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This paper was motivated by the observation that in the presence of some addi-
tional structure for an algebra A over a commutative ring R one can prove that the
reductions of A modulo two maximal ideals of R are isomorphic. In [5, 9.1] and [6,
11.8] this fact is explained by means of an analytic argument. Suppose that B is a
smooth bundle of algebras over a differentiable manifold X of class C*°. Let ¢; be
the local flow of a smooth vector field D on X. We interpret D as a derivation of the
ring C*°(X) of smooth functions on X. Suppose that there exists a D-compatible
derivation D of the algebra of global sections I'(X, B). Then D gives rise to a vector
field on B, and the corresponding local flow ; induces an algebra isomorphism
B, = B, (») between the fibers of B for all ¢ in a suitable neighbourhood of 0 in
R where z € X is some fixed point. In the list of open problems [2, II1.10.1, Q.4]
Brown and Goodearl asked whether a purely algebraic approach to results of this
kind can be found.

We will assume in the paper that the ring R itself is an algebra over a field £. In
general the term “algebra” will be used in the universal sense. More precisely, by an
R-algebra we mean an R-module equipped with any indexed set of R-multilinear
operations. An R-algebra A will be called finite if its underlying R-module is finitely
generated. Denote by Dery R and Dery A the Lie algebras of k-linear derivations of
R and A. Given D € Dery R, we say that D € Dery A is D-compatible if

D(ca) = D(c)a+ cD(a) forallce R, a € A.

Let L C Dery R be a Lie subalgebra. For a prime ideal p € Spec R denote by pj, the
largest L-stable ideal of R contained in p. The equality pr = qr for two primes p, q
defines an equivalence relation on Spec R, called the L-stratification.

Theorem. Suppose that the field k is algebraically closed, the R-algebra A is finite,
and for each D € L there exists a D-compatible derivation in Dery A. Then there is
a noncanonical isomorphism of k-algebras A/mA = A/nA for any pair of mazimal
ideals m,n of R with residue field k lying in the same L-stratum.

Actually a stronger conclusion will be proved. If my, = 0, then for any p € Spec R
with pr = 0 there exists a ring homomorphism R — R’ with respect to which R’ is a
finitely generated R-algebra, the ring R, = R’ ®g R, is faithfully flat over the local
ring Ry, and the R’-algebra A ®p R’ is isomorphic to A/mA ®;, R’. This property
may be viewed as the local triviality of A in a neighbourhood of p with respect to
the quasicompact faithfully flat Grothendieck topology.

The technique used in this paper is Hopf algebraic, and the main results are es-
tablished when an arbitrary cocommutative Hopf algebra H acts on R and A. The



theorem stated in the introduction is a special case of Theorem 2.3 in which H is
taken to be the universal enveloping algebra of the Lie algebra

L={(D,D) € L x Der, A| D is D-compatible}.

Since the projection L — Lis surjective, the L-stable ideals of R are precisely the
H-stable ideals, so that the L-stratification coincides with the H-stratification.

In a special case the previous theorem applies to the Poisson orders introduced
by Brown and Gordon [3]. Suppose that R is equipped with a k-bilinear Poisson
bracket {—, —}. For each a € R the formula D,(z) = {a, 2}, 2 € R, defines a deriva-
tion D, € Dery R. A Poisson R-order is an associative unital finite R-algebra A such
that R is identified with a central subring of A and each D,, a € R, extends to a
k-linear derivation of A (the latter is then D,-compatible). The assumption that A
is finitely generated as a k-algebra is also included in [3], but we do not need it. Take
L ={D, | a € R}. Then py, is the largest Poisson ideal of R contained in a prime
ideal p. The L-strata in this case were called the symplectic cores of the Poisson
algebra R in [3]. Thus A/mA = A/nA whenever k is algebraically closed and m,n
are two maximal ideals of R with residue field k£ lying in the same symplectic core.
In the case k = C this result was obtained in [3, Th. 4.2]. Besides the quantized
function algebras at a root of 1 considered by De Concini, Lyubashenko, Procesi
other interesting examples of Poisson orders are found among the symplectic reflec-
tion algebras of Etingof and Ginzburg [8]. I thank A. Premet for mentioning the
results of [3] to me.

