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Abstract—In terms of shrinking core model we discuss optimization problems, which occur in
supercritical fluid extraction of oil from polydisperse packed bed of ground plant material. We
determine the optimal way of packing the particles into the extraction vessel and solve a problem
of minimization of extraction time.
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Introduction. Supercritical fluid extraction (SFE) of oil from vegetable raw materials has recently
become one of the basic technological processes in food, biofuel, and pharmaceutical industry. During
SFE supercritical fluid (SF) (usually carbon dioxide or water) is pumped through a reactor unit filled
with the crushed seeds of oil-bearing crops. Moderate temperatures, absence of harmful solvent residues
(typical for traditional methods), and an easy way to separate the solvent from the extract [1] make SFE
attractive for practical use. Various mathematical models [2] have been proposed to predict the extraction
process. The so-called shrinking core (SC) model [3–7] can be considered physically as most feasible,
and has been employed in computational simulations [4, 5]. At the same time, analytical approaches
are also shown [5–7] to be useful in theoretical study of SFE processes. The paper generalizes these
results in several aspects. A complete analytical solution to the SFE problem is obtained for the
uniform distribution of polydisperse ground material in the extraction vessel (Item 2). In Item 3 we
determine optimum packing of ground particles along the vessel with respect to their size. The problem
of minimization of the full extraction time is solved in Item 4. Possible applications of the obtained
theoretical results in SFE technology are discussed in conclusion (Item 5).

1. Mathematical model of the extraction process. Let us introduce the time t and spatial
coordinate z varying from 0 to 1 along the vessel, from its inlet to outlet. Let F (a) be the overall
particle-size distribution function (ODF) of ground plant material with the distribution density f(a).
By definition, dF = fda is the volumetric fraction of particles with dimensionless size from a to a + da.
These functions depend on conditions and time of plant material milling. The model of the process is
presented in terms of solute concentration c(t, z) in the fluid phase and fraction s(t, z, a) of oil extracted
from particles of size a at the moment t in the cross-section z; 0 ≤ s, c ≤ 1.

Master equations for c and s take the following dimensionless form [7, 8]

∂c

∂z
=

∂

∂t

∫ ∞

0
s f(a) da,

∂s

∂t
=

d(s)
a2

(1 − c) . (1)

The first of them represents the mass balance of oil in the fluid phase outside particles, and the second
one describes the oil mass transfer from particles of size a in the packed bed to the pore space. The
driving force of this flux is the difference between the equilibrium oil concentration, assumed to be unity,
and the current local concentration c in the fluid phase. Cumulative diffusion coefficient d(s) depends
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on the particle shape of packed bed particles, and for the most important case of spherical (isometrical)
particles it is

d(s) =
0.5 (1 − s)1/3

1 − (1 − s)1/3
.

For flat (1D) and cylindrical (2D) particles coefficient d(s) is determined by

d1D(s) =
1
2s

, d2D(s) =
−1

ln(1 − s)
.

The following initial and boundary conditions complete equations (1)

s (0, z, a) = 0, c(t, 0) = 0. (2)

The so-called overall extraction curve (OEC) Y (t) (the fraction of available oil extracted from the
reactor at the moment t) is of the principal practical interest and is a focus of simulations. Along with
OEC it is convenient to consider the zonal oil fraction y(t, z) extracted from the packed bed interval [0, z]
at the time t

y (t, z) =
∫ t

0
c (t, z) dt.

Obviously, Y (t) = y(t, 1).
Integration of Eqs. (1) with respect to the time t and initial condition (2) directly leads to the problem

for y(t, z)
∂y

∂z
=

∫ ∞

0
s f(a)da, (3)

t − y = a2ϕ (s) . (4)

The function ϕ(s) is defined on the interval 0 < s < 1 and is determined by the integral

ϕ (s) =
∫ s

0

ds

d(s)
.

It increases monotonically from zero at s = 0 to unity at s = 1. The latter condition ϕ(1) = 1 can be
always satisfied by appropriate normalization of particle size a.

Let S be the inverse function of ϕ continued as unity for ϕ > 1. Then, the substitution of the inverse
relationship (4) into (3) reduces problem (1), (2) to solution of the ordinary differential equation for y(t, z)

∂y

∂z
=

∫ ∞

0
S

(
t − y

a2

)
f(a)da. (5)

The boundary condition

y(t, 0) = 0 (6)

follows from (2). Here the time t is a parameter.

