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This paper was motivated by the observation that in the presence of some addi-
tional structure for an algebra A over a commutative ring R one can prove that the
reductions of A modulo two maximal ideals of R are isomorphic. In [5, 9.1] and [6,
11.8] this fact is explained by means of an analytic argument. Suppose that B is a
smooth bundle of algebras over a differentiable manifold X of class C∞. Let ϕt be
the local flow of a smooth vector field D on X . We interpret D as a derivation of the
ring C∞(X) of smooth functions on X . Suppose that there exists a D-compatible
derivation D of the algebra of global sections Γ(X,B). Then D gives rise to a vector
field on B, and the corresponding local flow ψt induces an algebra isomorphism
Bx ∼= Bϕt(x) between the fibers of B for all t in a suitable neighbourhood of 0 in
R where x ∈ X is some fixed point. In the list of open problems [2, III.10.1, Q.4]
Brown and Goodearl asked whether a purely algebraic approach to results of this
kind can be found.

We will assume in the paper that the ring R itself is an algebra over a field k. In
general the term “algebra” will be used in the universal sense. More precisely, by an
R-algebra we mean an R-module equipped with any indexed set of R-multilinear
operations. An R-algebra A will be called finite if its underlying R-module is finitely
generated. Denote by Derk R and Derk A the Lie algebras of k-linear derivations of
R and A. Given D ∈ DerkR, we say that D ∈ Derk A is D-compatible if

D(ca) = D(c)a+ cD(a) for all c ∈ R, a ∈ A.

Let L ⊂ Derk R be a Lie subalgebra. For a prime ideal p ∈ SpecR denote by pL the
largest L-stable ideal of R contained in p. The equality pL = qL for two primes p, q
defines an equivalence relation on SpecR, called the L-stratification.

Theorem. Suppose that the field k is algebraically closed, the R-algebra A is finite,

and for each D ∈ L there exists a D-compatible derivation in Derk A. Then there is

a noncanonical isomorphism of k-algebras A/mA ∼= A/nA for any pair of maximal

ideals m, n of R with residue field k lying in the same L-stratum.

Actually a stronger conclusion will be proved. If mL = 0, then for any p ∈ SpecR
with pL = 0 there exists a ring homomorphism R→ R′ with respect to which R′ is a
finitely generated R-algebra, the ring R′

p = R′⊗RRp is faithfully flat over the local
ring Rp, and the R′-algebra A ⊗R R

′ is isomorphic to A/mA⊗k R
′. This property

may be viewed as the local triviality of A in a neighbourhood of p with respect to
the quasicompact faithfully flat Grothendieck topology.

The technique used in this paper is Hopf algebraic, and the main results are es-
tablished when an arbitrary cocommutative Hopf algebra H acts on R and A. The



theorem stated in the introduction is a special case of Theorem 2.3 in which H is
taken to be the universal enveloping algebra of the Lie algebra

L̃ = {(D,D) ∈ L× Derk A | D is D-compatible}.

Since the projection L̃ → L is surjective, the L-stable ideals of R are precisely the
H-stable ideals, so that the L-stratification coincides with the H-stratification.

In a special case the previous theorem applies to the Poisson orders introduced
by Brown and Gordon [3]. Suppose that R is equipped with a k-bilinear Poisson
bracket {−,−}. For each a ∈ R the formula Da(z) = {a, z}, z ∈ R, defines a deriva-
tion Da ∈ Derk R. A Poisson R-order is an associative unital finite R-algebra A such
that R is identified with a central subring of A and each Da, a ∈ R, extends to a
k-linear derivation of A (the latter is then Da-compatible). The assumption that A
is finitely generated as a k-algebra is also included in [3], but we do not need it. Take
L = {Da | a ∈ R}. Then pL is the largest Poisson ideal of R contained in a prime
ideal p. The L-strata in this case were called the symplectic cores of the Poisson
algebra R in [3]. Thus A/mA ∼= A/nA whenever k is algebraically closed and m, n
are two maximal ideals of R with residue field k lying in the same symplectic core.
In the case k = C this result was obtained in [3, Th. 4.2]. Besides the quantized
function algebras at a root of 1 considered by De Concini, Lyubashenko, Procesi
other interesting examples of Poisson orders are found among the symplectic reflec-
tion algebras of Etingof and Ginzburg [8]. I thank A. Premet for mentioning the
results of [3] to me.