When chark > 0, all L-strata in Spec R reduce to single points. This cannot
be said about the H-strata, for example, when H is a group algebra or when H
contains an infinite sequence of divided powers for some primitive element. So the
conclusion of Theorem 2.3 is nontrivial in any characteristic.

1. Prime lying-over in equivariant extensions

Throughout the whole paper we assume that H is a cocommutative Hopf algebra
over the ground field £ and R is a commutative left H-module algebra. Thus R is a
commutative ring extension of k£ which also has a left H-module structure such that
the multiplication map R®i R — R is H-linear and the unity 1 € R is H-invariant.
We assume that H acts in the tensor products via the comultiplication H — H ®y H
written symbolically as h + 3 h(1) ® h(2). An R-module M is H -equivariant if M
is equipped with a left H-module structure such that the action of R is given by an
H-linear map R ®j M — M. The compatibility of the two module structures mean
precisely that M may be regarded as a left module over the smash product R#H,
and we denote by rxpM the category of H-equivariant R-modules. We say that
M € pyguaM is R-finite if M is finitely generated as an R-module.

Given two objects M, N € pgpyM, the R-modules M ®r N and Hompg(M, N)
will be regarded as objects of rup M too. In the first case the action of H is ob-
tained by observing that the kernel of the canonical surjection M @, N — M ®r N
is H-stable. In the second case the action is defined by the formula

(hg)(v) = haya(S(hez))v)
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where h € H, ¢ € Homg(M,N), v € M and S : H — H is the antipode. In partic-
ular, the R-dual M}, = Hompg(M, R) is an H-equivariant R-module.

Let Q be a fixed set written as a disjoint union of subsets ,, n =0,1,2,.... An
R-algebra with the operator domain () is an R-module A together with a collection

of maps
Q, — Hompg(A%", A), n=0,1,2,...,

where A%” stands for the nth tensor power of the R-module A. In other words,
to each element of €2, there corresponds an R-multilinear operation A™ — A (cf.
[4]). Further on the set € will not be mentioned explicitly, and we will speak simply
about R-algebras. An H -equivariant R-algebra is an R-algebra A equipped with a
left H-module structure with respect to which A is an H-equivariant R-module and
each structure map A%” — A is H-linear.

By a ring extension we mean any ring homomorphism ¢ : R — R’ where the
ring R’ is assumed to be commutative, and we also call R’ an extension of R. Fur-
thermore, ¢ is an H -equivariant extension if ¢ is a homomorphism of commutative
H-module algebras. For a prime ideal p € Spec R denote

pg={a€ R|HaCp}.

So py is the largest H-stable ideal of R contained in p. We say that two primes p, g
lie in the same H-stratum if py = qg. Denote by R, the local ring of p and by M,
the corresponding localization R, ® g M of an R-module M.

Proposition 1.1. If M € ryaM is R-finite, then My is a free Ry-module for each
p € Spec R such that p = 0.

A stronger form of this result is given in [10, Cor. 1.5]. When H = U(L) is the
universal enveloping algebra of a Lie algebra L, the proof can be obtained especially
easily. In this case the actions of L on R and M extend to actions on R, and M,.
So one may assume R to be local and p maximal. Let v{,...,v, € M be elements
whose cosets give a basis for M/pM over the residue field R/p. By Nakayama’s
Lemma M = )" Rwv;. Denote by I the ideal of R generated by all elements which
occur as a coefficient in some relation a;v, +...+a,v, =0.If aq,...,a, € R satisfy
this relation and D € L, then

> (Daj)vi == ai(Dv;) € IM =) Iv;.

Therefore for each 7 there exists b; € I such that Da; — b; € I, but then Da; € I.

This shows that [ is L-stable, hence H-stable. However, I C p since vq,...,v, are
linearly independent modulo p. The assumption py = 0 now forces I = 0. In other
words, v1,...,v, are a basis for M over R.

