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Abstract—Types of bifurcations of zeros for the gradient of a hyperbolic derivative of a holomorphic
function on the unit disk are determined, provided that the derivative is embedded in the family of level
lines of the given function. The character of the dependence of the motion of zeros on the curvature of
the hyperbolic derivative is described, which makes it possible to extend the Poincaré–Hopf theorem
so as to obtain a class of new uniqueness conditions for zeros in the form of nonnegativity conditions
on curvature-type functionals. This class contains a one-parameter series of Epstein inequalities
obtained from the Behnke–Peschl linear convexity condition for Hartogs domains of special form. A
specific rigidity effect arises; namely, the inequalities mentioned above are meaningful only on a finite
interval of parameters.
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INTRODUCTION

According to Riemann’s theorem, a normalized conformal mapping F from a hyperbolic domain
D ⊂ Ĉ onto a disk ER generates a surface (in R

3) over D [1, p. 32]. This surface, R = RD(z), is
characterized by that each of its level lines is the radius R of the target ER, whose center is the F-
image of the current point on the line. The value RD(z) is called the (inner) conformal radius of the
domain D at the point z [2, p. 26].

By means of a biholomorphism f : D → D, this situation can be transferred to the space over the unit
disk D = {ζ ∈ C : |ζ| < 1}, so that the conformal radius at the point f(ω) turns out to be equal to the
value of the function

hf (ζ) = (1 − |ζ|2)
∣
∣f ′(ζ)

∣
∣ (1)

at the point ζ = ω ∈ D [2, p. 28], [3]). For a given domain D, the choice of such f is unique up to an
automorphism of D; thus, (1) give a complete information about the conformal radius of the domain D.

The study of quantity (1) with an arbitrary holomorphic function f on D puts correspondences
f �→ hf , which substitute correspondences D �→ RD for various classes of domains in the initial D-
setting, in the forefront. In this f-approach, quantity (1) is called the hyperbolic derivative, or the
Bloch derivative, of the function f (see, e.g., [4, 5]). As is known, the extrema of (1) “formalize
obstructions” in studying the well-posedness of a number of problems in mathematical physics and
function theory (see [6] and the bibliography in [7]). The difference between the representations R =
RD(z) and h = hf (ζ) (which are usually identified by means of z = f(ζ)) plays an essential role in
expressing their Gaussian curvatures in terms of ζ ∈ D; the nonnegativity of these curvatures leads to
the conditions [8]

∣
∣{f, ζ}

∣
∣ ≤

∣
∣−2/(1 − |ζ|2)2 + (1/2)|(f ′′/f ′)(ζ) − 2ζ/(1 − |ζ|2)|2

∣
∣, ζ ∈ D, (2)
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where {f, ζ} = (f ′′/f ′)′(ζ) − (f ′′/f ′)2(ζ)/2 is the Schwarz derivative of the function f at the point ζ ,
and |{f, ζ} + 2(lnhf (ζ))ζ(f ′′/f ′)(ζ)| ≤ | − 2/(1 − |ζ|2)2 + 2|(lnhf (ζ))ζ |2| for ζ ∈ D. A similar “recal-
culation” for the logarithms lnR and lnh gives the inequalities

∣
∣{f, ζ} − (1/2)((f ′′/f ′)(ζ) − 2ζ/(1 − |ζ|2))2

∣
∣ ≤ 2/(1 − |ζ|2)2, ζ ∈ D, (3)

and |(f ′′/f ′)′(ζ) − 2ζ2
/(1 − |ζ|2)2| ≤ 2/(1 − |ζ|2)2, ζ ∈ D.

A general approach to constructing similar conditions was outlined by Kinder in [9] in relation to the
uniqueness problem for critical points of function (1) (see Section 1); in [8], case (2) was completely
studied. In this paper, in the framework of this problem, we study conditions of the form

J(f, ζ) ≥ 0, ζ ∈ D, (4)

for holomorphic functions f on D and J = Gα, Iβ and Kγ , where

Gα(f, ζ) +
∣
∣{f, ζ} + (3/2 − α)[(f ′′/f ′)2(ζ) − 4ζ2

/(1 − |ζ|2)2]
∣
∣

= Iβ(f, ζ) +
∣
∣{f, ζ} + 2(2β − 1)(lnhf (ζ))2ζ

∣
∣

= Kγ(f, ζ) +
∣
∣(f ′′/f ′)′(ζ) − γζ

2
/(1 − |ζ|2)2

∣
∣ = 2/(1 − |ζ|2)2.

One of the reasons why we take the class H of holomorphic functions on D for the domain of the
functionals J is that condition (4) (unlike, e.g., (2)) is surely violated for meromorphic functions on D

when J coincides with one of the functionals Gα (with α �= 3/2), Iβ (with β �= 1/2), and Kγ . In the case
J = G3/2 = I1/2, we obtain Nehari’s well-known inequality

∣
∣{f, ζ}

∣
∣ ≤ 2/(1 − |ζ|2)2, ζ ∈ D, (5)

which ensures the uniqueness of the critical point of (1) for meromorphic f (this point coincides with
the pole of f ). For establishing uniqueness in the case of holomorphic f in (5), a number of methods
were suggested in [5, 10–13]. We mention two of them, namely, the method of radial superposition
used in [10] and developed in [11] and the method of bifurcations of parametric families [13, 14], which
is related to a version of the Poincaré–Hopf theorem constructed in [15, 16] for the vector field ∇hf .
In this paper, both methods are compared as applied to the proof of the (at most) uniqueness of the
critical point of (1) for functions f ∈ H satisfying the inequality Iβ(f, ζ) ≥ 0, ζ ∈ D, in which the weak
linear convexity condition on special Hartogs domains in C

2 being a version of Epstein’s condition [17]
arises (see Section 3). The application of the bifurcation method is simplified at the expense of the a
generalization of the above-mentioned version of the Poincaré–Hopf theorem (Theorem 1).

An accompanying question is whether condition (4) is well defined for f ∈ H . Let H0 = {f ∈ H :
f ′(ζ) �= 0, ζ ∈ D} be the class of holomorphic locally univalent functions on D. It is easy to verify that,
for J = Gα, Iβ , or Kγ , the fulfillment of condition (4) for a holomorphic function f on D not being
identically constant implies f ∈ H0. Thus, unless otherwise specified, we assume that all functions under
consideration are locally univalent in D. An important aspect of conditions of the form (4) being well
defined is the question of whether such conditions are meaningful. Answering this question turns out to
require the application (in the spirit of [18]) of Plesner’s classical theorem; nevertheless, it is convenient
to use the following definition.