When char k > 0, all L-strata in SpecR reduce to single points. This cannot
be said about the H-strata, for example, when H is a group algebra or when H
contains an infinite sequence of divided powers for some primitive element. So the
conclusion of Theorem 2.3 is nontrivial in any characteristic.

1. Prime lying-over in equivariant extensions

Throughout the whole paper we assume that H is a cocommutative Hopf algebra
over the ground field k and R is a commutative left H-module algebra. Thus R is a
commutative ring extension of k which also has a left H-module structure such that
the multiplication map R⊗kR→ R is H-linear and the unity 1 ∈ R is H-invariant.
We assume that H acts in the tensor products via the comultiplicationH → H⊗kH
written symbolically as h 7→

∑
h(1) ⊗ h(2). An R-module M is H-equivariant if M

is equipped with a left H-module structure such that the action of R is given by an
H-linear map R⊗kM →M . The compatibility of the two module structures mean
precisely that M may be regarded as a left module over the smash product R#H,
and we denote by R#HM the category of H-equivariant R-modules. We say that
M ∈ R#HM is R-finite if M is finitely generated as an R-module.

Given two objects M,N ∈ R#HM, the R-modules M ⊗R N and HomR(M,N)
will be regarded as objects of R#HM too. In the first case the action of H is ob-
tained by observing that the kernel of the canonical surjection M ⊗kN →M ⊗RN
is H-stable. In the second case the action is defined by the formula

(hq)(v) =
∑

h(1)q
(
S(h(2))v

)
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where h ∈ H, q ∈ HomR(M,N), v ∈M and S : H → H is the antipode. In partic-
ular, the R-dual M∗

R = HomR(M,R) is an H-equivariant R-module.
Let Ω be a fixed set written as a disjoint union of subsets Ωn, n = 0, 1, 2, . . .. An

R-algebra with the operator domain Ω is an R-module A together with a collection
of maps

Ωn → HomR(A⊗n
R , A), n = 0, 1, 2, . . . ,

where A⊗n
R stands for the nth tensor power of the R-module A. In other words,

to each element of Ωn there corresponds an R-multilinear operation An → A (cf.
[4]). Further on the set Ω will not be mentioned explicitly, and we will speak simply
about R-algebras. An H-equivariant R-algebra is an R-algebra A equipped with a
left H-module structure with respect to which A is an H-equivariant R-module and
each structure map A⊗n

R → A is H-linear.
By a ring extension we mean any ring homomorphism ϕ : R → R′ where the

ring R′ is assumed to be commutative, and we also call R′ an extension of R. Fur-
thermore, ϕ is an H-equivariant extension if ϕ is a homomorphism of commutative
H-module algebras. For a prime ideal p ∈ SpecR denote

pH = {a ∈ R | Ha ⊂ p}.

So pH is the largest H-stable ideal of R contained in p. We say that two primes p, q
lie in the same H-stratum if pH = qH . Denote by Rp the local ring of p and by Mp

the corresponding localization Rp ⊗RM of an R-module M .

Proposition 1.1. If M ∈ R#HM is R-finite, then Mp is a free Rp-module for each

p ∈ SpecR such that pH = 0.