2. Problem solution. Let us introduce the function k

k(τ) =
∫ ∞

0
S

( τ

a2

)
f(a)da,

which monotonically increases from zero at τ = 0 as

k(τ) ∼
√

τ , τ → 0

and tends to unity at τ → ∞. Accordingly, Eq. (5) takes the form of the ordinary differential equation
with separable variables

∂y

∂z
= k(t − y). (7)

RUSSIAN MATHEMATICS (IZ. VUZ) Vol. 59 No. 2 2015



50 EGOROV, SALAMATIN

The solution to this equation with boundary condition (6) consists of two branches: y = t when
z > z−(t), and y < t when z < z−(t). Integration of (7) in the latter case with account of (6) gives

z < z−(t) : z =
∫ t

t−y

dτ

k (τ)
.

The boundary z = z−(t) which separates two regimes is defined by the solution continuity

z−(t) =
∫ t

0

dτ

k (τ)
.

For the bounded particle size (a ≤ amax) there exists another boundary z = z+(t) in the parametric
(t, z)-plane which outlines the inlet part of the reactor with fully extracted particles

z < z+(t) : y = z,

and

z+ =
∫ t

t−z+

dτ

k (τ)
.

Due to properties of k, this equality is equivalent to k(t − z+) = 1. And from the definition of k it follows
that the minimum value of t − z+ is a2

max, i.e.,

z+ = t − a2
max.

Along with z−, z+ let us also introduce the duration t− of the initial (linear) extraction stage and the
time t+ of the complete extraction determined as

z−(t−) = 1, z+(t+) = 1 ⇔
∫ t−

0

dτ

k (τ)
= 1, t+ = 1 + a2

max.

In certain particular cases the above solution derived in quadratures can be rewritten in an explicit
analytical form. As an example, let us consider a problem of oil extraction from a monodisperse packed
bed of flat particles of half-thickness a0 when ϕ(s) = s2, k(τ) = min

(
1, τ1/2a−1

0

)
, and distribution

density is expressed by the Dirac delta-function f(a) = δ (a − a0). Invariance of problem (5), (6) with
respect to z-coordinate scaling allows in this case to express y(t, z, a2

0) via Y (t; a2
0) as y(t, z, a2

0) =
zY (tz−1, a2

0z
−1). Hence, the complete solution is fully represented by the OEC Y (t, a2

0).
The duration of the initial (linear) extraction stage is

t− =

{
1 − a2

0, a2
0 < 0.5;

0.25a−2
0 , a2

0 > 0.5.

Boundary curves t = t− (a0), t = t+ (a0) = 1 + a2
0 along with the curve t = t0 (a0) = a2

0 divide the
plane (t, a0) (solid lines on Fig. 1) into four parts A, B, C, and D. Y = t in the linear-extraction zone A;
the packed bed is depleted, Y = 1, in domain B; the respective non-linear part of OEC is determined in
zones C and D by

(t, a0) ∈ C : Y (t) =
√

t

a0
− 1

4a2
0

; (t, a0) ∈ D : Y (t) = t −
(

t − 1 + a2
0

2a0

)2

.

It is easy to verify that Y (t) and its first derivative are continuous across the domain boundaries for all
t ≥ 0.

Typical curves y (t) at different z (numbers above the lines) are presented on the Fig. 2. The upper
line (z = 1) is the OEC. All curves correspond to a0 = 1. Markers on the dashed line y = t indicate the
end of initial stage for the packed bed of height z, and markers on the dashed line y = t − a2

0 do the time
of full extraction for the fixed cross-section z of the packed bed.
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Fig. 1. A, B, C and D parts of the (t; a0)-plane for monodisperse pack of flat particles.

Fig. 2. Dependence of zonal oil fraction y of t at different z for the monodisperse packed bed of flat particles of size
a0 = 1.

3. Optimal particles packing along the vessel. Above results have been derived for the typical
in practice uniform distribution of particles along the vessel, when ground material is packed uniformly,
without being sorted in advance. The particle size distribution density f(a) is same for every cross-
section z. However, preliminary sorting, e.g., by sieving or using cyclones allows to obtain variable
particle-size distribution densities along the extraction vessel, versus spatial coordinate z. Hereinafter
this generalized density is designated as χ(z, a), and its variability is restricted by the mass conservation
of particles of a fixed size a

f(a) =
∫ 1

0
χ(z, a)dz. (8)
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Obviously, for the uniform particle distribution χ(z, a) = f(a), whereas to describe the general case, it
is only necessary to replace f(a) by χ(z, a) in the introduced SC model, in Eq. (5)

∂y

∂z
=

∫ ∞

0
S

(
t − y

a2

)
χ(z, a)da, (9)

leaving the same boundary condition (6) for y.