A functional J : H0 × D × R → R : (f, ζ, ω) �→ Jω(f, ζ) generating the family of classes Jω = {f ∈
H0 : Jω(f, ζ) ≥ 0, ζ ∈ D} is said to be rigid in the parameter ω, or simply rigid, if the set Ω = Ω(J) =
{ω ∈ R : Jω �= ∅}, which is called the support of the functional J , is an interval of R.

The crucial role played by the Nehari functional

G3/2(f, ζ) = I1/2(f, ζ) = 2/(1 − |ζ|2)2 −
∣
∣{f, ζ}

∣
∣

and the related inequality (5) in setting the problem of constructing functionals J with the property that
J ≥ 0 implies the uniqueness of the extremum of (1) can be clarified by, e.g., the following observation.
At the elements of

Mf = {a ∈ D : (∂hf/∂ζ)(a) = 0},
that is, the sets of critical points of (1) for f ∈ H0, the Nehari functional coincides both with the
functionals Gα, Iβ , and Kγ (no matter what the parameter values are) and with the functionals
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generating inequality (2) and (3) and their analogues. The effectiveness of the setting mentioned above
is related to the extension of the set of situations in which the following “metatheorem” is valid; already
during the work on papers [11] and [9], this assertion proved a guiding conjecture [19] rather than an
ordinary assumption.

M.I. Kinder’s conjecture. Let J : H0 × D → R be a functional with the property

signJ(f, a) = signI1/2(f, a), a ∈ Mf , f ∈ H0, (6)

and let the class J = {f ∈ H0 : J(f, ζ) ≥ 0, ζ ∈ D} be nonempty. Then f ∈ J and kf < ∞ imply
kf ≤ 1.

Here, kf = #Mf is the number of elements in Mf . The case kf = ∞ can occur in only two situations,
when Mf contains analytic arcs (with endpoints in ∂D for f ∈ H0) [20] and when Mf is discrete and has
a limit point in ∂D [21].

1. VERIFICATION OF THE CONJECTURE

The special role played by the functional I1/2 in the setting under consideration is based on that
this functional, as well as K2, is a sign-defining factor in the expression for the curvature Kf (ζ) of the
function lnhf (ζ) at the elements of Mf :

Kf (a) =
[

2/(1 − |a|2)2 +
∣
∣{f, a}

∣
∣
]

I1/2(f, a), a ∈ Mf . (7)

We also mention the relation Kf (ζ) = [1 + |F |2]−2Jf (ζ) for ζ ∈ D, where Jf (ζ) = (|Fζ |+ |Fζ |)K2(f, ζ)
is the Jacobian of the vector field ∇lnhf (ζ) � F = 2(lnhf )ζ and F = F (ζ, ζ) = f ′′(ζ)/f ′(ζ) − 2ζ/(1 −
ζζ) is the Gakhov mapping with zero set Mf [6].

A more delicate characteristic of the surface h = hf (ζ) in a neighborhood of the isolated elements of
Mf is the index

γf (a) = −(2πi)−1

∫

|ζ−a|=ρ

dln(hf )ζ

of a point a ∈ Mf singular for the vector field ∇hf (ζ); Mf
⋂
{|ζ − a| ≤ ρ} = {a}. As is known [15, 16],

γf (Mf ) ⊂ {±1, 0}. Setting mε
f = #{a ∈ Mf : γf (a) = ε1}, we obtain kf = m+

f + m0
f + m−

f . A united
classification of the isolated elements Mf (f ∈ H0) is as follows (see, e.g., [6]).

Proposition 1. On the discrete part of Mf , the relations γf (sgnKf = ±1) = sgnKf and
γf (sgnKf = 0) ⊆ {−1, 0 + 1} hold; moreover, sgnKf◦φ(a) = sgnKf (φ(a)) and γf◦φ(a) = γf (φ(a)),
where a ∈ Mf and φ is an automorphism of D. The surface h = hf (ζ) over the elements Mf � a �
(sgnKf (a), γf (a)) admits the following structure: (+1,+1) is an elliptic maximum (a umbilic if
{f, 0} = 0); (0,+1) is a parabolic maximum; (0, 0) is a parabolic half-saddle; (0,−1) is a parabolic
saddle; and (−1,−1) is a hyperbolic saddle. All of these cases are realizable.

As the point of departure in studying the conjecture stated above the following version [15, 16]
of the classical Poincaré–Hopf theorem ([22, p. 223]) can be considered, in which B0 = {f ∈ H :
limζ → ∂Dhf (ζ) = 0} is the small Bloch class.

Proposition 2. If f ∈ B0
⋂

H0 and kf < ∞, then
∑

a ∈ Mf
γf (a) = m+

f − m−
f = 1.

Remark 1. The example of a function f ∈ B0
⋂

H0 with countable Mf constructed in [21] shows that
the second condition kf < ∞ in this proposition cannot be removed at the expense of the first condition.

To prove the conjecture in a special case, in [9], the class F of functions f ∈ H , reconstructible from
the representations lnf ′(ζ) = (1/2π)

∫ 2π
0 p(θ)(eiθ + ζ)/(eiθ − ζ)dθ with p ∈ C[0, 2π] was introduced.

The following assertion is valid.
Proposition 3. Let J : H0 × D → R be a functional with property (6), and let f ∈ F be a

function satisfying the strict inequality (4), that is, such that

J(f, ζ) > 0, ζ ∈ D. (8)
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Then kf = 1.
The relation f ∈ F ensures the simultaneous fulfillment of both conditions in Proposition 2. The

application of this proposition with taking into account (6) (as well as (7) and Proposition 1) proves
Proposition 3: m−

f = m0
f = 0 and kf = m+

f = 1.

As an illustration of this assertion, in [9], strict versions of the following inequalities with ζ ∈ D were
suggested:

(A) G0(f, ζ) ≥ 0;
(B) L3/2(f, ζ) ≥ 0, where Lδ(f, ζ) = 1/(1 − |ζ|2) − |ζ|

∣
∣(f ′/f ′′)(ζ){f, ζ} + 2δ(lnhf (ζ))ζ

∣
∣;

(C) |ζ|
∣
∣(f ′′′/f ′′)(ζ) − 3/2(f ′′/f ′)(ζ)

∣
∣ ≤ 1/(1 − |ζ|2);

(D) |ζ|2
∣
∣2(f ′/f ′′)′(ζ) + 1

∣
∣ ≤ 1.