Corollary 1.2. Suppose that M € rupM has a chain 0 = My C My C My C ---
of R-finite pypM-subobjects such that M = |JM;. Then M, is a free Ry-module
for each p € Spec R with py = 0. If N C M is an arbitrary rypM-subobject, then
Ny is a direct summand of M, for any such p.

Proof. Each quotient M;/M,;_1, i > 0, is an R-finite object of rup M. Therefore
(M;)p/(M;—1)y is a free Ry-module, and (M;_1), is a direct summand of (M;),. It
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follows that M, = @ (M;),/(M;_1), is free. Since M /N satisfies the same assump-
tions as M, the Ry,-module M, /N, is also free, whence the final conclusion. O

Proposition 1.3. Assume M € rupyM to be R-finite. If N is any r4 g M-subobject
of M, then for each p € Spec R with py = 0 the Ry,-module Ny is finitely generated
free and its rank tk N, does not depend on p.

Proof. It has been verified in [10, Prop. 1.1] that all Fitting invariants Fitt; M of the
R-module M are H-stable ideals of R (when H = U(L) this can be done straightfor-
wardly). Hence Fitt; M = 0 whenever Fitt; M C p for at least one p € Spec R with
py = 0. There is an integer » > 0 such that Fitt,_; M = 0, but Fitt,. M ¢ p for each
p with py = 0. By [7, Cor. 20.5] the Fitting invariants of the R,-module M, are
extensions of the ideals Fitt; M. Thus Fitt; M, is zero for i = r — 1 and equals R,
for i = r. By [7, Prop. 20.8] M, is projective, hence free, of rank r. This shows that
the ranks of M,’s have the same value for all p € Spec R with py = 0. Replacing
M with M /N, we deduce the same conclusion for the ranks of M, /N,’s. Now N,
is a direct summand of M,. Hence N, is free with rk N, = rk M, —rk M, /N,. O

In the next result we may regard R’ as an H-equivariant R-module, and it is
already clear from Corollary 1.2 that R; is a free Ry-module. If ¢ is injective then
Ry, is faithfully flat over R,, which implies the existence of a prime p’ € Spec R’
lying over p. It will later be essential to find p’ with additional properties.

Proposition 1.4. Let ¢ : R — R’ be an H-equivariant extension of commutative
rings such that R' = p(R)[V] (i.e. R is generated by ¢(R) U V) where V.C R’ is
an H-stable finitely generated R-submodule, and let J be an H-stable ideal of R'.
Put X ={p € SpecR | pg = 0} and

X(J)={p € X | there exzists p’ € Spec R" such that J ¢ p’ and o~ (p) = p}.

If X(J)+#@ then X(J) = X.

Proof. Setting Vo = ¢(R) and inductively V; = V;_1 + V;_1V for i > 0, we get a
chain of R-finite pypM-subobjects whose union equals R’. Suppose that p € X.
By Corollary 1.2 J, is an Rp-module direct summand of R;,. Hence

pR, N J, =pJ,.

The inclusion J, C pR;J holds if and only if J, = pJ,. Since the Ry-module J, is
projective, and even free by Kaplansky’s Theorem, the last equality is equivalent
to Jp, = 0. Since J = {J (J NV;), the equality J, = 0 amounts to the condition that
(JNV;)p =0 for all i > 0. Applying Proposition 1.3 to the subobjects J NV; of the
R-finite rygM-objects V;, we conclude that the inclusion J, C pR), holds for some
prime in X if and only if it holds for all primes in X.

Suppose that q € X (J), and let g’ € Spec R’ be such that J ¢ ¢’ and ¢ ~1(q’) = q.
Then q’ coincides with the preimage of q'R; in R', which forces J; ¢ q'Rj. Since
qRy C q'Ry, we get Jq ¢ qR;. As we have seen, this implies that J, ¢ pR), for all
p € X. Moreover, J" is an H-stable ideal of R’ and J™ ¢ q’ for any n > 0 since ¢’ is
prime. Replacing J with J" in the preceding arguments, we deduce that J' ¢ pR;g
for all » > 0 and all p € X.



