Элемент y называется

образом элемента x, а элемент x – прообразом элемента y. Тот факт, что

элемент y соответствует элементу x при действии оператора φ, записыва-

ется так:

y = φ(x). (11)

Определение 14. Оператор φ, действующий в линейном простран-

стве V , называется линейным, если для любых двух элементов x1 и x2 из

V и любого числа α выполняются равенства:

1) φ(x1 + x2) = φ(x1) + φ(x2); 2) φ(αx1) = αφ(x1). (12)

Определение 15. Пусть e = {e1, e2, . . . , en} – базис пространства V .

Тогда векторы

φ(e1) = v1, φ(e2) = v2, . . . , φ(en) = vn

принадлежат пространству V и могут быть разложены по базису:

φ(e1) = a11e1 + a21e2 + . . . + an1en,

φ(e2) = a12e1 + a22e2 + . . . + an2en,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ(en) = a1ne1 + a2ne2 + . . . + annen,

(13)
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Квадратная матрица

Ae =


a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . . . . . .

an1 an2 . . . ann


порядка n называется матрицей линейного оператора φ в базисе e. Ра-

венство (13) можно переписать в следующем матричном виде

φ(e) = e · Ae. (14)

Определение 16. Определителем оператора φ называется опреде-

литель его матрицы в каком-нибудь базисе e. Определитель оператора φ

обозначается через |φ|. Таким образом, по определению

|φ| = |Ae|.

Задачи для самостоятельного решения

42. Будет ли линейным оператором, действующим в линейном про-

странстве M 22 всех матриц второго порядка с вещественными элемента-

ми, каждое из следующих отображений.

Для любой матрицы M =

(
m11 m12

m21 m22

)
∈ M 22 :

a) φ(M) = |M |

(
1 0

0 1

)
, где |M | − определитель матрицы M.

b) φ(M) = tr(M)

(
1 0

0 −1

)
, где tr(M) = m11 +m22 − след матрицы M.

c) φ(M) = rang(M)

(
1 2

0 3

)
, где rang(M)− ранг матрицы M.

d) φ(M) = m11

(
1 1

1 1

)
.
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e) φ(M) =

(
1 2

3 4

)
·M +M ·

(
5 6

7 8

)
.

f) φ(M) =

(
1 −1

2 3

)
·M ·

(
0 4

−2 1

)
−M.

g) φ(M) = |M | ·M, где |M | − определитель матрицыM.

h) φ(M) =

(
m22 m21

m12 m11

)
.

i) φ(M) =

(
m11 +m22 m12 +m21

m21 −m12 m21

)
.

j) φ(M) =

(
m11 m12

m21 1

)
.

k) φ(M) = (m12 +m22 −m21)

(
0 1

1 0

)
.

l) φ(M) =

(
m11m22 m12m21

m21m21 m22

)
.

m) φ(M) = |m11|

(
0 0

1 1

)
.

43. Будет ли линейным оператором, действующим в линейном про-

странстве P2 всех многочленов с вещественными коэффициентами степе-

ни не выше n, каждое из следующих отображений.

Для любого многочлена f(x) ∈ P2 :

a) φ(f) = f ′(x) + 3f ′′(x). b) φ(f) = (x+ 1)f ′′(x).

c) φ(f) = f(0)f ′(x). d) φ(f) = (f(1) + f(2))f ′(x).

e) φ(f) = 3f ′′ + f ′ − f. f) φ(f) = f ′′ − f ′ + 5.

g) φ(f) = f(x+ 1). h) φ(f) = xf(x).
44. Выяснить, какие из следующих операторов, действующих в ли-

нейном пространстве R3 являются линейными, и в случае линейности

найти их матрицы в естественном базисе e и в базисе u = {u1, u2, u3},
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где u1 =


1

2

3

 , u2 =


1

−2

−1

 , u3 =


−1

0

−2

 .

Для любого вектора x =


x1

x2

x3

 ∈ R3:

a) φ1(x) =


6x1 − 5x2 − 4x3

−3x1 − 2x2 − x3

x2 + 2x3

 , φ2(x) =


6− 5x2 − 4x3

3x1 − 2x2 − x3

x2 + 2

 ,

φ3(x) =


x43

3x1 − 2x2 − x3

x2 + 2x3

 ;

b) φ1(x) =


5x1 − 4x2 − 3x3

2x1 − x2

x2 + 2

 , φ2(x) =


5x1 − 4x2 − 3x3

0

x42 + 2x3

 ,

φ3(x) =


5x1 − 4x2 − 3x3

2x1 − x2

x2 + 2x3

 ;

c) φ1(x) =


4x1 − 3x2 − 2x3

x1

x1 + 2x42 + 3x3)

 , φ2(x) =


4x1 − 3x2 − 2x3

x1

x1 + 2x2 + 3x3

 ,

φ3(x) =


4x1 − 3x2 − 2x3

x1

x1 + 2x2 + 3

 ;

45. Для следующих линейных операторов, действующих в линей-

ном пространстве P2 найти матрицы в естественном базисе e и в базисе

u = {u1, u2, u3}, где u1 = x + 1, u2 = x2 + 1, u3 = (x − 1)2, а также найти

определитель оператора.

Для любого многочлена f ∈ P2:
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a) φ(f) = −3f ′′(x) + 3f ′(x). b) φ(f) = f(−2) + f(2)x+ f(3)x2.

c) φ(f) = f(x+ 2) + f(0)x+ f ′(x). d) φ(f) = f(x) + f(2)x+ f ′(x).

e) φ(f) = 2f ′′ + 3f. f) φ(f) = f(x+ 2) + f(−3)x+ f ′(x).
46. Для следующих линейных операторов, действующих в линейном

пространстве M 22 найти матрицы в естественном базисе и определитель.

Для любой матрицы M ∈ M 22:

a) φ(M) =

(
3 1

0 1

)
·M +M

(
3 3

−2 −3

)
.

b) φ(M) =

(
3 1

0 1

)
·M ·

(
3 3

−2 −3

)
+ 2M.

c) φ(M) =

(
0 1

2 2

)
·M +M

(
2 1

3 1

)
.

d) φ(M) =

(
0 1

2 2

)
·M ·

(
2 1

3 1

)
− 2M.

e) φ(M) =

(
2 1

2 2

)
·M ·

(
3 1

−2 −1

)
+M.

47. Докажите, что оператор дифференцирования D̂, действующий в

пространстве Pn многочленов степени не выше n (n ≥ 1), является линей-

ным оператором. Найдите матрицу линейного оператора в базисе:

a) 1, x, . . ., xn;

b) 1,
x

1!
, . . .,

xn

n!
;

c) 1, 1 + x, . . ., 1 + x+ x2 + . . .+ xn; d) 1, x− 1, x2 − x, . . ., xn − xn−1.
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7. Преобразование матрицы линейного оператора

Основные понятия, формулы и теоремы

Будем предполагать, что линейный оператор φ действует в конечно-

мерном линейном пространстве V размерности n.

Пусть в базисе e = {e1, e2, . . . , en} линейного пространства V заданы

элемент xe и его образ ye = φ(xe) линейного оператора φ, тогда

φ(xe) = ye = Ae · xe, (15)

где Ae – матрица линейного оператора φ. Формула (15) позволяет опре-

делить координаты образа ye = φ(xe) через координаты прообраза xe в

данном базисе e, если известна матрица Ae оператора φ в этом базисе.

Матрица Ae оператора φ в базисе e = {e1, e2, . . . , en} и матрица Au

того же оператора в базисе u = {u1, u2, . . . , un} связаны соотношением

Au = T−1 · Ae · T, (16)

где T – матрица перехода от базиса e к базису u: u = e · T .

Равенство (16) может быть переписано в следующем виде:

Ae = T · Au · T−1. (17)

Задачи для самостоятельного решения

48. Доказать, что существует единственный линейный оператор, дей-

ствующий в трехмерном линейном пространстве R3 и переводящий век-

торы a1, a2, a3 соответственно в b1, b2, b3. Найти его матрицу в базисе, в

котором даны координаты всех векторов:

a) a1 =


2

3

5

 , a2 =


0

1

2

 , a3 =


1

0

0

 ,

b1 =


1

1

1

 , b2 =


1

1

−1

 , b3 =


2

1

2

 .
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b) a1 =


2

0

3

 , a2 =


4

1

5

 , a3 =


3

1

2

 ,

b1 =


1

2

−1

 , b2 =


4

5

−2

 , b3 =


1

−1

1

 .

c) a1 =


2

−1

3

 , a2 =


−1

1

0

 , a3 =


1

−1

1

 ,

b1 =


−3

3

−2

 , b2 =


3

1

3

 , b3 =


−2

0

−2

 .

49. Линейный оператор φ в базисе e = {e1, e2, e3} имеет матрицу Ae.

Найти матрицу Au линейного оператора φ в базисе u = {u1, u2, u3}:

a) Ae =


−2 3 0

2 2 0

−3 2 1

 , e1 =


1

−2

0

 , e2 =


1

3

1

 , e3 =


1

2

1

 ,

u1 =


2

1

1

 , u2 =


3

−3

1

 , u3 =


1

−3

0

 .

b) Ae =


2 2 1

2 −3 −1

1 0 2

 , e1 =


1

−1

1

 , e2 =


−1

1

0

 , e3 =


2

−3

1

 ,

u1 =


2

−3

0

 , u2 =


−1

2

1

 , u3 =


3

−4

2

 .

c) Ae =


3 2 3

0 −3 1

−1 1 −3

 , e1 =


−2

3

3

 , e2 =


0

3

2

 , e3 =


−1

1

1

 ,

34



u1 =


1

−3

−3

 , u2 =


−2

1

2

 , u3 =


1

1

0

 .

50. Линейный оператор φ в базисе f1(x) = 1, f2(x) = x, f3(x) = x2

имеет матрицу Af . Найти матрицу Ag линейного оператора φ в базисе

g = {g1, g2, g3}:

a) Af =


3 −1 0

2 1 3

−1 1 0

 ,

g1(x) = 1 + 2x,

g2(x) = −1 + 2x+ x2,

g3(x) = −1 + x+ x2.

b) Af =


0 −1 3

1 3 0

2 2 1

 ,

g1(x) = −3 + x+ 2x2,

g2(x) = −2 + x+ x2,

g3(x) = −2 + x2.

c) Af =


0 2 3

2 2 2

1 0 −3

 ,

g1(x) = −1 + 2x− 2x2,

g2(x) = −1 + x,

g3(x) = 2− 2x+ x2.