The following proposition is valid.
Proposition 4. The functionals G : (f, ζ, α) �→ Gα(f, ζ) and L : (f, ζ, δ) �→ Lδ(f, ζ) are rigid

with respect to theirs parameters with supports |2α − 3| ≤ 1 and |δ| ≤ 1/2, respectively. In
particular, inequalities (A) and (B) are not meaningful (in the class H).

Proof. According to Plesner’s classical theorem [23], there exists a point on ∂D and a sequence of
elements of D converging to this point such that the corresponding sequence of values of the holomorphic
function (f ′′/f ′)′ + (1−α)(f ′′/f ′)2 has a finite limit. Performing the corresponding passage to the limit
in the inequality (1 − |ζ|2)2Gα(f, ζ) ≥ 0 (ζ ∈ D), we obtain |2α − 3| ≤ 1. The rigidity of the functional
L is proved in a similar way. �

The functionals corresponding to (C) and (D) are defined on H \ {aζ + b : a, b ∈ C}; in case (C), the
condition f ∈ H0 holds automatically, and in case (G), it is imposed additionally; then, in both cases,
ζ = 0 cannot be a umbilic. The fulfillment of conditions (C) and (D) is obvious for, e.g., fractional-
linear f (both inequalities are strict) and for functions of the form f(ζ) = a + bfs(εζ), where fs(ζ) =
(1/2)ln((1 + ζ)/(1 − ζ)) (f(D) is a strip), a, b ∈ C, and |ε| = 1; in (C), the equality is attained on a
diameter of D, and in (D), everywhere in D. If 0 ∈ Mf , then the strict inequality (C) can hold only if
0 < |ζ| < 1: at the point ζ = 0, the left-hand side of (C) equals

∣
∣{f, ζ}

∣
∣/

∣
∣(f ′′(ζ)/f ′(ζ))/ζ

∣
∣∣
∣ζ=0

= 1.

If f ′′(0) �= 0, then case (D) can be simplified by applying Schwarz’ lemma to the inequality
|ζ2u′(ζ)/u2(ζ)| ≤ 1, where ζ ∈ D, which is equivalent to (D), because

f ′′(ζ)/f ′(ζ) = 2u(ζ)/(1 − ζu(ζ)). (9)

Estimate (D) turns out to be strict; the special cases u′/u2 ≡ −1, u′/u2 ≡ 1, and u′/u2 ≡ 0 are
exemplified by, respectively, f(ζ) = eτζ ∈ F (τ ∈ R \ {0}) with kf = 1,

f(ζ) = ln(1/(1 − ζ)) ∈ B \ B0, and f(ζ) = 1/(1 − ζ) /∈ B, (10)

where B = {f ∈ H : supζ ∈ Dhf (ζ) < ∞} is the Bloch class. In the two last cases, we have kf = 0.
Thus, the strictness of (D) alone does not ensure the presence of critical points for the function (1) in D.

When f ′′(0) = 0, a new effect arises; namely, the point 0 ∈ Mf is essentially nonelliptic: the condition
|{f, 0}| ≥ 2 coincides with (D) for ζ = 0. The parabolic case |{f, 0}| = 2 is exhausted by a family
outside F containing fs, which can be written explicitly. An example of a function f ∈ F with 0 ∈ Mf

and strict estimate (D) is obtained from (9) for at 1/u(ζ) = 1/(αζ) + φ(ζ), where α > 2, φ′(ζ) =
(1 − 1/α2)(1 − ζ2/α)−1, and φ(0) = 0. Here,

f ′′(ζ)/f ′(ζ) = 2αζ/(ϕ(ζ) + ψ(ζ))

with

ϕ(ζ) = 1 − ζ2/α, ψ(ζ) = (1 − 1/α2)ζ

ζ∫

0

t2(1 − t2/α)−1dt.

It is easy to show that
∣
∣ϕ

∣
∣∣
∣∂D

≥ 1 − 1/α > (1 + 1/α)/3 ≥
∣
∣ψ

∣
∣∣
∣∂D

at α > 2; the absence of poles for

f ′′/f ′ in D is now established by using Rouché’s theorem.
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As a result, we obtain the following sharpening of the corollary to Theorem 5 from [9].
Proposition 5. For f ∈ F , the strict estimate (C) gives 0 /∈ Mf and kf = 1, and the strict

estimate (D) gives kf = 3 if 0 ∈ Mf and kf = 1 if 0 /∈ Mf .
Proof. In both cases, if 0 /∈ Mf , then we can apply at once Proposition 3. Suppose that, for f ∈ F ,

the strict estimate (D) holds and 0 ∈ Mf . As mentioned above, in this case, we have |{f, 0}| > 2,
that is, Kf (0) < 0. By virtue of Proposition 1, γf (0) = −1. We have m−

f = 1 and m0
f = 0, because for

a ∈ Mf \ {0}, the strict inequality (D) is precisely the strict inequality (5), that is, Kf (a) > 0, and hence,
γf (a) = +1. Proposition 2 implies m+

f = m−
f + 1 = 2 and kf = m+

f + m−
f = 3. �

Remark 2. Change (9) allowed S.R. Nasyrov to simplify the proof of (5) in the class S0 of normalized
convex functions on D (see [11, 24]) and F.G. Avkhadiev, who revealed this property of S0 in [25], to
completely describe the class of functions satisfying condition (2) [8].

2. GENERALIZATION OF THE POINCARÉ–HOPF THEOREM

In [26, p. 117], the following version of the Poincaré–Hopf theorem for the unit disk is given.

Lemma 1. Suppose that a vector field continuous on D and continuously differentiable on D is
directed outside D at all points of ∂D and vanishes on a set M ⊂ D. If the Jacobian of the field is
positive on M , then M is a singleton.

For the vector field ∇lnhf (considered in this paper) with f ∈ H0, Lemma 1 can be strengthened by
removing the boundary condition. Namely, the following generalization of Proposition 3 is valid.