Among other properties of S-function, it is assumed that the related function

φ(x) =
x

S(x)
dS(x)

dx

does not increase in the interval 0 < x < 1. For spherical and cylindrical particles φ(x) monotonically
decreases, while for flat particles it remains constant in the interval.

Now we can consider a problem of OEC maximization on the set of packing functions under
constraint (8).

With this in mind, let us introduce a special locally monodisperse packing of the ground material
when each cross-section z of the packed bed contains particles of only one size decreasing with z from
the vessel inlet to its outlet. We call it locally monodisperse stratified (LMS) pack. The corresponding
particle-volume distribution density along the vessel is defined by the Dirac delta-function

χ(z, a) = δ (a − as(z)) ,

where as(z) is determined implicitly by the following equation:

z = 1 − F (as), 0 < F (as) < 1. (10)

Theorem 1. For every t LMS pack maximizes extraction yield Y (t).

Proof. First, let us assume the function φ(x) to be monotonically decreasing, and introduce a discrete
pack of particle sets with different size a1 < a2 < · · · < an and respective particle-volume distribution
densities p1(z), p2(z), . . . , pn(z) along the vessel. Every nonincreasing function can be considered as
a limit of decreasing functions, and every continuous particle distribution can be closely approximated
by a sequence of discrete packs. Consequently, in the general case of nonincreasing function φ(x) and
continuous distribution χ(z, a), the proof of the theorem can be directly deduced from the described
particular case.

For a discrete approximation of the distribution density, Eq. (8) takes the form of a differential
equation (DE)

∂y

∂z
=

n∑
k=1

S

(
t − y

a2
k

)
pk(z) (11)

and the proof of the theorem is based on the fact that any local rearrangement of particle distribution by
shifting a bigger-size fraction upflow, towards the vessel inlet, would lead to an increase of Y for every
moment t. Corresponding statements are formulated as two following lemmas.

Lemma 1 (local stratification). For any (defined above) basic discrete packing, let us introduce a
new locally stratified packing, which satisfies condition (8), coincides with the basic one outside
a small interval (z0, z0 + h) where 0 ≤ z0 < 1, and is given as

χ(z, a) = δ(a − an−k+1), zk−1 < z < zk, k = 1, 2, . . . , n,

zk = zk−1 + hpn−k+1, pk = h−1

∫ z0+h

z0

pk(z)dz,
(12)

inside this interval. Then the new packing provides for not smaller values of Y (t) for every
moment of time.
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Lemma 2 (swapping layers). Let the basic packing be defined in the h-interval at z0 coordinate as

χ(z, a) =

{
δ(a − a1), z0 < z < z0 + ξh;
δ(a − a2), z0 + ξh < z < z0 + h,

where 0 < ξ < 1, a1 < a2.
Then for the new locally swapped packing characterized by

χ(z, a) =

{
δ(a − a2), z0 < z < z0 + (1 − ξ)h;
δ(a − a1), z0 + (1 − ξ) h < z < z0 + h,

the amount of extracted oil at any moment of time is greater or equal to the one than that for the
basic one.

According to Lemma 1 it is possible to switch from any discrete basic packing to the locally
monodisperse pack and then, following Lemma 2, rearrange it to the LMS pack. Both steps do not
decrease OEC for every moment t.

Since proofs of both lemmas are practically identical, only the proof of the first one is given below.

Proof of Lemma 1. The notation y is kept for the sought-for function related to the basic packing,
and notation ỹ is used for the modified packing (12). Subscripts “in” and “out” mean the values
of any function at the inlet (z = z0) and outlet (z = z0 + h) cross-sections of the considered interval
z0 < z < z0 + h. Since both packs are identical at z < z0, it follows yin = ỹin. And if we show that
yout ≤ ỹout, then the lemma will be proved, because for both packings DEs (11) are also identical at
z > z0 + h, and according to the comparison theorem [9] for DEs y ≤ ỹ for z ≥ z0 + h (and for z = 1)
when yout ≤ ỹout.