51. Линейный оператор φ в базисе e = {e1, e2, e3} имеет матрицу Ae.

Найти матрицу Au линейного оператора φ в базисе u = {u1, u2, u3}, если

известно разложение векторов базиса u в линейные комбинации по базису

e:

a) Ae =


15 −11 5

20 −15 8

8 −7 6

 ,

u1 = 2e1 + 3e2 + e3,

u2 = 3e1 + 4e2 + e3,

u3 = e1 + 2e2 + 2e3.

b) Ae =


1 0 2

3 −1 0

1 1 −2

 ,

u1 = e1 − e2 + e3,

u2 = −e1 + e2 − 2e3,

u3 = −e1 + 2e2 + e3.

c) Ae =


2 3 2

1 −3 −2

0 1 3

 ,

u1 = e1 + 2e2 − 3e3,

u2 = e2 − e3,

u3 = −e1 − e2 + 3e3.

52. Линейный оператор φ в базисе e = {e1, e2, e3} имеет матрицу Ae.

Найти матрицу Au оператора φ в базисе u = {u1, u2, u3}, если известно

разложение векторов базиса e в линейные комбинации по базису u:
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a) Ae =


−2 0 −3

1 −2 −1

2 −2 2

 ,

e1 = u1 − 2u2 − u3,

e2 = −u1 + 3u2 + 2u3,

e3 = −2u2 − u3.

b) Ae =


3 3 3

−1 −1 −2

3 2 0

 ,

e1 = u1 − 2u2 + u3,

e2 = 2u1 − 3u2 + u3,

e3 = −u1 + 2u2.

c) Ae =


3 −3 0

1 −2 3

−3 2 3

 ,

e1 = u1 − 2u2 + 2u3,

e2 = −u1 + 3u2 − 3u3,

e3 = −u2 + 2u3.

8. Действия над линейными операторами. Обратный оператор

Основные понятия, формулы и теоремы

Пусть линейный оператор φ действует в конечномерном линейном про-

странстве V размерности n.

Определение 17. Суммой φ + ψ линейных операторов φ и ψ,

действующих в линейном пространстве V , называется оператор ϕ,

действие которого на любой элемент x ∈ V задается равенством

ϕ(x) = φ(x) + ψ(x). Сумма двух линейных операторов является линей-

ным оператором, а матрица суммы линейных операторов ( в любом бази-

се) равна сумме матриц этих операторов.

Определение 18. Произведением αφ линейного оператора φ, дей-

ствующего в линейном пространстве V , на число α называется опера-

тор ϕ, действие которого на любой элемент x ∈ V задается равенством

ϕ(x) = α(φ(x)). Произведение линейного оператора φ на число α явля-

ется линейным оператором, а матрица этого оператора ( в любом базисе)

равна произведению матрицы оператора на число α.

Определение 19. Произведением φ ·ψ линейных операторов φ и ψ,

действующих в линейном пространстве V , называется оператор ϕ, дей-
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ствие которого на любой элемент x ∈ V задается равенством ϕ(x) =

φ(ψ(x)). Произведение двух линейных операторов является линейным

оператором, а матрица произведения линейных операторов ( в любом ба-

зисе) равна произведению матриц этих операторов.

Определение 20. Тождественным или единичным оператором I

называется оператор, который каждому элементу x ∈ V сопоставляет

этот же элемент: I(x) = x.

Определение 21. Линейный оператор φ−1 называется обратным к

линейному оператору φ, если выполняются равенства

φ · φ−1 = φ−1 · φ = I, где I – тождественный оператор.

Если A – матрица оператора φ в базисе e1, e2, . . . , en, то матрица

обратного оператора φ−1 в том же базисе равна A−1, то есть является

обратной по отношению к матрице A.

Определение 22. Если определитель линейного оператора |φ| ̸= 0,

то оператор называется невырожденным. В противном случае – вырож-

денным.

Теорема 1 (Критерий обратимости оператора). Для того что-

бы существовал обратный оператор к линейному оператору φ, необхо-

димо и достаточно, чтобы оператор был невырожденным.

Задачи для самостоятельного решения

53. Пусть x =


x1

x2

x3

 ∈ R3. Для двух линейных операторов

φ(x) =


x2 − x3

x1

x1 + x3

 , ψ(x) =


x2

2x3

x1

, действующих в пространстве R3,

найти:

a) (3ψ + 2φ2)x. b) (φ2 − ψ)x. c) ψ(2φ− ψ)x. d) ψ3x.
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54. Линейный оператор φ в базисе e = {e1, e2} имеет матрицу Ae.

Линейный оператор ψ в базисе u = {u1, u2} имеет матрицу Bu. Найти

матрицы линейных операторов φ+ ψ и φ− 2ψ в базисе u:

a) Ae =

(
−1 1

−3 4

)
, Bu =

(
1 0

−1 −1

)
,

e1 =

(
−3

−2

)
, e2 =

(
2

1

)
, u1 =

(
−4

−3

)
, u2 =

(
−1

−1

)
.

b) Ae =

(
−2 3

3 2

)
, Bu =

(
1 −1

0 −1

)
,

e1 =

(
−1

−1

)
, e2 =

(
2

1

)
, u1 =

(
3

2

)
, u2 =

(
4

3

)
.

c) Ae =

(
3 −1

3 −3

)
, Bu =

(
−1 2

0 −2

)
,

e1 =

(
−2

−3

)
, e2 =

(
1

1

)
, u1 =

(
−3

−5

)
, u2 =

(
−1

−2

)
.

55. Линейный оператор φ в базисе v = {v1, v2} имеет матрицу Av.

Линейный оператор ψ в базисе u = {u1, u2} имеет матрицу Bu. Найти

матрицы линейных операторов φ · ψ и φ2 + ψ в базисе, в котором даны

координаты векторов:

a) Av =

(
−1 1

1 1

)
, Bu =

(
−3 2

−2 1

)
,

v1 =

(
−5

−3

)
, e2 =

(
2

1

)
, u1 =

(
−3

−2

)
, u2 =

(
2

1

)
.

b) Av =

(
−1 −1

1 3

)
, Bu =

(
0 −3

−2 1

)
,

v1 =

(
7

3

)
, v2 =

(
2

1

)
, u1 =

(
−3

−1

)
, u2 =

(
4

1

)
.

c) Av =

(
−3 −1

4 3

)
, Bu =

(
2 1

−2 −2

)
,

38



v1 =

(
5

4

)
, v2 =

(
1

1

)
, u1 =

(
7

3

)
, u2 =

(
2

1

)
.

56. Для следующих линейных операторов φ, действующих в линей-

ном пространстве R3, выяснить их обратимость. В случае их обратимости

найти обратные операторы:

a) φ(x) =


2x1 + 2x2 − 3x3

−x2 + 2x3

−x1 − x2 + x3

 , b) φ(x) =


2x1 − 2x2 − x3

−x1 − x2 − x3

−x1 + 2x2 + x3

 ,

c) φ(x) =


−2x1 − 2x2 + 3x3

−x1 − x2 + 2x3

−2x1 − x2 + x3

 .

57. Выяснить обратимость линейных операторов φ, действующих в

линейном пространстве Q2 всех многочленов степени не выше второй с

вещественными коэффициентами. В случае их обратимости найти обрат-

ные операторы. Для любого многочлена f ∈ Q2, линейные операторы φ

задаются по следующим правилам:

a) φ(f) = f ′′− 3f ′+ f. b) φ(f) = 2f ′′− 3f ′+ f. c) φ(f) = −2f ′+ f.

58. Пусть φ и ψ – линейные операторы, действующие в ли-

нейном пространстве R2. В базисе e1, e2 оператор φ имеет матрицу

A =

(
5 −1

4 1

)
. В базисе f1, f2 оператор ψ имеет матрицу

B =

(
−2 0

1 −2

)
, причем f = eC, где C =

(
1 −1

3 −2

)
. Найдите мат-

рицу:

a) оператора φ2 + 6φ+ 9I в базисе e1, e2 (I – тождественный оператор);

b) оператора ψ2 + 4ψ + 4I в базисе f1, f2;

c) оператора φ2 − ψ2 в базисе e1, e2;

d) оператора φ · ψ−1 в базисе f1, f2.
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9. Ядро, область значений, собственные числа и собственные

векторы линейного оператора

Основные понятия, формулы и теоремы

Пусть линейный оператор φ действует в конечномерном линейном про-

странстве V размерности n.

Определение 23. Множество Im(φ) образов всех векторов из V

при действии оператора φ называется областью значений или образом

линейного оператора φ, то есть

Im(φ) =
{
y ∈ V

∣∣∣ y = φ(x)
}
.

Размерность подпространства Im(φ) называется рангом оператора φ и

обозначается через rank(φ).

Определение 24. Множество Ker(φ) всех векторов линейного про-

странства V , которые переводятся линейным оператором φ в нулевой век-

тор называется ядром оператора, то есть

Ker(φ) =
{
x ∈ V

∣∣∣ φ(x) = 0
}
. (18)

Размерность подпространства Ker(φ) называется дефектом оператора φ

и обозначается через def(φ).

Имеет место следующее равенство:

rank(φ) + def(φ) = n.

Определение 25. Ненулевой элемент x из V называется собствен-

ным вектором линейного оператора φ, если существует число λ такое,

что φ(x) = λx. Число λ при этом называется собственным значением

оператора φ. Говорят также, что собственный вектор x отвечает (или со-

ответствует) собственному значению λ.

40



Алгоритм отыскания собственных векторов и собственных значе-

ний линейного оператора φ.

Пусть A – матрица линейного оператора φ, E – единичная матрица.

Тогда для того, чтобы найти собственные значения и собственные векто-

ры, нужно выполнить следующие действия:

1. Найти собственные значения оператора, решая характеристическое

уравнение

|A− λE| = 0. (19)

Обозначим их λ1, λ2, . . . , λk, k ≤ n.

2. Для каждого собственного значения λp найти все ненулевые реше-

ния однородной системы уравнений

(A− λpE)X = Θ. (20)

Правило для решения характеристических уравнений в одном част-

ном случае.