Theorem 1. If f ∈ H0, Mf is nonempty, and γf (Mf ) = +1, then kf = 1.
We need the following result of [13] about bifurcations of the elements of the sets Mr := Mfr for the

family fr(ζ) = f(rζ) of “level lines” of a function f ∈ H0, in which every fr is defined for |ζ| < 1/r, where
r ∈ (0,+∞). We set R = Rf =

⋃

r ∈ (0,+∞) Mr × {r}, Kr = Kfr , γr = γfr , g(ζ) = ζf ′′(ζ)/f ′(ζ),

and gr(ζ) = g(rζ).
Lemma 2. Suppose that f ∈ H0 and α is an isolated element Mρ with 0 < ρ ≤ 1 being a zero

of multiplicity k for the function gρ(ζ) − gρ(α).
(1) If α �= 0 or α = 0 and Kρ(α) = 0, then the foliation R near the point (α, ρ) consists of k

(k = 2 for α = 0) analytic curves intersecting in this point. Moreover, the index γ : (a, r) �→
γr(a) does not vanish on R \ {(α, ρ)} near (α, ρ), and the number kr = #{Mr

⋂
(sufficiently small

neighborhood of α)} equals k for all r �= ρ close to ρ or has a jump of 2 at ρ.
(2) The relation Kρ(α) �= 0 is stable with respect to the “perturbations” fr of the function fρ

at r close to ρ: Kr(ar) �= 0, where ar is the (unique) element of Mr such that aρ = α (ar = 0 for
α = 0). If α �= 0, then, as r increases near ρ, the absolute value |ar| increases (if Kρ(aρ) > 0) or
decreases (if Kρ(aρ) < 0).

(3) Let Kρ(α) = 0. For k = 1 (except in the “stable” situation where kr = 1 for r close to ρ, in
which |γρ(α)| = 1), the birth or annihilation of one maximum and one saddle at (α, ρ) may occur
provided that γρ(α) = 0. If α = 0, then 0 ∈ Mf for all r ∈ (0,+∞) with γr(0) = sgn(ρ − r), r �= ρ,
and kr = 2 + γρ(α)sgn(r − ρ) for r �= ρ near ρ.

In what follows, we denote birth by the symbol ∪; the symbol Ψ is used when a maximum (for
r ≤ ρ) decomposes into two maxima and a saddle (for r > ρ). We set R(I) =

⋃

r ∈ I Mr × {r}, where
I ⊆ (0, 1] and consider the functional r = rf = sup{ξ ∈ (0, 1] : r ∈ (0, ξ] =⇒ kfr = 1} of the first exit
from the set H = {h ∈ H0 : kh = 1} along the level lines of the function f . The quantity r is bounded
away from zero by the convexity radius of the function f ; therefore, r > 0.

Let R = {r ∈ (0, 1) : 0 ∈ Kr(Mr)}. It is easy to show by using Lemma 2 that the set R is at most
countable and can have at most one limit point (r = 1). Next, R(0, r) is a simple Cω-curve admitting
the parameterization (a(r), r), where r ∈ (0, r), in which ζ = a(r) is a continuous function such that
limr→0+a(r) = 0, γr(a(r)) = +1, and its absolute value and argument are (piecewise if (0, r)

⋂
R �= ∅)

real analytic. Moreover, either a(r) ≡ 0 or |a(r)| increases with respect to the parameter r.
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If r < 1, then Mr consists of the point a(r) = limr → r−a(r) with γr(a(r)) = +1 and at most finitely
many points with index zero. The latter points, if exist, give bifurcations of type ∪. The point a(r) can
generate a bifurcation only of type Ψ (this always occurs if Mr = {a(r)}). In the case f ′′(0) = 0, for
ρ ≥ r, we define the additional set R′

ρ = R[r, ρ] \ ({0} × [r, ρ]) and the quantity μρ = inf(a,r)∈R′
ρ
|a|.

Lemma 3. If f ∈ H0, 0 ∈ Mf , γf (0) = +1, and r < 1, then the function μ : ρ �→ μρ is right contin-
uous and decreases on [r, 1]. If aρ is an element of Mρ with |aρ| = μρ and r ≤ ρ ≤ 1, then γρ(aρ) = −1
for ρ /∈ R and γρ(aρ) �= +1 for ρ ∈ R.

Proof. It is sufficient to verify the nonemptiness of R′
ρ for ρ ∈ [r, 1] for ρ = r. According to Lemma 2

(α = 0), the conditions γf (0) = +1 and r < 1 imply that Mr × {r} has points of type ∪, that it,
Mr \ {0} �= ∅. Therefore, μ is well defined and 0 ≤ μρ < 1 for ρ ∈ [r, 1]. The relation μρ = 0 would
mean that R′

ρ has a limit point in {0} × [r, 1]. By Lemma 2, this point must be (0, 1), which is
impossible, because γf (0) = +1. Next, take (an, rn) ∈ R′

ρ such that |an| → μρ. The convergence of the
subsequences an′ → aρ and rn′ → rρ(∈ [r, ρ]) implies |aρ| = μρ ∈ (0, 1), whence aρ ∈ D \ {0}. Finally,
the relation (aρ, rρ) ∈ R[r, ρ] follows from the continuity of the Gakhov mapping, and aρ �= 0 implies
(aρ, rρ) ∈ R′

ρ, that is, aρ ∈ Mrρ \ {0} with rρ ≤ ρ.

Let us show that aρ is an element of Mρ \ {0} with ρ ∈ [r, 1]. Suppose that rρ < ρ. Then, by
Lemma 2, there are two possibilities for some neighborhood U × V ⊂ D × [r, ρ) of the point (aρ, rρ):
1 ∈ γr(Mr

⋂
U) for all r < rρ from V or −1 ∈ γr(Mr

⋂
U) for all r > rρ from V . In each of these

cases, there exists a branch of a Cω-curve from R of the form (a(r), r) with a(rρ) = aρ, where r ranges
over the corresponding half-neighborhood V

⋂
{r ≷ rρ}. For r �= rρ, the derivative d|a(r)|/dr has sign

sgnKr(a(r)) = γr(a(r)) = sgn(rρ − r) (see Lemma 2 in Section 2 and Proposition 1); therefore, in
the half-neighborhood mentioned above, the inequality |a(r)| < μρ must hold, which contradicts the
definition of μρ. Thus, rρ = ρ and aρ ∈ Mρ \ {0}. Moreover, |aρ| = min{|a| : a ∈ Mρ \ {0}}, ρ ∈ [r, 1]
by the definition of the quantity μρ.