To deduce the power series expansion for yout to the order of O
(
h3

)
, Eq. (11) is presented in the

discrete form

yout − yin = h
n∑

k=1

S

(
t − y

a2
k

)
pk + O

(
h3

)
, y =

yout + yin

2
. (13)

Taking into account that

S

(
t − y

a2
k

)
= Sk − S′

k

yout − yin

2a2
k

+ O
(
h2

)
, Sk = S

(
t − yin

a2
k

)
, S′

k = S′
(

t − yin

a2
k

)
,

instead of Eq. (13), we obtain

yout − yin = h

n∑
k=1

Skpk − h2

2

n∑
i=1

n∑
k=1

SiS
′
k

a2
k

pipk + O
(
h3

)
. (14)

Next, ỹout is calculated with the same accuracy level, as follows.

Repeating similar calculations for ỹk = ỹ(zk) in each interval (z0, z1), (z1, z2), . . . we sequentially
obtain

ỹ1 − yin = hSnpn − h2

2
SnS′

n

a2
n

pnpn + O
(
h3

)
,

ỹ2 − yin = h
n∑

k=n−1

Skpk

(
1 − h

2
S′

k

a2
k

pk

)
− h2 SnS′

n−1

a2
n−1

pnpn−1 + O
(
h3

)
, . . . ,

ỹout − yin = h

n∑
k=1

Skpk

(
1 − h

2
S′

k

a2
k

pk

)
− h2

n−1∑
k=1

n∑
i=k+1

SiS
′
k

a2
k

pkpi + O
(
h3

)
. (15)
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Finally, Eqs. (14) and (15) yield

ỹout − yout =
h2

2 (t − yin)

n∑
k=2

k−1∑
i=1

SiSk (φ(xk) − φ(xi)) pipk + O
(
h3

)
, (16)

φ(x) =
xS′(x)
S(x)

, xk =
t − yin

a2
k

.

Generally, when at least one of xk is in the interval (0, 1), the positiveness of ỹout − yout follows from
the monotonic decrease of φ(x). Two limiting cases have to be considered separately. The first one is
yin = t, and original equations show that ỹ(z) = y(z) = t for z ≥ z0.

The second case is x1 > x2 > · · · > xn ≥ 1. Hence, functions y(z) and ỹ(z) differ from yin by values
of the O (h)-order in the interval z0 < z < z0 + h, and for sufficiently small h

S

(
t − y

a2
k

)
= S

(
t − ỹ

a2
k

)
= 1, k < n. (17)

Let us assume for simplicity an = 1, z0 = 0. The function w = y − z is introduced further, and a
new spatial coordinate z = pnz is defined for the basic packing. Omitting the bar over z and taking into
account (17) the following DE is derived for w:

0 < z < h1 :
∂w

∂z
= g(w, z) = S

(
t − w − p−1

n z
)
− 1. (18)

The function w̃ = ỹ − z satisfies the following equation

0 < z < h1 :
∂w̃

∂z
= g̃(w̃, z) = S (t − w̃ − z) − 1 (19)

in the interval (0, h1), and according to (17) is constant in the interval (h1, h). Functions w and w̃
determined by Eqs. (18) and (19) have the same initial values yin at z = 0, and g̃(w, z) ≥ g(w, z).
According to the comparison theorem [9] for ordinary DE w̃(h1) ≥ w(h1). Consequently, yout =
w(h1) + h is not greater than ỹout = w̃(h1) + h. �

Following similar considerations as in the case of Theorem 1, it shows that the LMS pack of particles
is the optimal one among other possible distributions. Repeating the proof of the Theorem 1 one can
show that the inverse LMS (when particle size monotonically increases with z) is the worst one.

4. Minimization of the full extraction time. Full extraction time t+ is one of the most important
characteristics of the SFE efficiency. The smaller it is, the more efficient is the extraction process.
Obviously, for any overall particle distribution F (a), the LMS packing minimizes t+, and only such
packed beds are studied further.