Now fix some p € X and denote by I the extension of J in the ring R,,/pR,,. Then
I"™ is the extension of J". So J;' ¢ pR, yields I" # 0. In other words, the ideal
I is not nilpotent. The ring R /pR; is noetherian since it is a finitely generated
algebra over the residue field R, /pRy. It follows that I is finitely generated, and
therefore I is not contained in the nil radical of R}, /pR,,. Hence Ry, /pR; has a prime
ideal which does not contain I. Take the preimage p’ in R’ of such an ideal. Then
p’ € Spec R' and J ¢ p’. Since the composite R — R' — R, /pR; factors through
Ry /pR,, we also have o~ 1(p') = p. O

2. Construction of trivializing extensions

Let m be a maximal ideal of R. For each R-module M put
Jm(M) = Homy (H, M /mM).

In particular, Jn(R) = Homy(H, R/m) is a commutative ring, extension of k, with
respect to the convolution multiplication (see [9] or [11]). The unity 1 of Jn(R) is
the counit € : H — k. We will view J, (M) as a module over Jn(R) and a module
over H with respect to the actions

Em)(h) =>_ &(hayn(he), (g —=n)(h) =n(hg)

where £ € Tn(R), n € Jn(M) and g,h € H. It is checked straightforwardly that
Jm(R) is an H-module algebra and J,(M) is an H-equivariant Jy(R)-module.
Each H-invariant element in Jy, (M) is of the form h — e(h)u for some u € M /mM.
Thus M/mM may be identified with the k-subspace of H-invariant elements in
Jm(M). This gives rise to a homomorphism of H-equivariant Jy, (R)-modules

M/mM @ Tn(R) — Tm(M)

It is an isomorphism whenever R/m = k and dimy M /mM < oo. Assuming further
that M € rugM, define
9{1\14 M — Tn(M)

oM (v)(h) = 7 (), ve M, heH,
where mM : M — M /mM is the canonical map. Then 0 is H-linear and

O0M (av) = 08 (a)0M (v) for alla € R, v € M.

by the rule

This means that 02 : R — 7, (R) is a homomorphism of H-module algebras, while
02 is a morphism in gy M when Jy(M) is viewed as an R-module via 6.

Each R/m-linear map f : M/mM — R/m induces a homomorphism of H-equi-
variant Jy (R)-modules Jun (f) : Tm(M) — Tn(R). Then the map

ct: M — Tu(R), CfZJm(f)Oeé\l/[,
cr(av) = 0F(a)cp(v) foralla€ R, v e M.

We call ¢ the coefficient function on M associated with f. Denote by En(M) the
subring of Jm(R) generated by the image of 0 and the images of all cs’s, when f
runs over the dual of the R/m-vector space M /mM. Clearly (M) is stable under
the action of H. We will always view £y (M) as an H-equivariant extension of R

via 08 : R — £, (M).

is H-linear and



Lemma 2.1. Suppose that M € pugM is R-finite and R/m = k. Then En (M) is
generated as an R-algebra by an H-stable finite R-submodule. In particular, En(M)
18 the union of a chain of H-stable finite R-submodules. Also,

ImOM ¢ M/mM @, En(M).

Proof. Let eq,...,e, be any k-basis for M/mM and f1,..., f, the dual basis for
the dual vector space (M/mM)*. Each f € (M/mM)* is a k-linear combination of
fi,-.., fr, whence cy is a k-linear combination of cy,,...,cs.. Now it follows that
Em(M) = 0F(R)[V] where V = 3" ¢y, (M) is an H-stable finite 0{X( R)-submodule in
Jm(R). By definitions

03 (v)(h) =) cf,(v)(h)e; forallve M, he H,

ie. 0 (v) =Y e @cy,(v) € M/mM @y Ex(M) under the identification of Jy (M)
with M/mM Qj Jm(R). O

If A is an H-equivariant R-algebra, then J,,(A) will be viewed as an H-equivariant
Ju(R)-algebra (and as an R-algebra via 6%) with the same operator domain. The
structure map [ for Jn(A) corresponding to a structure map p : A5 — A is de-
fined as

im @ @nu)(h) = i (m1(h1) @ -+ @ (b))

where 71,...,1m, € IJm(A), h € H and py is the structure map of the R/m-algebra
A/mA induced by u. It is checked straightforwardly that 64 : A — J.(A) is a
homomorphism of H-equivariant R-algebras.