It follows from these considerations that γρ(aρ) �= +1 and the function μ is monotone. Indeed, by
virtue of Lemma 2, if γρ(aρ) = +1, then one of the possibilities specified above (1 ∈ γr(Mr

⋂
U) for all

r < rρ = ρ from V ) is realized. For ρ /∈ R, the obtained inequality is sharpened as γρ(aρ) = −1, because
in this case, 0 /∈ γρ(Mρ). Now, let us prove the implication r < ρ ⇒ μr > μρ. It was established above
that if a ∈ Mr \ {0} for r ≤ ρ and |a| = μρ, then r = ρ. This means that a ∈ Mr \ {0} with r < ρ implies
|a| > μρ, whence μr = |ar| > μρ. Since the function μ decreases, it is right continuous at the points of
[r, 1)

⋂
R. We use Lemma 2 and the continuity of μ outside R as the lower envelope of a finite family of

Cω-functions on each of the intervals forming [r, 1) \ R. �

Proof of Theorem 1. By virtue of Proposition 1, we can assume that 0 ∈ Mf . Suppose that kf > 1.
If r = 1, then the elements of the set Mf \ {0} generate bifurcations of type ∪, that is, γf (Mf \ {0}) = 0.
If r < 1, then, according to Lemma 3, the index of the element of Mf \ {0} nearest to zero is different
from +1. In both cases, we arrive at a contradiction, which proves the theorem.

Lemma 2 makes it also possible to prove the star-shapedness of the class H
⋂
{f ∈ H0 : f ′′(0) = 0}

along the level lines. Namely, is the following corollary is valid.
Corollary 1. If f ∈ H0, Mf = {0}, and γf (0) = +1, then kfr = 1 for r ∈ (0, 1).
Proof. Suppose that there exists an r̃ ∈ (0, 1) such that kfr̃

> 1. Then r ≤ r̃ < 1; therefore, by
Lemma 3, for any ρ ∈ [r, 1], the set Mρ \ {0} is nonempty, which cannot be for ρ = 1. �

The following example demonstrates that the condition f ′′(0) = 0 in Corollary 1 is essential.

Example 1. Consider the level lines of a function f(∈ H0) with f ′′(ζ)/f ′(ζ) = (1/2)/(1 − ζ)2. A
simple routine analysis shows that the foliation Rf over (0, 1] consists of only one Cω-curve (ρ, r(ρ)),
where ρ ∈ (0, 1]. In addition to the end extrema 0 and 1, the function r = r(ρ) has two interior extrema,
namely, the maximum rm =

√
3/2 at the point ρ = 1/

√
3 and the minimum r = (2/3)

√

5/3 at ρ =
√

3/5. Take any r0 ∈ (rm, 1). We have kfr0
= 1, but kftr0

≥ 2 for r/r0 ≤ t ≤ rm/r0.

Theorem 1 fully confirms the strict version of Kinder’s conjecture. Namely, the following assertion is
valid.
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Corollary 2. Let J : H0 ×D → R be a functional with property (6), and let f ∈ H0 be a function
satisfying inequality (8). Then kf ≤ 1.

Proof. If Mf �= ∅, then inequality (8) and property (6), together with (7) and Proposition 1, ensure
the discreteness of Mf [27, p. 209] and the fulfillment of the condition γf (Mf ) = +1. By Theorem 1, this
implies kf = 1. �

Corollary 3. Let J : H0 × D → R be a functional with the following properties:
(1) f ∈ J ⇒ I1/2(fr, a) > 0, where a ∈ Mfr and r ∈ (r0, 1), for some r0 = r0(f) ∈ [0, 1);

(2) f ∈ J ⇒ f ◦ φ ∈ J for each automorphism φ of the disk D.
Then, for any function f ∈ J , either kf ≤ 1 or Mf contains a continuum.
Proof. Suppose that Mf is nonempty (kf ≥ 1) and discrete (otherwise, according to [20], Mf

contains a continuum). Let us show that kf = 1.
Note at once that, by virtue of Proposition 1 and Theorem 1, property (1) can be extended as

f ∈ J ⇒ kfr = 1 for r ∈ (r0(f), 1).
Take any a ∈ Mf . If Kf (a) > 0, then γf (a) = +1. Suppose that Kf (a) = 0. Consider the function

f̃ = f ◦ φ (∈ J by virtue of condition (2) in this corollary), where φ is an automorphism of D such
that φ(0) = a. We have 0 ∈ M

f̃
and K

f̃
(0) = 0 by proposition 1; moreover, it follows from the above

considerations that k
f̃r

= 1 for r ∈ (r0(f̃), 1). According to Lemma 2, this implies that ζ = 0 is a
bifurcation point of type Ψ (for r = 1) in the foliation R, and hence (by Proposition 1), γf (a) = γ

f̃
(0) =

+1.
Thus, γf (Mf ) = +1, which implies kf = 1 by Theorem 1. �

Remark 3. The result obtained above remains valid when implications (1) and (2) are replaced by the
conditions (1′) J(f, a) ≥ 0 (> 0) ⇒ I1/2(f, a) ≥ 0 (> 0) for a ∈ Mf and f ∈ H0; (1′′) J(fr,Mfr ) > 0 for
r ∈ (r0, 1) and f ∈ J ; and (2′) J(f, a) = 0 ⇒ g′(a) = 0 for a ∈ Mf and f ∈ J (g = ζf ′′/f ′). It can be
shown that the functionals Gα and Kγ satisfy (1′′) with r0 = 0 (provided that the parameters values are
in the supports) and even the more restrictive condition J(fr, ζ) > r2J(f, rζ) for r ∈ (0, 1) and ζ ∈ D

(which is equivalent to Ahlfors’ inequality [17] in the case J = G1 = K2). Corollary 3 and its analogue
thus obtained generalize the constructions of uniqueness conditions of the form (4) given in [13]
and [28] for the functionals J = I1/2 and J = 2/(1 − |ζ|2) − |(f ′′/f ′)′(ζ)|, respectively, and distinguish
the situation in which Kinder’s conjecture is confirmed under modified condition (6). Obviously, in any
case, the validity of this conjecture is related to the elimination of elements a ∈ Mf of index zero.

3. LINEAR CONVEXITY OF HARTOGS DOMAINS AND THE EPSTEIN INEQUALITY

Consider the class N (β) (β ∈ R) of normalized holomorphic functions f satisfying the condition
Iβ(f, ζ) ≥ 0 for ζ ∈ D, or, in more detail,

∣
∣{f, ζ} + (β − 1/2)((f ′′/f ′)(ζ) − 2ζ/(1 − |ζ|2))2

∣
∣ ≤ 2/(1 − |ζ|2)2, ζ ∈ D. (11)

Suppose that D is a hyperbolic Riemann surface and f : D → D is its holomorphic parameterization
by the unit disk. The Hartogs domain over D is defined as H = {(z,w) ∈ D × C : |w| < Ω(z)}, where
the function Ω ∈ C2(D) is positive and satisfies the inequality (lnΩ)zz < 0 in D (that is, H is strictly
pseudoconvex). For the defining function for H we take r(z,w) = ln|w| − lnΩ(z). One of the versions
of the definition of linear convexity, which goes back to the classical work [29], means as applied
to H that the real Hessian Hessr(z,w)(λ, μ) of the function r is nonnegative at any point (z,w) ∈
r−1(0)

⋂
(D × C) and any vector (λ, μ) from the complex tangent plane T C

(z,w)(∂H).