A stronger form of this result is given in [10, Cor. 1.5]. When H = U(L) is the
universal enveloping algebra of a Lie algebra L, the proof can be obtained especially
easily. In this case the actions of L on R and M extend to actions on Rp and Mp.
So one may assume R to be local and p maximal. Let v1, . . . , vn ∈ M be elements
whose cosets give a basis for M/pM over the residue field R/p. By Nakayama’s
Lemma M =

∑
Rvi. Denote by I the ideal of R generated by all elements which

occur as a coefficient in some relation a1v1 + . . .+anvn = 0. If a1, . . . , an ∈ R satisfy
this relation and D ∈ L, then

∑
(Dai)vi = −

∑
ai(Dvi) ∈ IM =

∑
Ivi.

Therefore for each i there exists bi ∈ I such that Dai − bi ∈ I, but then Dai ∈ I.
This shows that I is L-stable, hence H-stable. However, I ⊂ p since v1, . . . , vn are
linearly independent modulo p. The assumption pH = 0 now forces I = 0. In other
words, v1, . . . , vn are a basis for M over R.

Corollary 1.2. Suppose that M ∈ R#HM has a chain 0 = M0 ⊂ M1 ⊂ M2 ⊂ · · ·
of R-finite R#HM-subobjects such that M =

⋃
Mi. Then Mp is a free Rp-module

for each p ∈ SpecR with pH = 0. If N ⊂M is an arbitrary R#HM-subobject, then

Np is a direct summand of Mp for any such p.

Proof. Each quotient Mi/Mi−1, i > 0, is an R-finite object of R#HM. Therefore
(Mi)p/(Mi−1)p is a free Rp-module, and (Mi−1)p is a direct summand of (Mi)p. It
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follows that Mp
∼=

⊕
(Mi)p/(Mi−1)p is free. Since M/N satisfies the same assump-

tions as M , the Rp-module Mp/Np is also free, whence the final conclusion. �

Proposition 1.3. Assume M ∈ R#HM to be R-finite. If N is any R#HM-subobject

of M , then for each p ∈ SpecR with pH = 0 the Rp-module Np is finitely generated

free and its rank rkNp does not depend on p.

Proof. It has been verified in [10, Prop. 1.1] that all Fitting invariants FittiM of the
R-module M are H-stable ideals of R (when H = U(L) this can be done straightfor-
wardly). Hence FittiM = 0 whenever FittiM ⊂ p for at least one p ∈ SpecR with
pH = 0. There is an integer r ≥ 0 such that Fittr−1M = 0, but FittrM 6⊂ p for each
p with pH = 0. By [7, Cor. 20.5] the Fitting invariants of the Rp-module Mp are
extensions of the ideals FittiM . Thus FittiMp is zero for i = r − 1 and equals Rp

for i = r. By [7, Prop. 20.8] Mp is projective, hence free, of rank r. This shows that
the ranks of Mp’s have the same value for all p ∈ SpecR with pH = 0. Replacing
M with M/N , we deduce the same conclusion for the ranks of Mp/Np’s. Now Np

is a direct summand of Mp. Hence Np is free with rkNp = rkMp − rkMp/Np. �

In the next result we may regard R′ as an H-equivariant R-module, and it is
already clear from Corollary 1.2 that R′

p is a free Rp-module. If ϕ is injective then
R′

p is faithfully flat over Rp, which implies the existence of a prime p′ ∈ SpecR′

lying over p. It will later be essential to find p′ with additional properties.

Proposition 1.4. Let ϕ : R → R′ be an H-equivariant extension of commutative

rings such that R′ = ϕ(R)[V ] (i.e. R′ is generated by ϕ(R) ∪ V ) where V ⊂ R′ is

an H-stable finitely generated R-submodule, and let J be an H-stable ideal of R′.

Put X = {p ∈ SpecR | pH = 0} and

X(J) = {p ∈ X | there exists p′ ∈ SpecR′ such that J 6⊂ p′ and ϕ−1(p′) = p}.

If X(J) 6= ∅ then X(J) = X.