Пусть дана матрица A размера 3× 3, то есть

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

В этом случае характеристическое уравнение (19) имеет вид

λ3 − I1λ
2 + I2λ− I3 = 0, (21)

где I1, I2, I3 – вещественные числа, которые называются инвариантами

и вычисляются по следующим формулам:

I1 = a11 + a22 + a33;

I2 =

∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣+
∣∣∣∣∣ a11 a13

a31 a33

∣∣∣∣∣+
∣∣∣∣∣ a22 a23

a32 a33

∣∣∣∣∣ ;
I3 = |A| =

∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣ .
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Теорема 1. Линейный оператор φ, действующий в линейном про-

странстве V , тогда и только тогда задается в базе e1, e2, . . ., en диаго-

нальной матрицей, если все векторы этой базы являются собственными

векторами линейного оператора φ.

На основании теоремы 1 можно составить алгоритм приведения мат-

рицы к диагональному виду. Для того, чтобы привести данную квадрат-

ную матрицу A размерности n к диагональному виду необходимо:

1. Найти λ1, λ2, . . . , λn собственные числа матрицы A.

2. Для каждого собственного значения λi найти соответствующий

ему собственный вектор. Если в результате вычисления мы получим си-

стему из n линейно независимых собственных векторов U1, U2, . . . , Un, то

матрицу A можно привести к следующему диагональному виду:

A′ =



λ1 0 0 . . . 0

0 λ2 0 . . . 0

0 0 λ3 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . λn


. (22)

3. Записать собственные векторы как столбцы новой матрицы T . По-

лученная матрица T является базисом, в котором матрица A имеет диа-

гональный вид (22).

Задачи для самостоятельного решения

59. Найти ранг, базисы ядра и образа линейного оператора φ, дей-

ствующего в линейном пространстве R4 по правилу φ(x) = M · x, где

матрица M дана ниже:

a)M =


2 0 1 1

−2 0 −1 −1

0 0 0 0

4 0 2 2

 . b)M =


3 −3 3 −3

0 0 2 0

−1 1 3 1

−3 3 1 3

 .
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c)M =


2 1 2 3

−1 0 −1 −1

−2 −2 2 0

−2 0 2 2

 .

60. Найти ранг, базисы ядра и образа линейного оператора φ, дей-

ствующего в линейном пространстве M 22 всех вещественных матриц M

второго порядка по правилу:

a) φ(M) =

(
−3 2

2 −3

)
M +M

(
1 0

−3 1

)
.

b) φ(M) =

(
−1 0

0 0

)
M +M

(
−1 2

−1 2

)
.

c) φ(M) =

(
1 0

1 −2

)
M +M

(
2 1

0 −1

)
.

61. Найти ранг, базисы ядра и образа линейного оператора φ, дей-

ствующего в линейном пространстве P3 всех многочленов степени не выше

3 с вещественными коэффициентами по правилу:

a) φ(f) = (−3 + 2x3)f ′′′ + (3 + 3x− x2)f ′′ − (1 + x)f ′ + f.

b) φ(f) = (2x+ 2x2)f ′′′ − 2(1 + x)f ′′.

c) φ(f) = (1 + x2)f ′′′ − (2 + x− x2)f ′′ − (1 + 3x)f ′ + 3f.

62. Найти собственные значения и собственные векторы линейных

операторов, заданных в некотором базисе следующими матрицами:

a)

(
2 1

−1 0

)
, b)

(
1 1

1 1

)
, c)

(
2 2

−2 −2

)
,

d)

(
−2 1

−1 −2

)
, e)

(
−1 1

−2 1

)
, f)

(
0 2

−2 0

)
.

63. Найти собственные значения и собственные векторы линейных

операторов, заданных в некотором базисе следующими матрицами:

a)


2 −1 2

5 −3 3

−1 0 −2

 , b)


0 1 0

−4 4 0

−2 1 2

 , c)


4 −5 2

5 −7 3

6 −9 4

 ,
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d)


1 −3 3

−2 −6 13

−1 −4 8

 , e)


1 −3 4

4 −7 8

6 −7 7

 , f)


4 −2 −1

−1 3 −1

1 −2 2

 .

64. Выяснить, какие из следующих матриц линейных операторов

можно привести к диагональному виду путем перехода к новому бази-

су. Найти этот базис и соответствующую ему матрицу:

a)


−1 3 −1

−1 5 −1

−3 3 1

 , b)


6 −5 −3

3 −2 −2

2 −2 0

 , c)


6 −2 −1

−1 5 −1

1 −2 4

 ,

d)


3 1 −1

2 2 −1

−2 1 4

 , e)


5 1 −1

2 4 −1

−2 1 6

 .
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Евклидово пространство. Квадратичные формы

10. Евклидово пространство

Основные понятия, формулы и теоремы

Пусть En – линейное пространство размерности n.

Определение 26. Скалярным произведением элементов x и y из En

называется правило, ставящее в соответствие вещественное число (будем

обозначать это число (x, y)), причем указанное правило удовлетворяет для

любых x, y, z из En и любого вещественного числа α следующим требо-

ваниям (они называются аксиомами скалярного произведения).

10. (x, y) = (y, x) (перестановочность или коммутативность сомножителей).

20. (x+ y, z) = (x, z) + (y, z) (распределительное свойство).

30. (αx, y) = α(x, y).

40. (x, x) > 0, если x ̸= 0 и (x, x) = 0, если x = 0.

Определение 27. Вещественное линейное пространство En называ-

ется евклидовым пространством, если в нем введено скалярное произве-

дение векторов.

Определение 28. Нормой элемента x ∈ En (обозначение ∥x∥) назы-

вается вещественное число, определяемое по формуле

∥x∥ =
√
(x, x). (23)

Определение 29. Вектор x называется нормированным, если его

норма ∥x∥ = 1.

Определение 30. Углом между ненулевыми векторами x, y ∈ En

называется число φ, удовлетворяющее условиям

cosφ =
(x, y)

∥x∥ ∥y∥
, 0 ≤ φ ≤ π. (24)
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Определение 31. Элементы x и y из En называются ортогональны-

ми (обозначение: x ⊥ y), если их скалярное произведение равно нулю, то

есть

x ⊥ y, тогда и только тогда, когда (x, y) = 0. (25)

Определение 32. Базис e1, e2, . . . , en ∈ En называется ортогональ-

ным, если элементы базиса попарно ортогональны, то есть

(ei, ej) = 0 при i ̸= j. (26)

Определение 33. Ортогональный базис e1, e2, . . . , en ∈ En называ-

ется ортонормированным, если

(ei, ej) =

{
1, i = j;

0, i ̸= j.
(27)

Пусть координаты элементов x, y из евклидова пространства En зада-

ны в ортонормированном базисе, тогда скалярное произведение и норму

можно вычислить по формулам

(x, y) =
n∑

i=1

xiyi, ∥x∥ =

√√√√ n∑
i=1

x2i . (28)

Процедура ортогонализации Грамма-Шмидта

Ортонормированный базис в евклидовом пространстве En можно по-

строить на основе произвольного базиса с помощью процедуры ортогона-

лизации. Опишем эту процедуру.

Пусть даны k линейно независимых элементов x1, x2, . . . , xk ев-

клидова пространства En. Построим попарно ортогональные элементы

e1, e2, . . . , ek, представляющие собой линейные комбинации элементов

x1, x2, . . . , xk следующим образом.

Положим

e1 = x1, e2 = x2 − a12e1, где a12 =
(x2, e1)

(e1, e1)
. (29)
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Такой выбор коэффициента a12 обеспечивает ортогональность e1 и e2:

(e1, e2) = 0. Далее, положим

e3 = x3 − a13e1 − a23e2 = x3 −
2∑

i=1

ai3ei, (30)

где a13 =
(x3, e1)

(e1, e1)
, a23 =

(x3, e2)

(e2, e2)
. Такой выбор коэффициентов a13 и a23

обеспечивает ортогональность e3 к элементам e1 и e2. И так далее.

На m-м шаге m ≤ k полагаем

em = xm −
m−1∑
i=1

aimei, где aim =
(xm, ei)

(ei, ei)
. (31)

Такой выбор коэффициентов aim обеспечивает ортогональность em к эле-

ментам e1, e2, . . ., em−1. В результате k шагов описанная процедура дает

ортогональную систему векторов e1, e2, . . ., ek.

Нормирование системы векторов

Чтобы сделать ортогональную систему векторов e1, e2, . . ., ek орто-

нормированной, нужно каждый элемент ei умножить на число
1

∥ei∥
. По-

лученные в результате элементы g1 =
e1
∥e1∥

, . . . , gk =
ek
∥ek∥

образуют ор-

тонормированную систему векторов.

Ортогональное дополнение

Определение 34. Вектор x ортогонален подпространству L (обо-

значение x⊥L), если вектор x ортогонален любому вектору y подпростран-

ства L, то есть (x, y) = 0, ∀y ∈ L.

Определение 35. Ортогональным дополнением L⊥ линейного под-

пространства L называется множество всех векторов из евклидова про-

странства En, ортогональных к L, то есть

L⊥ = {x ∈ En

∣∣∣ x ⊥ L}. (32)
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Ортогональная проекция и ортогональная составляющая

Определение 36. Вектор y подпространства L называется ортого-

нальной проекцией вектора x на подпространство L, если вектор x − y

ортогонален подпространству L. В этом случае используется обозначение

y = prLx. Вектор z = x− prLx называется ортогональной составляющей

вектора x относительно подпространства L.

Из определения 36, следует справедливость равенства

x = y + z, (33)

где y – ортогональная проекция вектора x на подпространство L,

а z – ортогональная составляющая вектора x относительно подпростран-

ства L.

Алгоритм построения ортогональной проекции y и ортогональной

составляющей z

1. Построить базис подпространства L: f = {f1, f2, . . . , fk}.
2. Вычислить скалярные произведения векторов базиса f :

(f1, f1), (f1, f2), (f1, f3), . . . , (f1, fk), (f1, x),

(f2, f1), (f2, f2), (f2, f3), . . . , (f2, fk), (f2, x),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(fk, f1), (fk, f2), (fk, f3), . . . , (fk, fk), (fk, x).