We have (1/2)Hessr(z,w)(λ, μ) = −(lnΩ)zz|λ|2 − Re{μ2/2w2 + (lnΩ)zzλ
2} and T C

(z,w)(∂H) =
{(λ, μ) ∈ C

2 : μ/w = 2(lnΩ)zλ} (see, e.g., [30]). Thus, according to the version mentioned above, we
have Re{[(lnΩ)zz + 2(lnΩ)2z]λ2} ≤ −(lnΩ)zz|λ|2, ζ ∈ D, λ ∈ C, or, equivalently,

∣
∣(lnΩ)zz + 2(lnΩ)2z

∣
∣ ≤ −(lnΩ)zz, ζ ∈ D. (12)
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The change Ω =
√

R/es (where R = R(z) denotes conformal radius) followed by the passage to the
unit disk z = f(ζ), σ(ζ) := s(f(ζ)) transforms estimate (12) into the Epstein inequality [17]

∣
∣σζζ − σ2

ζ − {f, ζ}/2 − (2ζ/(1 − |ζ|2))σζ

∣
∣ ≤ σζζ + 1/(1 − |ζ|2)2, ζ ∈ D. (13)

As is known [17, 31], if |σζ | ≤ |ζ|/(1 − |ζ|2), where r0 ≤ |ζ| < 1 for some r0 ∈ (0, 1), then, under
condition (13), the function f is univalent in D. This suggests that if the Hartogs domain H is linearly
convex over D (in the sense of a suitable version of the definition), then any holomorphic covering of the
Riemann surface (the Riemann domain over C

n in the case n ≥ 2) D is simple.

We return to condition (12) in the special case Ω = Rβ ; passing to D, we obtain precisely inequal-
ity (11).

Theorem 2. If β ∈ [0, 1], then N (β) is a linearly invariant family of order ordN (β) ≤ (1 −
β)−1/2 containing the class S0 of convex functions. The classes N (β) are empty for β /∈ [0, 1].

Proof. The linear invariance of the classes N (β) is verified directly. Using the actions

Λφζ
f(z) = (f(φζ(z)) − f(φζ(0)))/(φ′

ζ (0)f
′(φζ(0))) = z +

∞∑

n=2

An(f, ζ)zn

on the functions f ∈ N (β) by the Möbius automorphisms φζ(z) = (z + ζ)/(1 + ζz) (see [32]), we can
rewrite (11) in terms of the coefficients A2(f, ζ) and A3(f, ζ) with taking into account the relations
A3(f, ζ) − A2

2(f, ζ) = (1/6)(1 − |ζ|2)2{f, ζ} and A2(f, ζ) = −ζ + ((1 − |ζ|2)/2)(f ′′/f ′)(ζ) as follows:
∣
∣3A3(f, ζ) + 2(β − 2)A2

2(f, ζ)
∣
∣ ≤ 1, ζ ∈ D. (14)

Under the passage from f ∈ N (β) to the function f ε
r (ζ) = εf(εrζ)/r, where r ∈ (0, 1) and |ε| = 1, this

inequality transforms into the more complicated inequality
∣
∣3A3(f ε

r , ζ) − 3A2
2(f

ε
r , ζ) + (2β − 1)[A2(f ε

r , ζ) + ζγr(ζ)]2
∣
∣ ≤ r2(1 − |ζ|2γr(ζ))2, (15)

where γr(ζ) = (1 − r2)/(1 − r2|ζ|2).

Let us show that the order ordf = supζ ∈ D|A2(f, ζ)| of any function f ∈ N (β) is finite for any β �= 1
with nonempty N (β). Take any β ∈ R and suppose that there exists an f ∈ N (β) such that α = ordf =
+∞. In this case, as well as for finite α [33], for the dilations fr(ζ) = f(rζ)/r, the passage to the limit
αr := ordfr → α as r → 1− can be performed. It is easy to show that A2(f ε, εζ) = εA2(f, ζ) for ζ ∈ D

and |ε| = 1, where f ε(ζ) = εf(εζ). This allows us to realify the second coefficient, and the condition
αr > 1, which holds for r < 1 close to 1, ensures the existence of points ζr ∈ D and εr ∈ ∂D such that
A2(f εr

r , ζr) = αr(< +∞). By virtue of Theorem 2.3 a from [32], we have A3(f εr
r , ζr) = (2α2

r + 1)/3.
Substituting the obtained expressions for the coefficients in (15) with ε = εr and ζ = ζr, we see that
|1 − α2

r + (2β − 1)[αr + ζrγr(ζr)]2| ≤ r2(1 − |ζr|2γr(ζr))2 for all r < 1 close to 1. Dividing both sides
by α2

r , passing to the limit as r → 1−, and taking into account the boundedness of γr(ζ) in D and the
convergence αr → +∞, we obtain β = 1. Thus, for any β �= 1, f ∈ N (β) implies ordf < +∞.

Now, let us determine β for which the classes N (β) are nonempty. Suppose that a class N (β)
with β �= 1 is nonempty. Let us show that, in this case, β belongs to the interval [0, 1). Note that
the nonemptiness of N (β) for β ∈ [0, 1] follows from the inclusion S0 ⊂ N (β) for β ∈ [0, 1], which
was proved on the basis of the well-known estimate |A3 − A2| ≤ (1 − |A2|2)/3 for the coefficients
A2 = A2(f, ζ) and A3 = A3(f, ζ) with f ∈ S0 in [25].

Thus, suppose that N (β) with β �= 1 contains a function f with ordf = α < +∞. The compactness
principle for the sequence {fn = Λφζn

f : n ∈ N}, for which |A2(f, ζn)| → α (ζn ∈ D) as n → ∞ and
|A2(fn, ζ)| ≤ α for ζ ∈ D, and the linear invariance of the class N (β) ensure the existence of a
function g(ζ) = ζ + a2ζ

2 + a3ζ
3 + · · · ∈ N (β)

⋂
Aα such that a2 = α, where Aα is the universal linearly

invariant family of order α [32]. Applying the same Theorem 2.3 a from [32] to a2 = α = A2(g, 0)
and a3 = A3(g, 0) and substituting the resulting relation a3 = (2α2 + 1)/3 into (14) with g instead
of f and with ζ = 0, we obtain the inequality |2(β − 1)α2 + 1| ≤ 1, that is, 0 ≤ (1 − β)α2 ≤ 1, which
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immediately implies the estimate β < 1 (recall that β �= 1); taking into account the inequality α ≥ 1
(see [32]), we obtain the estimate β ≥ 0.