Proof. Setting V0 = ϕ(R) and inductively Vi = Vi−1 + Vi−1V for i > 0, we get a
chain of R-finite R#HM-subobjects whose union equals R′. Suppose that p ∈ X .
By Corollary 1.2 Jp is an Rp-module direct summand of R′

p. Hence

pR′

p ∩ Jp = pJp.

The inclusion Jp ⊂ pR′
p holds if and only if Jp = pJp. Since the Rp-module Jp is

projective, and even free by Kaplansky’s Theorem, the last equality is equivalent
to Jp = 0. Since J =

⋃
(J ∩ Vi), the equality Jp = 0 amounts to the condition that

(J ∩ Vi)p = 0 for all i > 0. Applying Proposition 1.3 to the subobjects J ∩ Vi of the
R-finite R#HM-objects Vi, we conclude that the inclusion Jp ⊂ pR′

p holds for some
prime in X if and only if it holds for all primes in X .

Suppose that q ∈ X(J), and let q′ ∈ SpecR′ be such that J 6⊂ q′ and ϕ−1(q′) = q.
Then q′ coincides with the preimage of q′R′

q in R′, which forces Jq 6⊂ q′R′
q. Since

qR′
q ⊂ q′R′

q, we get Jq 6⊂ qR′
q. As we have seen, this implies that Jp 6⊂ pR′

p for all
p ∈ X . Moreover, Jn is an H-stable ideal of R′ and Jn 6⊂ q′ for any n > 0 since q′ is
prime. Replacing J with Jn in the preceding arguments, we deduce that Jnp 6⊂ pR′

p

for all n > 0 and all p ∈ X .
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Now fix some p ∈ X and denote by I the extension of J in the ring R′
p/pR

′
p. Then

In is the extension of Jn. So Jnp 6⊂ pR′
p yields In 6= 0. In other words, the ideal

I is not nilpotent. The ring R′
p/pR

′
p is noetherian since it is a finitely generated

algebra over the residue field Rp/pRp. It follows that I is finitely generated, and
therefore I is not contained in the nil radical of R′

p/pR
′
p. Hence R′

p/pR
′
p has a prime

ideal which does not contain I. Take the preimage p′ in R′ of such an ideal. Then
p′ ∈ SpecR′ and J 6⊂ p′. Since the composite R → R′ → R′

p/pR
′
p factors through

Rp/pRp, we also have ϕ−1(p′) = p. �

2. Construction of trivializing extensions

Let m be a maximal ideal of R. For each R-module M put

Jm(M) = Homk(H,M/mM).

In particular, Jm(R) = Homk(H,R/m) is a commutative ring, extension of k, with
respect to the convolution multiplication (see [9] or [11]). The unity 1 of Jm(R) is
the counit ε : H → k. We will view Jm(M) as a module over Jm(R) and a module
over H with respect to the actions

(ξη)(h) =
∑

ξ(h(1))η(h(2)), (g ⇀ η)(h) = η(hg)

where ξ ∈ Jm(R), η ∈ Jm(M) and g, h ∈ H. It is checked straightforwardly that
Jm(R) is an H-module algebra and Jm(M) is an H-equivariant Jm(R)-module.
Each H-invariant element in Jm(M) is of the form h 7→ ε(h)u for some u ∈M/mM .
Thus M/mM may be identified with the k-subspace of H-invariant elements in
Jm(M). This gives rise to a homomorphism of H-equivariant Jm(R)-modules

M/mM ⊗k Jm(R) → Jm(M)

It is an isomorphism whenever R/m = k and dimkM/mM <∞. Assuming further
that M ∈ R#HM, define

θMm : M → Jm(M)
by the rule

θMm (v)(h) = πMm (hv), v ∈M, h ∈ H,

where πMm : M →M/mM is the canonical map. Then θMm is H-linear and

θMm (av) = θRm(a) θMm (v) for all a ∈ R, v ∈M.

This means that θRm : R→ Jm(R) is a homomorphism of H-module algebras, while
θMm is a morphism in R#HM when Jm(M) is viewed as an R-module via θRm.