(34)

3. Вычислить неизвестные c1, c2, c3, . . ., ck, решая систему линейных

алгебраических уравнений:

c1(f1, f1) + c2(f1, f2) + c3(f1, f3) + . . .+ ck(f1, fk) = (x, f1),

c1(f2, f1) + c2(f2, f2) + c3(f2, f3) + . . .+ ck(f2, fk) = (x, f2),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c1(fk, f1) + c2(fk, f2) + c3(fk, f3) + . . .+ ck(fk, fk) = (x, fk).

(35)

4. Построить ортогональную проекцию вектора x на подпространство

L, применяя формулу

y = prLx = c1f1 + c2f2 + c3f3 + . . .+ ckfk. (36)
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5. Построить ортогональную составляющую вектора x относительно

подпространства L, применяя формулу z = x− y.

Задачи для самостоятельного решения

65. Найти нормы векторов a, b и угол между ними в евклидовом

пространстве E4:

a) a =


3

−2

3

−1

 , b =


2

−1

−1

1

 . b) a =


−1

3

0

−2

 , b =


2

−1

−1

1

 .

c) a =


−1

−2

2

0

 , b =


1

−1

−3

−1

 . d) a =


−1

1

2

−1

 , b =


−2

−3

−1

−3

 .

66. Проверить, что векторы следующих систем попарно ортогональ-

ны, и дополнить их до ортогональных базисов пространства E4:

a) x1 =


1

−2

2

−3

 , x2 =


2

−3

2

4

 . b) x1 =


1

1

1

−2

 , x2 =


1

2

3

3

 .

67. Найти векторы, дополняющие следующие системы векторов до

ортонормированных базисов пространства En:

a) x1 =


2/3

1/3

2/3

 , x2 =


1/3

2/3

−2/3

 . b) x1 =


1/2

1/2

1/2

1/0

 , x2 =


1/2

1/2

−1/2

−1/2

 .

68. Применяя процесс ортогонализации, построить ортогональный

базис подпространства, натянутого на данную систему векторов:

a) x1 =


1

2

2

−1

 , x2 =


1

1

−5

3

 , x3 =


3

2

8

−7

 .
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b) x1 =


1

1

−1

−2

 , x2 =


5

8

−2

−3

 , x3 =


3

9

3

8

 .

69. Найти базис ортогонального дополнения L⊥ подпространства L,

натянутого на векторы:

a) x1 =


1

0

2

1

 , x2 =


2

1

2

3

 , x3 =


1

0

0

3

 .

b) x1 =


1

1

1

1

 , x2 =


1

2

2

−1

 , x3 =


1

0

0

3

 .

c) x1 =


2

1

1

−1

 , x2 =


1

1

3

0

 , x3 =


1

2

8

1

 .

70. Найти ортогональную проекцию y и ортогональную составляю-

щую z вектора x на линейное подпространство L, которое натянуто на

систему векторов a1, a2, a3 :

a) x =


4

−1

−3

4

, a1 =


1

1

1

1

, a2 =


1

2

2

−1

, a3 =


1

0

0

3

 .

b) x =


5

2

−2

2

, a1 =


2

1

1

−1

, a2 =


1

1

3

0

, a3 =


1

2

8

1

 .
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11. Квадратичные формы. Метод Лагранжа

Основные понятия, формулы и теоремы

Определение 37. Квадратичной формой называется функция чис-

ловых переменных x1, x2, . . . , xn следующего вида:

f(x1, x2, . . . , xn) =
n∑

i,j=1

aijxixj, (37)

где aij – вещественные числа (коэффициенты квадратичной формы), удо-

влетворяющие условию

aij = aji. (38)

Матрица A = (aij) с размером n×n называется матрицей квадратич-

ной формы. Из равенства (38) следует, что матрица квадратичной формы

A является симметрической.

Квадратичную форму (37) можно записать в матричном виде

f(x1, x2, . . . , xn) = XTAX,

где X – столбец переменных x1, x2, . . . , xn, XT – строка, полученная

транспонированием столбца X, A – матрица квадратичная формы.

Любую квадратичную форму

f =
n∑

i,j=1

aijxixj

невырожденным линейным преобразованием X = Q · Y можно привести

к виду

f̃ =
n∑

i=1

ci
(
yi
)2
. (39)

Определение 38. Выражение (39) называется каноническим видом

квадратичной формы, а числа ci (i = 1, . . . , n) – ее каноническими коэф-

фициентами. Матрица квадратичной формы f̃ , имеющей канонический

вид, является диагональной матрицей с элементами ci на главной диаго-

нали. Если в квадратичной форме (39) все канонические коэффициенты
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ci = ±1 (i = 1, . . . , n), то ее также называют нормальным видом квадра-

тичной формы.

Алгоритм приведения квадратичной формы к каноническому виду

(метод Лагранжа):

Пусть A = (aij) – матрица квадратичной формы. Для того чтобы при-

вести квадратичную форму к каноническому виду необходимо выполнить

следующие действия:

1. Если существует ненулевой элемент aij ̸= 0, i ̸= j и на главной

диагонали матрицы aii ̸= 0, то необходимо выполнить преобразование

X = Q1Y , где 

y1 = x1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yi−1 = xi−1

yi = ai1x1 + ai2x2 + . . .+ ainxn

yi+1 = xi+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yn = xn

(40)

2. Если все элементы на главной диагонали равны нулю, то найти

любой ненулевой элемент матрицы aij ̸= 0 и выполнить преобразование

X = Q2Z, где 
xi = zi − zj

xj = zi + zj

xk = zk, k ̸= i, j.

(41)

Выполнение преобразований (40) и (41) приведет квадратичную фор-

му (37) к каноническому виду (39).

Задачи для самостоятельного решения

71. Найти канонический вид и матрицу линейного преобразования,

которое приведет квадратичную форму к этому виду:

a) x1x2 + x1x3 + x2x3;
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b) x21 − 2x22 + x23 + 2x1x2 + 4x1x3 + 2x2x3;

c) x21 − 3x23 − 2x1x2 + 2x1x3 − 6x2x3;

d) x21 + 5x22 − 4x23 + 2x1x2 − 4x1x3;

e) 4x21 + x22 + x23 − 4x1x2 + 4x1x3 − 3x2x3;

f) x21 + x22 + 3x23 + 4x1x2 + 2x1x3 + 2x2x3;

g) 3x21 − 2x22 + 2x23 + 4x1x2 − 3x1x3 − x2x3;

h) 2x21 + 3x22 + 4x23 − 2x1x2 + 4x1x3 − 3x2x3;

12. Приведение квадратичной формы к главным осям.

Критерий Сильвестра

Основные понятия, формулы и теоремы

Приведение квадратичной формы к главным осям

Определение 39. Квадратная матрица Q называется ортогональ-

ной, если выполняется равенство

Q−1 = QT .

Определение 40. Линейное преобразование переменных X = QY ,

называется ортогональным, если его матрица Q ортогональная.

Теорема 1. Для любой квадратичной формы f

f(x1, x2, . . . , xn) =
n∑

i,j=1

aijxixj (42)

существует ортогональное преобразование X = QY , приводящее ее к

каноническому виду:

f̃ = λ1y
2
1 + λ2y

2
2 + λ3y

2
3 + . . .+ λny

2
n. (43)

При этом λi (i = 1, . . . , n) – собственные значения матрицы квадра-

тичной формы A, а столбцы матрицы Q – ортонормированная система

собственных векторов матрицы A (норма каждого из них равна 1).

53



Пусть дана квадратичная форма (42) с матрицей A = (aij). Тогда

алгоритм приведения квадратичной формы к главным осям состоит в

следующем:

1. Найти собственные значения матрицы A, решая характеристическое

уравнение

|A− λE| = 0.

Обозначим их λ1, λ2, . . . , λn.

2. Для каждого собственного значения λp, 1 ≤ p ≤ n найти все нену-

левые решения однородной системы уравнений

(A− λpE)X = 0.

Найденные решения будут собственными векторами, соответствующие

собственному значению λp.

3. Используя процеду ортогонализации, ортогонализировать и нор-

мировать систему из собственных векторов матрицы A (если это необхо-

димо).

4. Составить ортогональную матрицу Q, столбцами которой являют-

ся ортонормированные векторы матрицы A.

5. Записать канонический вид квадратичной формы:

f̃ = λ1y
2
1 + λ2y

2
2 + λ3y

2
3 + . . .+ λny

2
n.

6. Записать ортогональное преобразование переменных X = QY ,

приводящее квадратичную форму к каноническому виду.

Критерий Сильвестра

Определение 41. Квадратичная форма f называется положитель-

но определенной, если ее нормальный вид следующий

f = y21 + y22 + . . .+ y2n.
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Определение 42. Определители

∆1 = a11, ∆2 =

∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣ , . . . ,∆k =

∣∣∣∣∣∣∣∣
a11 . . . a1k

. . . . . . . . . . . .

ak1 . . . akk

∣∣∣∣∣∣∣∣ , ∆n =

∣∣∣∣∣∣∣∣
a11 . . . a1n

. . . . . . . . . . . .

an1 . . . ann

∣∣∣∣∣∣∣∣
называются главными минорами матрицы A = (aij) размера n× n.

Теорема 2. (критерий Сильвестра). Для того чтобы квадратич-

ная форма была положительно определенной, необходимо и достаточно,

чтобы все главные миноры ее матрицы были положительны, то есть

∆1 > 0, ∆2 > 0, . . . ,∆n > 0.

Задачи для самостоятельного решения

72. Найти канонический вид, к которому приводятся следующие

квадратичные формы посредством ортогонального преобразования, не на-

ходя самого этого преобразования:

a) 3x22 + 3x23 + 4x1x2 + 4x1x3 − 2x2x3;

b) 7x21 + 7x22 + 7x23 + 2x1x2 + 2x1x3 + 2x2x3;

c) x21 − 2x1x2 − 2x1x3 − 2x2x3.

73. Найти ортогональное преобразование, приводящее следующие

формы к каноническому виду (приведение к главным осям), и написать

этот канонический вид:

a) 6x21 + 5x22 + 7x23 − 4x1x2 + 4x1x3;

b) x21 + x22 + x23 + 4x1x2 + 4x1x3 + 4x2x3;

c) 11x21 + 5x22 + 2x23 + 16x1x2 + 4x1x3 − 20x2x3;

d) 17x21 + 14x22 + 14x23 − 4x1x2 − 4x1x3 − 8x2x3;

e) x21 − 5x22 + x23 + 4x1x2 + 2x1x3 + 4x2x3;

f) 8x21 − 7x22 + 8x23 + 8x1x2 − 2x1x3 + 8x2x3.