Moreover, if f ∈ N (β)
⋂

Sα for β ∈ [0, 1), where Sα = {h ∈ Aα : ordh = α}, then α = ordf ≤
(1 − β)−1/2, that is, the intersection N (β)

⋂
Sα is empty for β ∈ [0, 1) and α > (1 − β)−1/2. As shown

above, N (β) with β ∈ [0, 1) contains no functions of infinite order; it follows that ordN (β) ≤ (1 −
β)−1/2, β ∈ [0, 1]. This completes the proof of Theorem 2. �

Remark 4. The relation N (0) = S0, which was obtained as a byproduct in the proof given above, was
proved by a different method in [34].

Corollary 4. The functional I : (f, ζ, β) �→ Iβ(f, ζ) is rigid with respect to the parameter β with
support [0, 1].

The following example shows that the equality in the estimate ordN (β) ≤ (1 − β)−1/2 is partially
attained.

Example 2. The function fq(ζ) = [((1 + ζ)/(1− ζ))q − 1]/(2q), where q ≥ 1, with ordfq = q belongs
to the class N (β) with q ≤ (1 − β)−1/2 if β ∈ [0, 2/3] and with q ≤

√

H(β) if β ∈ [2/3, 1], where
H(β) = β/(8β2 − 11β + 4). These bounds cannot be unimproved.

Theorem 3. If β ∈ [0, 1] and f ∈ N (β), then either kf ≤ 1 or f(D) is a strip.
Proof. The case kf = 0 is meaningful: functions (10) belong to N (β) for any β ∈ [0, 1]. Suppose that

kf ≥ 1 and consider the following cases (cf. [13]).
1. Mf is discrete in D.

Substituting ζ = ra with a ∈ Mfr into condition (11), we obtain
∣
∣{fr, a} + 2(2β − 1)γr(a)2a2/(1 −

|a|2)2
∣
∣ ≤ 2r2/(1 − r2|a|2)2, whence I1/2(fr, a) > 0 for r ∈ (0, 1) and β ∈ [0, 1]; it remains to apply

Corollary 3.
2. Mf contains its limit points.
As is known [20], any limit point Mf in D is contained in an analytic arc {ζ = ζ(t), t ∈ T ⊂ R} ⊂ Mf .

Thus, (lnhf )
ζ
∣
∣ζ=ζ(t)

≡ 0 for t ∈ T , or (f ′′/f ′)(ζ(t)) ≡ 2ζ(t)/(1 − |ζ(t)|2) for t ∈ T , whence

{f, ζ(t)}ζ ′(t) ≡ 2ζ ′(t)/(1 − |ζ(t)|2)2, t ∈ T. (16)

Substituting the two last identities into (11), we see that the function κf (ζ) = (1 − |ζ|2)2
∣
∣{f, ζ} +

2(2β − 1)(lnhf )2ζ
∣
∣ attains its maximum, which equals 2, at the points ζ = ζ(t), t ∈ T , which satisfy

the equation (lnκf )ζ = 0:

{f, ζ}′/{f, ζ}∣∣ζ=ζ(t)
≡ 4ζ(t)/(1 − |ζ(t)|2), t ∈ T. (17)

Without loss of generality, we assume that ζ(t0) = ζ(t0) = 0 for some t0 ∈ T ; since the arc is analytic,
we have ζ ′(t0) �= 0.

To integrate system (16), (17) with given initial data, we pass to complexifications of the real analytic
functions ζ(t) and ζ(t) on T , that is, to holomorphic functions u(τ) and u(τ) on the strip T ⊂ T ⊂ C

such that u∣
∣T

= ζ and v∣∣T
= ζ. The conditions u(t0) = v(t0) = 0 and u′(t0) �= 0 allow us to pass to

the superposition w(u) := v(τ(u)), which is holomorphic in some neighborhood of the point u = 0 and
satisfies the condition w(0) = 0. The complexification of identities (16) and (17) in terms of w = w(u)
yields, respectively,

{f, u} = 2w′(u)/(1 − uw(u))2 and {f, u}′/{f, u} = 4w(u)/(1 − uw(u)). (18)

The former relation gives |w′(0)| = (1/2)
∣
∣(1 − uw(u))2{f, u}

∣
∣∣
∣u=0

= 1 (because κf (ζ(t)) = 2); thus,

we can assume without loss of generality that w′(0) = 1.
Identities (18) imply w′′(u)/w′(u) = 2(w(u) − uw′(u))/(1 − uw(u)). Therefore, w′′(0) = 0 and

{w, u} = 0, and taking into account the relations w(0) = 0 and w′(0) = 1, we obtain w(u) = u, which
implies that f(D) is a strip. This completes the proof of Theorem 3. �
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An easy modification of the method used in the first proof of the implication (5) ⇒ kf ≤ 1 or f(D) is
a strip given in [10, 11] proves the following theorem.

Theorem 4. Suppose that a > 0 and f ∈ H0 satisfies the conditions f ′′(0) = 0 and

Re
(

ei2θ{f, ζ}
)

≤ 2/(1 − r2)2 + 4(a − 1)
[

Reeiθ(lnhf (ζ))ζ
]2 + 2

∣
∣(lnhf (ζ))ζ

∣
∣2 (19)

for ζ = reiθ ∈ D. If f(D) is not a strip, then

Reeiθ(f ′′/f ′)(ζ) < 2r/(1 − r2), ζ ∈ D. (20)

Proof. Consider the functions g(t, θ) = f(r(t)eiθ) and u(t, θ) = |g′t(t, θ)|−a, where r = r(t) is the
inverse to t = fs(r) (in [10], the dependence on θ was not used). For a > 0, condition (19) is equivalent
to the inequality

a−1utt/u ≡ −Re{g, t} + (a − 1/2)
(

Re(gtt/gt)
)2 + (1/2)

(

Im(gtt/gt)
)2 ≥ 0, (21)

where (t, θ) ∈ [0,+∞)×R. Together with f ′′(0) = 0, this inequality implies that the function u does not
decrease in t for any fixed θ. In terms of g, this means that