Each R/m-linear map f : M/mM → R/m induces a homomorphism of H-equi-
variant Jm(R)-modules Jm(f) : Jm(M) → Jm(R). Then the map

cf : M → Jm(R), cf = Jm(f) ◦ θMm ,
is H-linear and

cf (av) = θRm(a) cf(v) for all a ∈ R, v ∈M.

We call cf the coefficient function on M associated with f . Denote by Em(M) the
subring of Jm(R) generated by the image of θRm and the images of all cf ’s, when f
runs over the dual of the R/m-vector space M/mM . Clearly Em(M) is stable under
the action of H. We will always view Em(M) as an H-equivariant extension of R
via θRm : R→ Em(M).
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Lemma 2.1. Suppose that M ∈ R#HM is R-finite and R/m = k. Then Em(M) is

generated as an R-algebra by an H-stable finite R-submodule. In particular, Em(M)
is the union of a chain of H-stable finite R-submodules. Also,

Im θMm ⊂M/mM ⊗k Em(M).

Proof. Let e1, . . . , er be any k-basis for M/mM and f1, . . . , fr the dual basis for
the dual vector space (M/mM)∗. Each f ∈ (M/mM)∗ is a k-linear combination of
f1, . . . , fr, whence cf is a k-linear combination of cf1 , . . . , cfr

. Now it follows that
Em(M) = θRm(R)[V ] where V =

∑
cfi

(M) is an H-stable finite θRm(R)-submodule in
Jm(R). By definitions

θMm (v)(h) =
∑

cfi
(v)(h) ei for all v ∈M, h ∈ H,

i.e. θMm (v) =
∑
ei ⊗ cfi

(v) ∈ M/mM ⊗k Em(M) under the identification of Jm(M)
with M/mM ⊗k Jm(R). �

IfA is anH-equivariantR-algebra, then Jm(A) will be viewed as anH-equivariant
Jm(R)-algebra (and as an R-algebra via θRm) with the same operator domain. The
structure map µ̂ for Jm(A) corresponding to a structure map µ : A⊗n

R → A is de-
fined as

µ̂(η1 ⊗ · · · ⊗ ηn)(h) =
∑

µm

(
η1(h(1)) ⊗ · · · ⊗ ηn(h(n))

)
.

where η1, . . . , ηn ∈ Jm(A), h ∈ H and µm is the structure map of the R/m-algebra
A/mA induced by µ. It is checked straightforwardly that θAm : A → Jm(A) is a
homomorphism of H-equivariant R-algebras.

In the next theorem R′
t stands for the ring of fractions of R′ with respect to the

multiplicatively closed set of powers of t and the functor ? ⊗R′ R′
t on the category

of R′-modules is denoted by the subscript t.

Theorem 2.2. Let A be an H-equivariant finite R-algebra and m a maximal ideal

of R such that R/m = k and mH = 0. Put R′ = Em(A). For each p ∈ SpecR with

pH = 0 there exists t ∈ R′ such that (R′
t)p is faithfully flat over Rp and there is an

isomorphism of R′
t-algebras

A⊗R R
′

t
∼= A/mA⊗k R

′

t.

Proof. The map R′ → R/m, ξ 7→ ξ(1), is a ring homomorphism whose composite
with θRm coincides with the canonical map R→ R/m. Therefore the kernel

m
′ = {ξ ∈ R′ | ξ(1) = 0}

is a maximal ideal of R′ lying over m. Since θAm : A→ Jm(A) ∼= A/mA⊗kJm(R) has
image in A/mA⊗k R

′, it extends to a homomorphism of H-equivariant R′-algebras

ψ : A⊗R R
′ → A/mA⊗k R

′.