74. Найти все значения параметра λ, при которых положительно

определены следующие квадратичные формы:

a) 5x21 + x22 + λx23 + 4x1x2 − 2x1x3 − 2x2x3;
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b) 2x21 + x22 + 3x23 + 2λx1x2 + 2x1x3;

c) x21 + x22 + 5x23 + 2λx1x2 − 2x1x3 + 4x2x3;

d) x21 + 4x22 + x23 + 2λx1x2 + 10x1x3 + 6x2x3;

e) 2x21 + 2x22 + x23 + 2λx1x2 + 6x1x3 + 2x2x3;
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Программа к экзамену

1 сесместр

1. Определение комплексных чисел. Число i. Основные операции над

комплексными числами, записанными в алгебраической форме.

2. Тригонометрическая форма записи комплексных чисел. Умножение,

деление, возведение в степень, извлечение корня из комплексных чи-

сел, записанных в тригонометрической форме.

3. Перестановки. Доказать теорему об общем количестве перестановок

из n символов.

4. Определение инверсии и транспозиции. Определение четности и

нечетности перестановок. Доказать, что любая транспозиция меня-

ет четность перестановки. Доказать, что число четных перестановок

равно числу нечетных перестановок из n символов.

5. Общее определение определителя n-го порядка. Вывести из опреде-

ления определителя n-го порядка формулы для вычисления опреде-

лителей 2-го и 3-го порядков.

6. Доказать, что определитель не изменяется при транспонировании.

7. Доказать, что определитель изменит свой знак, если в нем поменять

местами две строки или два столбца.

8. Доказать, что определитель равен нулю, если он содержит две оди-

наковые строки (или два одинаковых столбца).

9. Доказать, если все элементы некоторой строки (или столбца) умно-

жить на некоторое число k, то определитель умножится на это число.



10. Доказать, что определитель, содержащий две пропорциональные

строки (или два пропорциональных столбца), равен нулю.

11. Доказать, что определитель, содержащий нулевую строку (или нуле-

вой столбец) равен нулю.

12. Доказать, что если одна из строк определителя есть сумма других

строк, то определитель равен нулю. То же самое справедливо и для

столбцов.

13. Доказать, что определитель не изменится, если к элементам одной

строки прибавить другую строку, умноженную на произвольное чис-

ло. То же самое справедливо и для столбцов.

14. Определение миноров, дополнительных миноров и алгебраических

дополнений.

15. Доказать, что если все элементы последней строки (или столбца)

определителя, кроме последнего, равны нулю, то определитель ра-

вен произведению этого элемента на его алгебраическое дополнение.

16. Доказать, что если все элементы какой-либо строки (или столбца)

определителя, кроме aij, равны нулю, то определитель равен произ-

ведению этого элемента на его алгебраическое дополнение.

17. Доказать теорему о разложении по строке или столбцу.

18. Сформулировать теорему Лапласа (без доказательства).

19. Сформулировать при каких условиях справедливо и доказать следу-

ющее свойство умножения матриц: A · (B + C) = AB + AC.

20. Сформулировать при каких условиях справедливо и доказать следу-

ющее свойство умножения матриц: (A+B) · C = AC +BC.

21. Сформулировать при каких условиях справедливо и доказать следу-

ющее свойство умножения матриц: A · (B · C) = (A ·B) · C.
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22. Сформулировать при каких условиях справедливо и доказать следу-

ющее свойство умножения матриц: A · E = E · A = A.

23. Сформулировать при каких условиях справедливо свойство о транс-

понировании произведения матриц.

24. Доказать теорему об определителе произведения квадратных матриц.

25. Определение обратной матрицы. Доказать теорему о единственности

обратной матрицы.

26. Доказать теорему о существовании обратной матрицы.

27. Определение линейной зависимости и линейной независимости си-

стем векторов.

28. Доказать, что если система векторов содержит хотя бы один нулевой

вектор, то она линейно зависима.

29. Доказать свойство о линейной зависимости системы векторов, содер-

жащей линейно зависимую подсистему.

30. Доказать, что если система векторов содержит хотя два пропорцио-

нальных столбца, то она является линейно зависимой.

31. Доказать, что система векторов линейно зависима тогда и только

тогда, когда хотя бы один из ее векторов есть линейная комбинация

остальных векторов системы.

32. Определение и свойства максимальных линейно-независимых систем.

33. Определение ранга матрицы.

34. Сформулировать и доказать основную теорему о ранге матрицы.

35. Следствия из основной теоремы о ранге матрицы.

36. Необходимое и достаточное условие равенства нулю определителя.
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37. Сформулировать и доказать теорему Крамера.

38. Определения элементарных преобразований и элементарных матриц.

Определители элементарных матриц. Доказать, что любое элемен-

тарное преобразование эквивалентно умножению слева на соответ-

ствующую элементарную матрицу.

39. Определение расширенной матрицы системы. Доказать, что выпол-

нение любого элементарного преобразования над расширенной мат-

рицей системы не изменяет множество решений системы.

40. Определение эквивалентных матриц. Доказать, что если определи-

тель матрицы не равен нулю, то она эквивалентна единичной матри-

це.

41. Определение совместности систем. Сформулировать и доказать тео-

рему Кронекера-Капелли.

42. Определение однородных систем линейных уравнений. Свойство ре-

шений однородных систем.

43. Определение ФСР. Доказать теорему о числе векторов в ФСР.

44. Сформулировать и доказать теорему о связи между решениями од-

нородной и неоднородной систем уравнений.

2 сесместр

1. Определение линейного пространства. Аксиоматика и примеры.

2. Базис линейного пространства.

3. Конечномерные линейные пространства.

4. Матрица перехода. Доказать, что матрица перехода является невы-

рожденной.

5. Доказать теорему о связи между базисами линейного пространства.
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6. Привести и доказать формулу о преобразовании координат вектора

при переходе от одного базиса к другому базису.

7. Определение линейного подпространства. Доказать, что любое ли-

нейное подпространство само является пространством.

8. Определение линейной оболочки. Доказать, что линейная оболочка

является линейным подпространством.

9. Доказать, что линейное подпространство порождается конечной си-

стемой векторов и наоборот.

10. Определение суммы и пересечения двух линейных подпространств.

11. Теорема о размерности суммы и пересечения подпространств с дока-

зательством.

12. Определение линейного оператора.

13. Доказать теорему о том, что линейный оператор оставляет неподвиж-

ным нулевой вектор.

14. Доказать теорему о соответствии линейному оператору квадратной

матрицы.

15. Определение подобных матриц. Свойства подобных матриц.

16. Определение суммы линейных операторов. Доказать теорему о мат-

рице суммы линейных операторов.

17. Определение произведения линейных операторов. Доказать теорему

о матрице произведения линейных операторов.

18. Определение произведения оператора на число. Доказать теорему о

матрице произведения на число.

19. Определение невырожденного линейного оператора.
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20. Определение обратного оператора.

21. Доказать, что у любого невырожденного оператора существует об-

ратный оператор.

22. Матрица обратного оператора.

23. Определение характеристического многочлена и характеристических

корней квадратной матрицы.

24. Доказать, что подобные матрицы обладают равными характеристи-

ческими корнями.

25. Определение характеристического корня и собственного значения ли-

нейного оператора.

26. Доказать, что характеристические корни и только они служат соб-

ственными значениями линейного оператора.

27. Операторы простого спектра.

28. Доказать, что множество собственных векторов, относящихся к од-

ному и тому же собственному значению вместе с нулевым вектором

образуют линейное подпространство.

29. Доказать, что линейный оператор имеет не более n собственных зна-

чений.

30. Доказать критерий о вырожденности линейного оператора.

31. Доказать, что собственные векторы, относящиеся к различным соб-

ственным значениям, линейно независимы.

32. Определение скалярного произведения и примеры.

33. Определение ортогональных систем.

34. Доказать, что любая ортогональная система линейно независима.
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35. Определение ортонормированной системы векторов.

36. Доказать теорему о вычислении скалярного произведения в ортонор-

мированных системах.

37. Обосновать процесс ортогонализации.

38. Доказать, что евклидово пространство обладает ортонормированны-

ми базами.

39. Определение ортогональных матриц и их свойства с доказательством.

40. Доказать, что матрица перехода от одной ортонормированной базы к

другой является ортогональной и наоборот.

41. Определение ортогонального оператора.

42. Доказать, что ортогональный оператор переводит одну ортонормиро-

ванную базу в другую и наоборот.

43. Доказать теорему о связи ортогональной матрицы и ортогонального

оператор.

44. Определение симметрического оператора и примеры.

45. Доказать свойства симметрических операторов.

46. Доказать теорему о связи симметрического оператора и симметриче-

ской матрицы.

47. Доказать, что все собственные значения симметрического оператора

есть действительные числа.

48. Доказать, что собственные векторы симметрической матрицы, отно-

сящиеся к различным собственным значениям, ортогональны.

49. Доказать теорему о связи симметрического оператора и ортонорми-

рованной базы из собственных векторов.
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50. Определение квадратичной формы, матрица квадратичной формы.

51. Линейное преобразование переменных.

52. Преобразование матрицы квадратичной формы при линейном преоб-

разовании переменных.

53. Ранг квадратичной формы.

54. Сформулировать и доказать теорему метода Лагранжа.

55. Сформулировать и доказать закон инерции.

56. Определение положительно определенных квадратичных форм.

57. Первый критерий положительноопределенности с доказательством.

58. Критерий Сильвестра.
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Ответы и указания к решению задач

1. Решение. Операции сложения векторов и умножения вектора на

число определены корректно, так как произведение положительных чи-

сел положительно и положительна (по определению) любая вещественная

степень положительного числа. Проверим теперь условия 1)–8) определе-

ния линейного пространства.

1) Сложение векторов коммутативно потому, что умножение веще-

ственных чисел обладает этим свойством. Действительно, коммутатив-

ность сложения векторов следует из цепочки равенств:

x+ y = (x1 · y1, x2 · y2, . . . , xn · yn) =

= (y1 · x1, y2 · x2, . . . , yn · xn) = y + x

для любых x, y ∈ G.