Regtt/gt ≤ 0, (t, θ) ∈ [0,+∞) × R, (22)

which is the nonstrict inequality (20). The equality in (22) at some point (t0, θ0) with t0 �= 0 extends
over the interval [0, t0] × {θ0} (thanks to (21)), in which we have u ≡ ≡ c(= |f ′(0)|−a). By virtue
of the relation uθ/u = (ar/(1 − r2))Imgtt/gt, the assumption of the existence of t ∈ (0, t0] for which
Im(gtt/gt)(t, θ0) �= 0 implies the inequality u(t, θ) < c(= u(0, θ)) for those θ which are “adjacent” to
θ0 from one side. Obviously, this contradicts the function u being nondecreasing (in t), which was
established above. Thus, the equality in (22) for (t, θ) = (t0, θ0) implies the identity gtt/gt ≡ 0 on
[0, t0] × {θ0}, and, by the uniqueness theorem, f(D) is a strip. �

Theorem 3 can be proved by using the following assertion.
Corollary 5. Suppose that β ∈ (−∞, 1], f ∈ H0, f ′′(0) = 0, and

Re
{

ei2θ{f, ζ} + (β − 1/2)(eiθ(f ′′/f ′)(ζ) − 2r/(1 − r2))2
}

≤ 2/(1 − r2)2 (23)

for ζ = reiθ ∈ D. Then the assertion of Theorem 4 holds.
Proof. For β ≤ 1, estimate (23) implies (19) with a ≥ 1 − β. �

The proof of Theorem 3 is simple: the condition f ∈ N (β), where β ∈ [0, 1], ensures the fulfillment
of inequality (23), estimate (20) implies the equality kf = 1, and the relation f ′′(0) = 0 follows from the
linear invariance of the class N (β).

Note that this approach does not work for the condition Gα(f, ζ) ≥ 0, where ζ ∈ D (|2α − 3| ≤ 1),
except in the case G3/2 = I1/2. At present, we can only assert that the above inequality implies kfr = 1
for r ∈ (0, 1) and that Corollary 2 holds for J = Gα.

4. THE INEQUALITY Kγ(f, ζ) ≥ 0 FOR ζ ∈ D

Lemma 4. Suppose that a real-valued function Ω ∈ C2(D) satisfies the condition
∣
∣Ωζζ(ζ)

∣
∣ ≤ −Ωζζ(ζ), ζ ∈ D. (24)

If Ωζ vanishes at two different points ζ0, ζ1 ∈ D, then Ωζ = 0 on the rectilinear segment joining ζ0 and
ζ1.

Proof. Setting Φ(ρ, θ) = Ω(ζ0 + ρeiθ), we obtain Φρ − iΦθ/ρ = 2eiθΩζ and Φρρ − i(Φθ/ρ)ρ =
2[ei2θΩζζ + Ωζζ ]. Let ζ1 = ζ0 + ρ1e

iθ1 . Then the equality of the values Ωζ at the points ζ0 and ζ1 implies

Φρ(ρ1, θ1) = Φρ(0, θ1), which implies the vanishing of the integral over the interval T = {ζ0 + τeiθ1 :
τ ∈ [0, ρ1]} of the nonpositive function Reei2θ1Ωζζ + Ωζζ ; thus, this function vanishes on this interval.

Therefore, by virtue of (24), we have Reei2θ1Ωζζ =
∣
∣ei2θ1Ωζζ

∣
∣ = −Ωζζ ; therefore, Imei2θ1Ωζζ = 0 on T .
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Integrating the resulting identity ei2θ1Ωζζ + Ωζζ = 0 (with ζ ∈ T ) with respect to τ from 0 to ρ ∈ [0, ρ1],
we arrive at the required conclusion Ωζ = 0 for ζ ∈ T . �

The following theorem is valid.
Theorem 5. If a function f ∈ H satisfies the condition

∣
∣(1 − |ζ|2)2(f ′′/f ′)′(ζ) − γζ

2∣
∣ ≤ 2, ζ ∈ D, (25)

where −2 ≤ γ ≤ 2, then kf ≤ 1. For |γ| > 2, conditions (25) and f ∈ H are inconsistent.
Proof. The rigidity of the functional Kγ with respect to the parameter γ with support [−2, 2] is proved

in the same way as in Proposition 4.

Let Ω = lnhf . Then condition (25) with ζ = ρeiθ(∈ D) acquires the form
∣
∣2ei2θΩζζ + (2− γ)ρ2/(1 −

ρ2)2
∣
∣ ≤ −2Ωζζ , whence Reei2θΩζζ + Ωζζ ≤ 0 on D, provided that γ ≤ 2.

Suppose that Ωζ = 0 at points ζ0, ζ1 ∈ D (ζ0 �= ζ1). As in Lemma 4, for ζ ∈ T , the latter inequal-
ity turns out to be an identity; substituting it into the former, we obtain the estimate

∣
∣−2Ωζζ +

2iImei2θ1Ωζζ + (2− γ)ρ2/(1− ρ2)2
∣
∣ ≤≤ −2Ωζζ for ζ ∈ T , which, surely, does not hold for γ < 2. Thus,

kf ≤ 1 if γ ∈ [−2, 2).
Suppose that γ = 2. Then (25) coincides with (24), and, according to Lemma 4, we have Ωζ = 0

on T . This means that (f ′′/f ′)(ζ(τ)) ≡ 2ζ(τ)/(1 − |ζ(τ)|2), where ζ(τ) = ζ0 + τeiθ1 , τ ∈ [0, ρ1], is a
parametric representation of the interval T .

The analytic continuation of the last identity with respect to τ into the disk ζ−1(D), which extends
the interval T of the critical points of the function hf to the chord S = ζ(ζ−1(D)

⋂
R), yields an explicit

form of the pre-Schwarzian f ′′/f ′. We can be assume that, up to a rotation in the ζ plane, ζ0 = ih and
S = {ih + τ : τ ∈ (−

√
1 − h2,

√
1 − h2)} (h ∈ (−1, 1)); thus, (f ′′/f ′)(ζ) = 2(ζ − ih)/(1 − ζ(ζ − ih)).

A cumbersome analysis shows that, for any function f(ζ) with pre-Schwarzian of such a form (and,
therefore, for all rotations ε−1f(εζ), where |ε| = 1, of this function), inequality (25) is violated at points
of D close to (

√
1 − h2 + ih)(ε) ∈ ∂D. Thus, functions f for which kf > 1 do not belong to the class

determined by condition (25), as required. �

Part of the results of this paper were announced in [35, 36].
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