Put K = Kerψ, C = Cokerψ, and denote by J the annihilator of C in R′. Since
C is an H-equivariant R′-module, J is an H-stable ideal of R′. Note that C is
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R′-finite because dimk A/mA < ∞. Since R′/m′ ∼= R/m, the map ψ ⊗R′ R′/m′ is
identified with the canonical isomorphism A ⊗R R/m → A/mA. Hence C = m′C,
and therefore J 6⊂ m′ by Nakayama’s Lemma. This entails m ∈ X(J) in the notation
of Proposition 1.4. But then p ∈ X(J) as well. Let p′ ∈ SpecR′ be any prime ideal
lying over p such that J 6⊂ p′.

Suppose that t ∈ J , but t /∈ p′. From the exact sequence of R′
t-modules

0 −−→ Kt −−→ A⊗R R
′

t

ψt

−−→ A/mA⊗k R
′

t −−→ Ct = 0

we deduce that ψt (i.e. ψ⊗R′R′
t) is surjective. Since A/mA⊗kR

′
t is a free R′

t-module,
Kt is a direct summand of A ⊗R R

′
t. In particular, Kt is R′

t-finite. By Proposition
1.3 the Rp-module Ap and the Rm-module Am are both free of equal rank r. Clearly
r = dimk A/mA. Then the R′

p′-module A⊗R R
′
p′

∼= Ap ⊗Rp
R′

p′ is also free of rank
r. Thus

ψ ⊗R′ R′

p′ : A⊗R R
′

p′ → A/mA⊗k R
′

p′

is a homomorphism between two free modules of equal rank. Since R′ → R′
p′ fac-

tors through R′
t, this homomorphism is surjective. But then ψ ⊗R′ R′

p′ has to be
bijective, and it follows that Kt ⊗R′

t
R′

p′
∼= Kp′ = 0. By Nakayama’s Lemma Kt is

annihilated by some element s ∈ R′ r p′. Replacing t with st, we obtain an element
t ∈ J r p′ for which Kt = 0, so that ψt is an isomorphism.

By Corollary 1.2 R′
p is flat over Rp. Hence (R′

t)p
∼= (R′

p)t is also flat over Rp.
Since p′R′

t is a prime ideal of R′
t lying over p, we have faithful flatness. �

Theorem 2.3. Assume the field k to be algebraically closed. If A is an H-equivariant

finite R-algebra, then A/mA ∼= A/nA for any pair of maximal ideals m, n of R with

residue field k lying in the same H-stratum.

Proof. By the hypothesis mH = nH . Passing to the H-equivariant R/mH-algebra
A/mHA, we may assume that mH = 0 and apply Theorem 2.2. There exists t ∈ R′

such that (R′
t)n is faithfully flat over Rn and

A⊗R R
′

t
∼= A/mA⊗k R

′

t.

Faithful flatness ensures that nR′
t 6= R′

t. Since R′
t is a finitely generated R-algebra,

R′
t/nR

′
t is a finitely generated algebra over R/n = k. As the latter is nonzero, it has

at least one maximal ideal. The residue field of such an ideal coincides with k by
Hilbert’s Nullstellensatz. Taking preimage, we get a maximal ideal n′ of R′

t lying
over n such that R′

t/n
′ = k. Finally,

A/nA ∼= (A⊗R R
′

t) ⊗R′

t
R′

t/n
′ ∼= (A/mA⊗k R

′

t) ⊗R′

t
R′

t/n
′ ∼= A/mA. �

3. Removing the localization

We want to obtain a stronger conclusion compared with that in Theorem 2.2. Let
m be a maximal ideal of R such that R/m = k. Suppose that M ∈ R#HM is R-finite
and R-projective. Then M/mM and M∗

R/mM
∗
R are mutually dual vector spaces.

As explained in section 2, each p ∈ M∗
R/mM

∗
R and each u ∈ M/mM determine

coefficient functions
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cp : M → Jm(R), cu : M∗

R → Jm(R).