2) Аналогично проверяется ассоциативность сложения векторов. Для

любых x, y, z ∈ G имеем

(x+ y) + z = (x1 · y1, x2 · y2, . . . , xn · yn) + z =

= (x1 · y1 · z1, x2 · y2 · z2, . . . , xn · yn · zn) =

= x+ (y1 · z1, y2 · z2, . . . , yn · zn) = x+ (y + z).

3) В качестве ноль-вектора нужно взять вектор 0 = (1, 1, . . . , 1). Дей-

ствительно,

x+ 0 = (x1 · 1, x2 · 1, . . . , xn · 1) = x

для любого вектора x ∈ G.

4) Для любого вектора x = (x1, x2, . . . , xn) противоположным элемен-

том будет вектор

x′ = (x−1
1 , x−1

2 , . . . , x−1
n ),



так как

x+ y = (x1 · x−1
1 , x2 · x−1

2 , . . . , xn · x−1
n ) = (1, 1, . . . , 1) = 0.

5) Для любых x, y ∈ G и любого α ∈ R имеем

α(x+ y) = α(x1 · y1, x2 · y2, . . . , xn · yn) =

= ((x1y1)
α, (x2y2)

α, . . . , (xnyn)
α) = (xα1y

α
1 , x

α
2y

α
2 , . . . , x

α
ny

α
n) =

= (xα1 , x
α
2 , . . . , x

α
n) + (yα1 , y

α
2 , . . . , y

α
n) = αx+ αy.

6) Для любого x ∈ G и любых α, β ∈ R имеем

(α+ β)x = (xα+β
1 , xα+β

2 , . . . , xα+β
n ) = (xα1x

β
1 , x

α
2x

β
2 , . . . , x

α
nx

β
n) =

= (xα1 , x
α
2 , . . . , x

α
n) + (xβ1 , x

β
2 , . . . , x

β
n) = αx+ βx.

7) Для любого x ∈ G и любых α, β ∈ R имеем

(αβ)x = (xαβ1 , xαβ2 , . . . , xαβn ) =

= ((xβ1 )
α, (xβ2 )

α, . . . , (xβn)
α) = α(xβ1 , x

β
2 , . . . , x

β
n) = α(βx).

8) Наконец, для любого x ∈ G

1 · x = (x11, x
1
2, . . . , x

1
n) = x.

Следовательно, данное множество G с данными операциями сложения

векторов и умножения вектора на вещественное число является веще-

ственным линейным пространством.

2. Не является линейным пространством, так как не выполняются

аксиомы 3) и 6).

3. Не является линейным пространством, так как не выполняется

аксиома 6).

4. Не является линейным пространством, так как не выполняются

аксиомы 1), 2) и 6).
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5. Не является линейным пространством, так как противополож-

ный элемент x′ = (1/x1, ..., 1/xn) не определен, например, для элемента

(0, 0, ..., 0).

6. Не является линейным пространством, так как не выполняется

аксиома 6).

7. Не является линейным пространством, так как не выполняются

аксиомы 6) и 7).

8. Не является линейным пространством, так как не выполняются

аксиомы 2), 3), 4), 6) при n > 1.

9. Не является линейным пространством, так как не выполняются

аксиомы 1), 2) и 6).

10. Решение. Легко видеть, что обе операции определены корректно.

Проверим условия 1)–8) линейного пространства.

1) Операция сложения коммутативна. Действительно, так как

−aij − bij = −bij − aij, для ∀i = 1,m, ∀j = 1, n.

то

A+B = B + A, для любых A,B ∈ G.

2) Проверим ассоциативность операции сложения.

Пусть A, B, C — три произвольные матрицы из множества G с эле-

ментами aij, bij и cij соответственно. Тогда матрица (A+ B) + C состоит

из элементов

−(−aij − bij)− cij = aij + bij − cij, для ∀i = 1,m, ∀j = 1, n,

а матрица A+ (B + C) — из элементов

−aij − (−bij − cij) = −aij + bij + cij, для ∀i = 1,m, ∀j = 1, n.

Отсюда следует, что равенство

(A+B) + C = A+ (B + C)
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не может выполняться для всех A,B,C ∈ G. Так, если A и B — нуле-

вые матрицы, а все элементы матрицы C равны единице, то любой эле-

мент матрицы (A + B) + C равен −1, а произвольный элемент матрицы

A+(B+C) равен 1. Таким образом, операция сложения не ассоциативна,

множество G с данными операциями не является линейным простран-

ством.

11. Не является линейным пространством, так как не выполняются

аксиома 1).

12. Не является линейным пространством, так как не выполняются

аксиома 4).

13. Решение. Для любых полиномов f и g степени не выше n и любого

α ∈ C сумма f+g и произведение αf являются многочленами с комплекс-

ными коэффициентами степени не выше n, поэтому обе операции опреде-

лены корректно. Нетрудно проверить, что условия 1)–7) выполняются для

данных операций. Однако, если у многочлена f старший коэффициент a0
отличен от нуля, то многочлен (1 · f)(x) = a1x

n−1 + a2x
n−2 + . . . + an

не равен многочлену f(x) и, следовательно, условие 8) не выполняется.

Таким образом, данное множество с введенными операциями сложения и

умножения на число не является линейным пространством.

14. Не является линейным пространством, так как не выполняются

аксиомы 5), 6), 7) и 8).

15. Не является линейным пространством, так как не выполняются

аксиома 8).

16. Не является линейным пространством, так как не выполняются

аксиомы 7) и 8).

17. a) Решение. Составим линейную комбинацию (1) данных векто-

ров и приравняем ее нулевому элементу:

x1a
1 + x2a

2 + x3a
3 = 0
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или

x1


1

4

6

+ x2


1

−1

1

+ x3


1

1

3

 =


0

0

0

 .

Таким образом, получаем следующую однородную систему уравнений:
x1 + x2 + x3 = 0,

4x1 − x2 + x3 = 0,

6x1 + x2 + 3x3 = 0.

Ранг матрицы системы r(A) равен 2 и меньше числа неизвестных n = 3,

поэтому однородная система имеет бесконечно много решений и, следова-

тельно, существуют ненулевые числа x1, x2, xn в системе (1). Следователь-

но, система векторов a1, a2, a3 линейно зависима; b) линейно зависимая

система; c) линейно независимая система; d) линейно независимая систе-

ма; e) линейно зависимая система.

18. Решение. Нулевым элементом в пространстве M32 является ну-

левая матрица размера 2×3. Составим линейную комбинацию (1) данных

матриц и приравняем ее нулевому элементу:

x1A
1 + x2A

2 + x3A
3 + x4A

4 + x5A
5 + x6A

6 = 0

или

x1

(
1 0 0

0 0 0

)
+ x2

(
2 −1 0

0 0 0

)
+ x3

(
−3 2 2

0 0 0

)
+

+x4

(
4 −5 3

2 0 0

)
+ x5

(
5 2 −1

3 2 0

)
+ x6

(
6 1 2

−2 3 1

)
=

(
0 0 0

0 0 0

)
.

Легко заметить, что после выполнения несложных преобразований, левая

и правая части данного равенства будут матрицами размера 2 × 3. Две

матрицы равны тогда и только тогда, когда равны все соответствующие

друг другу элементы матриц. Таким образом, имеем систему линейных
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однородных уравнений

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 = 0,

− x2 + 2x3 − 5x4 + 2x5 + x6 = 0,

2x3 + 3x4 − x5 + 2x6 = 0,

2x4 + 3x5 − 2x6 = 0,

2x5 + 3x6 = 0,

x6 = 0

Пусть A – матрица данной системы. Найдем ранг матрицы системы

r(A) = 6. Получаем, что ранг r(A) равен числу неизвестных n. Cледо-

вательно, однородная система имеет только единственное нулевое реше-

ние, а это и означает, что векторы A1, . . ., A6 в линейном пространстве

M32 являются линейно независимыми; b) линейно независимая система;

c) линейно зависимая система; d) линейно независимая система; e) ли-

нейно зависимая система.

19. a) Решение. Нулевым элементом в пространстве Q2 является по-

лином, тождественно равный нулю. Составим линейную комбинацию трех

данных полиномов и приравняем ее нулевому элементу:

x1 · p1(x) + x2 · p2(x) + x3 · p3(x) = 0.

Преобразуя данное соотношение, получаем

(x1 − x2 + 9x3) + (x2 + 6x3)x+ x3x
2 = 0.

Это равенство справедливо для всех x ∈ (−∞,+∞) только в том случае,

когда коэффициенты, стоящие при одинаковых степенях x равны нулю.

Таким образом, приходим к следующей системе линейных однородных

уравнений 
x1 − x2 + 9x3 = 0,

x2 + 6x3 = 0,

x3 = 0.

Ранг матрицы системы равен числу неизвестных поэтому получаем, что

данная система имеет единственное нулевое решение x1 = x2 = x3 = 0.
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Следовательно, система полиномов p1(x), p2(x), p3(x) является линейно

независимой; b) линейно независимая система; c) линейно зависимая си-

стема; d) линейно зависимая система; e) линейно независимая система.

20. a) a2, a5; b) a1, a3, a5.

21. a) p1, p4; b) p1, p3, p5.

22. a) A1, A3; b) A1, A4.

23. a) a4 = −a1 + a2 + 2a3; b) a4 = 2a1 − a2 + 3a3.

24. a) Решение. Да. Согласно свойству базиса, достаточно вычислить

определитель, построенный из элементов векторов по столбцам∣∣∣∣∣∣∣∣
3 2 −3

0 4 −4

4 4 2

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 8 −3

−4 12 −4

0 0 2

∣∣∣∣∣∣∣∣ = 2 · (−4) ·

∣∣∣∣∣∣∣∣
1 8 −3

1 −3 1

0 0 1

∣∣∣∣∣∣∣∣ = (−8) ·

∣∣∣∣∣1 8

1 −3

∣∣∣∣∣ =

(−8) · (−11) = 88 ̸= 0.

Значит, система векторов e1, e2, e3 является базисом в пространстве

R3. b) Нет. c) Нет. d) Да.

25. a) Решение. Да. Так как любая линейно независимая система,

число векторов в которой совпадает с размерностью пространства (dim

P2 = 3) является базисом в нем, то достаточно проверить линейную неза-

висимость системы многочленов p1, p2, p3. Следуя определению, запишем

линейную комбинацию многочленов и приравняем ее нулевому многочле-

ну. α1(1 − 3x − 2x2) + α2(2 − 4x + x2) + α3(2 + 3x + 2x2) = 0 + 0x + 0x2.