The full extraction time can be defined in two different ways. On one hand, it is the minimum time
when function Y (t) = y(t, 1) becomes a unity. On the other hand, t+ is the maximum of the function
τ(z) (the moment of full extraction of all particles at the cross-section z). Equation (4) is valid for every
pack, and can be rewritten as

τ(z) = y(τ, z) + a2
M (z),

where aM (z) is the maximum particle size at the cross-section z. Consequently,

t+ = max
0≤z≤1

(
y(τ, z) + a2

M (z)
)
. (20)

For 0 ≤ y ≤ 1, Eq. (20) results in a2
max ≤ t+ ≤ 1 + a2

max, and, finally, gives

max
{
1; a2

max

}
≤ t+ ≤ 1 + a2

max. (21)

Universal inequalities (21) constrain the full extraction time for any overall distribution function F (a)
and different ways of packing. As it follows from (21) and Item 3, the uniform pack, χ(z, a) = f(a), for
every f(a) is the worst one with respect to the full extraction time. The same is true for the inverse LMS
pack. The following theorem, which estimates the full extraction time for the LMS pack, shows that t+
can take any value from the interval (21).
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Theorem 2. The full extraction time t+ for the LMS pack is

t+ = max
a≤amax

(
1 − F (a) + a2

)
.

Proof. Taking into account that y(t, z) ≤ z and that for LMS pack aM (z) = as(z), and replacing z
in (20) by (10), we have

t+ ≤ max
z

(
z + a2

s(z)
)

= max
a

(
1 − F (a) + a2

)
. (22)

On the other hand, y(t+, z) ≡ z, and Eq. (9) at t = t+ gives

1 = S

(
t+ − z

a2
s(z)

)
.

This means that the argument of S is greater or equal to unity for every z, and

t+ ≥ max
z

(
z + a2

s(z)
)

= max
a

(
1 − F (a) + a2

)
. (23)

Simultaneous inequalities (22), (23) prove Theorem 2.

Theorem 2 shows that the only distribution which delivers maximum value (21) to t+ is the monodis-
perse distribution f(a) = δ(a − amax) with particle size a = amax. But the lower boundary (which is of
interest) is attained on a wide set of distributions defined by the inequality F (a; amax) ≥ F∗(a, amax).
For amax > 1 the limiting distribution function is determined by the formula

amax > 1 : F∗(a; amax) = max(0, 1 − a2
max + a2).

However, for amax ≤ 1 the limiting distribution function does not depend on amax and is given as

amax ≤ 1 : F∗(a) = min
(
1, a2

)
.

As mentioned above, particle distribution function depends on milling time and conditions. By
definition, grinding 1 is more coarse (finer) than grinding 2 if the respective distribution functions are
such that F1(a) ≤ F2(a) (F1(a) ≥ F2(a)), and the inequality becomes strict for at least one particle
size a. In terms of the above definitions, Theorem 2 can be reformulated as two following statements.

Corollary 1. Minimum value of the full extraction time for LMS pack is t+ = a2
max at amax > 1. It is

attained if the grinding is not more coarse than that for F∗(a; amax).

Corollary 2. Global minimum of the full extraction time for the LMS pack is t+ = 1. It is attained if the
grinding is not more coarse than that for F∗(a).

It is of interest to note that for F (a) = F∗(a; amax) all particles in the vessel with LMS pack become
fully extracted simultaneously at t = t+.

Denoting the ratio of full extraction times for uniform and LMS packs as η, this value has been
estimated to evaluate the superiority of the LMS pack in comparison with the uniform packing.

Corollary 3. The advantage η is always lesser or equal to two. The upper limit is attained if and only if
amax = 1 and the corresponding grinding is not more coarse than F∗(a).

It should be emphasized that the minimum extraction time t+ = 1 and the maximum advantage
η = 2 which results from the substitution of the LMS pack for the uniform pack is attained when the
concentration of oil at the outlet cross-section of the vessel equals the equilibrium (set as unity here)
value throughout the whole extraction process

5. Conclusions. The principal results can be directly used for improving SFE technology. They
show that the normalized maximum particle radius amax is the principal parameter which determines
the full extraction time t+. For high values of amax this time only slightly depends on density f(a) and
type of particles packing, and it is on the order of a2

max.
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The essential (by two times) decrease in t+ can be attained only if the grinding is fine enough and
amax ≤ 1. In order to minimize full extraction time in this case, the LMS pack must be used and the
grinding should be not coarser than F∗(a). In the case of amax being less than unity further milling and
additional reduction of amax do not lead to decrease of the full extraction time t+.

The practical realization of the LMS pack assumes ground particles fractionation before the extrac-
tion, i.e., by sieving or using cyclones. Obviously, it requires additional inputs, and the question of their
payback should be studied in advance.
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