Lemma 3.1. Let x1, . . . , xn ∈ M and y1, . . . , yn ∈ M∗
R satisfy

∑n
j=1〈yj , v〉xj = v

for all v ∈M . Then

n∑

j=1

cp(xj)cu(yj) = 〈p, u〉1 for all p ∈M∗

R/mM
∗

R, u ∈M/mM.

Proof. Consider T = M⊗RM
∗
R ∈ R#HM. Identifying p⊗u ∈M∗

R/mM
∗
R⊗kM/mM

with an element of (T/mT )∗, we get the coefficient function cp⊗u : T → Jm(R) such
that

cp⊗u(v ⊗ q) = cp(v)cu(q) for v ∈M, q ∈M∗

R.

Now
n∑

j=1

cp(xj)cu(yj) = cp⊗u(z) where z =
n∑

j=1

xj ⊗ yj ∈ T.

Note that z corresponds to the identity transformation IdM under the canonical
isomorphism of H-equivariant R-modules T ∼= EndR(M,M). Since IdM is an H-
invariant element, so too is z. Hence θTm(z)(h) = ε(h)πTm(z) for h ∈ H. Identifying
Jm(T ) with T/mT ⊗k Jm(R), we get

θTm(z) = πTm(z) ⊗ 1 =

n∑

j=1

(
πMm (xj) ⊗ π

M∗

R

m (yj)
)
⊗ 1,

and so

cp⊗u(z) = 〈p⊗ u, πTm(z)〉1 =

n∑

j=1

〈p, πMm (xj)〉〈u, π
M∗

R

m (yj)〉1.

Since the pairing M∗
R/mM

∗
R ×M/mM → k coincides with the modulo m reduction

of the pairing M∗
R ×M → R we have

n∑

j=1

〈u, π
M∗

R

m (yj)〉π
M
m (xj) = u,

and the previous formula yields cp⊗u(z) = 〈p, u〉1. �

Theorem 3.2. Let A and m be as in Theorem 2.2. In addition assume that the

underlying R-module of A is projective of constant rank. With R′′ = Em(A ⊕ A∗
R)

there is an isomorphism of H-equivariant R′′-algebras A⊗R R
′′ ∼= A/mA⊗k R

′′.

Proof. We have a homomorphism of H-equivariant R′′-algebras

ψ : A⊗R R
′′ → A/mA⊗k R

′′, a⊗ b 7→ θAm(a)b.

Both algebras are projective R′′-modules of constant rank r = dimk A/mA. Next
we apply Lemma 3.1 to M = A. The required elements in A and A∗

R exist by the
dual basis lemma. Let e1, . . . , er be any k-basis for A/mA and f1, . . . , fr the dual
basis for (M/mM)∗. Recall that θAm(xj) =

∑r
l=1 el ⊗ cfl

(xj). Lemma 3.1 yields

8



ei ⊗ 1 =

r∑

l=1

〈fl, ei〉el ⊗ 1 =

r∑

l=1

n∑

j=1

el ⊗ cfl
(xj)cei

(yj) =

n∑

j=1

ψ
(
xj ⊗ cei

(yj)
)

for each i. This shows that ψ is surjective. But then ψ splits as an epimorphism of
R′′-modules. Hence Kerψ is a projective R′′-module of rank 0, i.e. Kerψ = 0. In
other words, ψ is bijective. �

AnyH-equivariant R-moduleM is an R-algebra with the empty operator domain.
When M is R-finite and R-projective of constant rank, Theorem 3.2 says just that
there is an isomorphism of H-equivariant R′′-modules M ⊗R R

′′ ∼= M/mM ⊗k R
′′.

The question about splittings of equivariant modules arises naturally in the Picard-
Vessiot theory. A Hopf algebraic approach to this theory was developed by Takeuchi
[12]. Originally it dealt with a field acted upon by a cocommutative Hopf algebra
or, more generally, just a coalgebra, and later it was extended to H-simple artinian
module algebras [1]. There the construction of a splitting extension for a given
equivariant module followed a different path.
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