Раскроем скобки, приведем подобные слагаемые и приравняем коэффи-

циенты многочленов при одинаковых степенях x. Получим однородную

систему линейных уравнений относительно коэффициентов α1, α2, α3:
α1 + 2α2 + 2α3 = 0

−3α1 − 4α2 + 3α3 = 0

−2α1 + α2 + 2α3 = 0

Линейная зависимость системы равносильна существованию нетривиаль-

ного решения данной однородной системы. Для того, чтобы система имела

нетривиальное решение необходимо и достаточно чтобы ранг ее матрицы
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был меньше числа неизвестных. Найдем ранг системы с помощью приве-

дения матрицы к ступенчатому виду:
1 2 2

−3 −4 3

−2 1 2

 ∼


1 2 2

0 2 9

0 5 6

 ∼


1 2 2

0 1 4.5

0 5 6

 ∼


1 2 2

0 1 4.5

0 0 −16.5


Таким образом, rank = 3 и, следовательно, однородная система алгеб-

раических уравнений имеет только тривиальное решение, что доказывает

линейную независимость системы многочленов p1, p2, p3. b) Нет. c) Да.

d) Нет.

26. a) Да. Размерность линейного пространства M22 всех матриц вто-

рого порядка равна четырем. Матриц в системе тоже четыре. Достаточно

проверить линейную независимость. Запишем линейную комбинацию мат-

риц системы и приравняем ее нулевому элементу (нулевой матрице):

α1

(
−1 3

3 −2

)
+ α2

(
2 1

0 3

)
+ α3

(
3 1

−1 −1

)
+ α4

(
1 3

1 2

)
=

(
0 0

0 0

)

Складывая и приравнивая нулю соответствующие элементы матриц, по-

лучим однородную систему линейных уравнений относительно коэффи-

циентов αi: 

−α1 + 2α2 + 3α3 + α4 = 0

3α1 + α2 + α3 + 3α4 = 0

3α1 − α3 + α4 = 0

−α1 + 3α2 − α3 + 2α4 = 0

Линейная зависимость системы равносильна существованию нетривиаль-

ного решения данной однородной системы. Для того, чтобы система имела

нетривиальное решение необходимо и достаточно чтобы ранг ее матрицы

был меньше числа неизвестных. Найдем ранг системы с помощью приве-
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дения матрицы к ступенчатому виду:
−1 2 3 1

3 1 1 3

3 0 −1 1

−2 3 −1 2

 ∼


1 −2 −3 −1

0 7 10 6

0 6 8 4

0 −1 −7 0

 ∼


1 −2 −3 −1

0 1 7 0

0 3 4 2

0 7 10 6

 ∼

∼


1 −2 −3 −1

0 1 7 0

0 0 −17 2

0 0 −39 6

 ∼


1 −2 −3 −1

0 1 7 0

0 0 17 −2

0 0 0 24
17


Таким образом, rank = 4, следовательно, однородная система алгебра-

ических уравнений имеет только тривиальное решение, что доказывает

линейную независимость системы матриц A1, A2, A3, A4. b) Нет. c) Да.

d) Нет.

27. a) Да. Согласно свойству базиса, достаточно вычислить опреде-

литель, построенный из элементов векторов по столбцам∣∣∣∣∣∣∣∣
3 2 −3

0 4 −4

4 4 2

∣∣∣∣∣∣∣∣ = −24 ̸= 0.

Значит, система векторов e1, e2, e3 является базисом в пространстве

R3. Для нахождения координат вектора x в базисе e нужно из векторного

уравнения x1e1 + x2e2 + x3e3 = x найти неизвестные координаты x1, x2,

x3. После подстановки векторов получим

x1


−2

3

0

+ x2


2

−3

4

+ x3


−2

0

−3

 =


−4

3

−7


Это уравнение равносильно системе уравнений

−2x1 + 2x2 − 2x3 = −4

3x1 − 3x2 = 3

4x2 − 3x3 = −7,
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решая которую, например, методом Гаусса, найдем неизвестные коорди-

наты вектора x в базисе e. xe =


0

−1

1

. Наконец, найдем вектор y. По

определению y = y1e1+y2e2+y3e3 = 4


−2

3

0

+4


2

−3

4

+3


−2

0

−3

 =


−6

0

7

. b) Да. xe =


−4

1

−1

, y =


3

2

−9

. c) Да. xe =


0

1

3

,

y =


3

4

−7

.

28. a) Да, является. YA =


−2

2

−1

−1

 , X =

(
4 2

−5 1

)
; b) Да, является.

YA =


3

−1

2

−3

 , X =

(
2 0

0 1

)
; c) Да, является. YA =


−1

−1

−2

0

 ,

X =

(
2 −1

−2 −4

)
.

29. a) Да, является. hp =


−1

−3

0

 , g(x) = 1 − 2x + 4x2; b) Да,

является. hp =


−1

1

0

 , g(x) = 3− 2x+ 4x2; c) Да, является.
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hp =


−1

0

−2

 , g(x) = 5 + 2x+ x2.

30. a) Нет; b) Нет; c) Да.

31. a) Да; b) Нет; c) Нет.

32. a) Да; b) Да; c) Да.

33. a) В базис входят вектора a1, a4. Коэффициенты разложения

векторов a2 = 2a1, a3 = −a1, a5 = −a1 + a4, a6 = −2a1 + a4; b) В базис

входят вектора a1, a3. Коэффициенты разложения векторов a2 = −3a1,

a4 = −a1 − 2a3, a5 = 2a1 + a3, a6 = 3a1 + a3; c) В базис входят вектора a1,

a3. Коэффициенты разложения векторов a2 = −2a1, a4 = 2a1 − a3,

a5 = −a3, a6 = −2a1 + a3.

34. a)


x2 + 3x3 = 0,

3x3 + x4 = 0,

x1 − 3x3 = 0.

b)

x1 + x3 = 0,

4x1 + x2 − 3x4 = 0.

c)

x1 − 5x2 + 7x4 = 0,

3x2 − x3 − 4x4 = 0.

35. a) базис суммы образуют, например, векторы a1, a2, b1. Базис

пересечения состоит из одного вектора c = 2a1 + a2 = b1 + b2 = (3; 5; 1);

b) базис суммы образуют, например, векторы a1, a2, a3, b2. Базис пересе-

чения, например, b1 = −2a1 + a2 + a3, b3 = 5a1 − a2 − 2a3.

36. a) Te→u =


−1 0 1

−1 −1 2

−1 −2 −1

 , xu = (0, 2,−2), ye = (−1,−3,−1),

b) Te→u =


0 1 −1

2 3 −1

1 1 −1

 , yu = (2,−2, 0), xe = (−5,−7,−4);
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c) Te→u =


−1 1 2

2 −1 1

−1 1 0

 , yu = (−1, 0,−2), xe = (−1,−6, 3).

37. a)


−1 0 3

1 −1 −2

1 −1 1

 . b)


3 1 1

3 3 2

1 1 0

 . c)


−1 −2 0

1 3 −1

−2 1 −1

 .

38. a)


3 −1 1 1

−1 −2 −2 −2

1 1 1 1

1 −1 −1 −2

 . b)


−1 1 −1 2

−1 −2 −1 −1

−1 0 1 −1

3 1 2 1

 .

c)


1 3 1 2

0 3 3 3

1 −1 1 −1

−1 −1 −2 0

 .

39. a) X = (1; 3; 1). b) X = (2;−2;−2). c) X = (3;−6;−6).

40. a) поменяются местами две строки; b) поменяются местами два

столбца; c) произойдет симметричное отражение матрицы относительно

ее центра.

41. a) u1 =


0

−2

−1

 , u2 =


−2

−2

−3

 , u3 =


2

1

2

 , f1 =


1

3

−2

 ,

f2 =


−2

0

3

 , f3 =


2

−2

−2

 . b) u1 =


3

1

−1

 , u2 =


2

3

2

 ,

u3 =


−1

−1

−1

 , f1 =


1

3

−2

 , f2 =


2

−2

1

 , f3 =


−1

3

−1

 .

c) u1 =


1

2

3

 , u2 =


1

2

−1

 , u3 =


−1

0

2

 , f1 =


−1

3

2

 ,
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f2 =


−1

3

1

 , f3 =


2

−1

0

 .

42. a), c), g), j), l), m) Нет. b), d), e), f), h), i), k) Да.

43. a) Да. b) Да. c) Нет. d) Нет. e) Да. f) Нет. g) Да. h) Да.

44. a) φ1 – линейный оператор, Aφ1
=


6 −5 −4

−3 −2 −1

0 1 2

; b) φ3 –

линейный оператор, Aφ3
=


5 −4 −3

2 −1 0

0 1 2

; c) φ2 – линейный оператор,

Aφ2
=


4 −3 −2

1 0 0

1 2 3

.

45. a) Ae =


0 3 −6

0 0 6

0 0 0

 , |Ae| = 0. b) Ae =


1 −2 4

1 2 4

1 3 9

 ,

|Ae| = 20. c) Ae =


1 3 4

1 1 6

0 0 1

 , |Ae| = −2. d) Ae =


1 1 0

1 3 6

0 0 1

 , |Ae| = 2.

e) Ae =


3 0 4

0 3 0

0 0 3

 , |Ae| = 27. f) Ae =


1 3 4

1 −2 15

0 0 1

 , |Ae| = −5.

46.

47. a)



0 1 0 . . . 0

0 0 2 . . . 0

. . . . . . . . . . . . . .

0 0 0 . . . n

0 0 0 . . . 0


; b)



0 1 0 . . . 0

0 0 1 . . . 0

. . . . . . . . . . . . .

0 0 0 . . . 1

0 0 0 . . . 0


;
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c)



0 1 −1 −1 . . . −1

0 0 2 −1 . . . −1

0 0 0 3 . . . −1

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . n

0 0 0 0 . . . 0


; d)



0 1 1 1 . . . 1

0 0 2 1 . . . 1

0 0 0 3 . . . 1

. . . . . . . . . . . . . . . .

0 0 0 0 . . . n

0 0 0 0 . . . 0


.

48. a)


2 −11 6

1 −7 4

2 −1 0

. b)


−6 11 5

−12 13 10

6 −5 −5

. c)


−3 0 1

1 2 1

−2 1 1

.

49. a)


2 −1 −1

1 −3 −3

−3 0 2

. b)


−4 −1 −3

−4 1 −2

1 2 4

. c)


−4 1 1

−2 1 2

1 2 0

.

50. a)


2 −2 −2

−1 4 4

2 −1 −2

. b)


1 0 −3

−1 1 1

−3 −2 2

. c)


−4 2 1

0 2 2

−3 3 1

.

51. a)


1 0 0

0 2 0

0 0 3

. b)


29 −41 −9

19 −27 −6

7 −9 −4

. c)


−2 −1 6

1 −1 −11

−4 −2 5

.

52. a)


−1 3 −4

4 0 1

3 1 −1

. b)


1 0 −3

−4 −2 3

1 1 3

. c)


4 −1 −2

−4 2 4

−1 −1 −2

.

53. a) A =


0 3 −2

0 2 4

5 2 0

; b) A =


0 −1 −1

0 1 −3

0 1 0

;

c) A =


2 0 −2

2 0 4

0 1 −2

; d) A =


2 0 0

0 2 0

0 0 2

.

54. a)

(
2 −1

−4 1

)
,

(
−1 −1

−1 4

)
. b)

(
4 −2

−4 −4

)
,

(
1 1

−4 −1

)
.
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c)

(
1 4

1 −4

)
,

(
4 −2

1 2

)
.

55. a)

(
4 −3

2 −2

)
,

(
−1 2

−2 3

)
. b)

(
−4 2

−2 −2

)
,

(
3 −1

−2 6

)
.

c)

(
−2 −4

−1 −7

)
,

(
6 1

1 4

)
.

56. a) φ−1(x) =


x1 + x2 + x3

−2x1 − x2 − 4x3

−x1 − 2x3

 . b) φ−1(x) =


x1 + x3

2x1 + x2 + 3x3

−3x1 − 2x2 − 4x3

 .

c) φ−1(x) =


x1 − x2 − x3

−3x1 + 4x2 + x3

−x1 + 2x2

 .

57. a) φ−1(f) = 8f ′′ + 3f ′ + f. b) φ−1(f) = 7f ′′ + 3f ′ + f.

c) φ−1(f) = 4f ′′ + 2f ′ + f.

58. a)

(
60 −12

48 12

)
; b)

(
0 0

0 0

)
; c)

(
25 −10

40 −15

)
; d)

1

4

(
−6 0

−5 −6

)
.

59. a) rank(φ) = 1; базис ядра Ker(φ) :


1

0

0

−2

 ,


0

1

0

0

 ,


0

0

1

−1

 ;

базис образа Im(φ) :


1

−1

0

2

 . b) rank(φ) = 2; базис ядра Ker(φ) :


1

1

0

0

 ,


1

0

0

1

 ; базис образа Im(φ) :


3

0

−1

−3

 ,


3

2

3

1

 . c) rank(φ) = 3;
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базис ядра


0

−1

−1

1

 ; базис образа


2

−1

−2

−2

 ,


1

0

−2

0

 ,


2

−1

2

2

 .

60. a) rank(φ) = 3; базис ядра Ker(φ) :

(
−1 0

−1 0

)
; базис об-

раза Im(φ) :

(
−2 0

2 0

)
,

(
−3 −2

0 2

)
,

(
0 2

−3 −2

)
. b) rank(φ) = 2;

базис ядра Ker(φ) :

(
1 −2

0 0

)
,

(
0 0

1 −1

)
; базис образа Im(φ) :(

−2 2

0 0

)
,

(
0 0

−1 2

)
. c) rank(φ) = 2; базис ядра Ker(φ) :

(
0 −1

1 0

)
,(

0 3

0 1

)
; базис образа Im(φ) :

(
3 1

1 0

)
,

(
0 0

0 1

)
.

61. a) rank(φ) = 3; базис ядра: 1+x; базис образа: 1, 6+4x−3x2,−18+

18x+ 15x2 + 4x3. b) rank(φ) = 1; базис ядра: 1, x, x2; базис образа: 1 + x.

c) rank(φ) = 2; базис ядра: 1 + 3x, 6 + 3x2 − x3; базис образа: 1, 4x+ x2.

62. a) λ1 = λ2 = 1. Собственные векторы имеют вид c(1,−1), где

c ̸= 0; b) λ1 = 0, λ2 = 2. Собственные векторы для значения λ1 = 0

имеют вид c(1,−1), а для λ2 = 2 – вид c(1, 1), где c ̸= 0; c) λ1 = λ2 = 0.

Собственные векторы имеют вид c(1,−1), где c ̸= 0; d) λ1 = −2 + i,

λ2 = −2 − i. Собственные векторы для значения λ1 = −2 + i имеют вид

c(1, i), а для λ2 = −2 − i – вид c(1,−i), где c ̸= 0; e) λ1 = i, λ2 = −i.
Собственные векторы для значения λ1 = i имеют вид c(1, 1 + i), а для

λ2 = −i – вид c(1, 1 − i), где c ̸= 0; f) λ1 = 2i, λ2 = −2i. Собственные

векторы для значения λ1 = 2i имеют вид c(1, i), а для λ2 = −2i – вид

c(i, 1), где c ̸= 0;

63. a) λ1 = λ2 = λ3 = −1. Собственные векторы имеют вид

c(1; 1;−1), где c ̸= 0; b) λ1 = λ2 = λ3 = 2. Собственные векторы име-

ют вид c1(1; 2; 0) + c2(0; 0; 1), где c1 и c2 не равны нулю одновременно;
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с) λ1 = 1, λ2 = λ3 = 0. Собственные векторы для значения λ1 = 1

имеют вид c(1; 1; 1), а для λ2 = λ3 = 0 – вид c(1; 2; 3), где c ̸= 0;

d) λ1 = λ2 = λ3 = 1. Собственные векторы имеют вид c(3; 1; 1), где

c ̸= 0; e) λ1 = 3, λ2 = λ3 = −1. Собственные векторы для значения

λ1 = 3 имеют вид c(1; 2; 2), а для λ2 = λ3 = −1 – вид c(1; 2; 1), где c ̸= 0;

f) λ1 = 5, λ2 = 3, λ3 = 1. Собственные векторы для значения λ1 = 5 имеют

вид c(1;−1; 1), для значения λ1 = 3 имеют вид c(1; 1;−1), для значения

λ1 = 1 имеют вид c(1; 1; 1), где c ̸= 0.

64. a) базис состоит, например, из векторов a1 = (3; 1; 3),

a2 = (0; 1; 3), a3 = (1; 2; 1), матрица в этом базисе имеет вид


−1 0 0

0 2 0

0 0 4

;

b) матрица к диагональному виду не приводится; c) базис состоит, на-

пример, из векторов a1 = (1;−1; 1), a2 = (1; 1;−1), a3 = (1; 1; 1), мат-

рица в этом базисе имеет вид


7 0 0

0 5 0

0 0 3

; d) базис состоит, например,

из векторов a1 = (1; 1;−1), a2 = (1;−1; 1), a3 = (1; 1; 1), матрица в этом

базисе имеет вид


5 0 0

0 1 0

0 0 3

; e) базис состоит, например, из векторов

a1 = (1; 1;−1), a2 = (1;−1; 1), a3 = (1; 1; 1), матрица в этом базисе имеет

вид


7 0 0

0 3 0

0 0 5

.

65. a) 5π/6; b) 3π/4; a) 2π/3; a) π/2.

66. a) Можно добавить векторы (2; 2; 1; 0), (5;−2;−6;−1); b) Можно

добавить векторы (1;−2; 1; 0), (25; 4;−17;−6).

67. a) Один из векторов ±
(
2
3 ;−

2
3 ;−

1
3

)
; b) Например,

(
1
2 ;−

1
2 ;

1
2 ;−

1
2

)
,(

1
2 ;−

1
2 ;−

1
2 ;

1
2

)
.

68. a) (1; 2; 2;−1), (2; 3;−3; 2), (2;−1;−1;−2); b) (1; 1;−1;−2),
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(2; 5; 1; 3).

69. a) Например, b1 = (2;−2;−1; 0), b2 = (1; 1; 0;−1). b) c)

70. a) y = 3a1 − 2a2 = (1;−1;−1; 5), z = (3; 0;−2;−1);

b) y = 2a1 − a2 = (3; 1;−1;−2), z = (2; 1;−1; 4).

72. a) 4y21 + 4y22 − 2y23; b) 6y21 + 6y22 + 9y23; c) y21 +
√
3y22 −

√
3y23.

73. a) 3y21 + 6y22 + 9y23; x1 = 2
3y1 −

1
3y2 +

2
3y3; x2 = 2

3y1 +
2
3y2 −

1
3y3;

x3 = −1
3y1 + 2

3y2 + 2
3y3; b) 5y21 − y22 − y23; x1 = 1√

3
y1 + 1√

6
y2 + 1√

2
y3;

x2 = 1√
3
y1 + 1√

6
y2 − 1√

2
y3; x3 = 1√

3
y1 − 2√

6
y2; c) 9y21 + 18y22 − 9y23;

x1 = 2
3y1 + 2

3y2 − 1
3y3; x2 = −1

3y1 + 2
3y2 + 2

3y3; x3 = 2
3y1 − 1

3y2 + 2
3y3;

d) 9y21 + 18y22 + 18y23; x1 = 1
3y1 − 2

3y2 + 2
3y3; x2 = 2

3y1 − 1
3y2 − 2

3y3;

x3 =
2
3y1+

2
3y2+

1
3y3; e) 3y

2
1−6y22; x1 =

2
3y1+

1
6

√
2y2+

1
2

√
2y3; x2 = 1

3y1−
2
3

√
2y2;

x3 =
2
3y1 +

1
6

√
2y2 − 1

2

√
2y3; f) 9y21 + 9y22 − 9y23; x1 =

2
3y1 +

1
2

√
2y2 +

1
6

√
2y3;

x2 =
1
3y1 −

2
3

√
2y3; x3 = 2

3y1 −
1
2

√
2y2 − 1

6

√
2y3.

74. a) λ > 2; b) |λ| <
√

5

3
; c) −0.8 < λ < 0; d) требуемых значений

λ не существует; e) требуемых значений λ не существует.
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