In the next theorem R} stands for the ring of fractions of R’ with respect to the
multiplicatively closed set of powers of ¢ and the functor ? ® g R} on the category
of R’-modules is denoted by the subscript ¢.

Theorem 2.2. Let A be an H -equivariant finite R-algebra and m a mazximal ideal
of R such that R/m =k and myg = 0. Put R’ = £,(A). For each p € Spec R with
pr = 0 there exists t € R' such that (R}), is faithfully flat over R, and there is an
isomorphism of R}-algebras

A®pr R, 2 A/mA @y, R;.

Proof. The map R' — R/m, £ — £(1), is a ring homomorphism whose composite
with 2 coincides with the canonical map R — R/m. Therefore the kernel

m = {¢ e R'|£(1) =0}

is a maximal ideal of R’ lying over m. Since 04 : A — Jn(A) =2 A/mA®y, Tm(R) has
image in A/mA®y R', it extends to a homomorphism of H-equivariant R'-algebras

Y:AQr R — A/mA®; R

Put K = Kert, C = Coker, and denote by J the annihilator of C' in R’. Since
C is an H-equivariant R’-module, J is an H-stable ideal of R’. Note that C is
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R’-finite because dimy A/mA < co. Since R'/m’ =2 R/m, the map ¢ @ R'/m’ is
identified with the canonical isomorphism A ®p R/m — A/mA. Hence C' = m/C,
and therefore J ¢ m’ by Nakayama’s Lemma. This entails m € X (J) in the notation
of Proposition 1.4. But then p € X (J) as well. Let p’ € Spec R’ be any prime ideal
lying over p such that J ¢ p’.

Suppose that ¢ € J, but t ¢ p’. From the exact sequence of Rj;-modules

0K, — Az R, -2 A/mA@y R, —— C, =0

we deduce that ¢ (i.e. Y ®@p R}) is surjective. Since A/mA®y, R} is a free R;-module,
K, is a direct summand of A ®g R;. In particular, K, is Rj}-finite. By Proposition
1.3 the Ry-module A, and the Ry-module Ay, are both free of equal rank 7. Clearly
r = dimg A/mA. Then the R;,—module AQp R;, = Ap @R, R;, is also free of rank
r. Thus

Y QR R;/ :ARR R;/ — A/mA Rk R;’/

is a homomorphism between two free modules of equal rank. Since R’ — R;, fac-
tors through R}, this homomorphism is surjective. But then ¢ ®p/ R;, has to be
bijective, and it follows that K ®p; R;, = K, = 0. By Nakayama’s Lemma K; is
annihilated by some element s € R’ \ p’. Replacing t with st, we obtain an element
t € J~p’ for which K; =0, so that v; is an isomorphism.

By Corollary 1.2 Ry, is flat over R,. Hence (R}), = (R}) is also flat over R,.
Since p’ R} is a prime ideal of R} lying over p, we have faithful flatness. O

Theorem 2.3. Assume the field k to be algebraically closed. If A is an H -equivariant
finite R-algebra, then A/mA = A/nA for any pair of mazimal ideals m,n of R with
residue field k lying in the same H -stratum.

Proof. By the hypothesis my = ny. Passing to the H-equivariant R/mg-algebra
A/my A, we may assume that my = 0 and apply Theorem 2.2. There exists ¢t € R’
such that (R}), is faithfully flat over R,, and

A®pr R, 2 A/mA®y R;.

Faithful flatness ensures that nR; # Rj}. Since R} is a finitely generated R-algebra,
R} /nR; is a finitely generated algebra over R/n = k. As the latter is nonzero, it has
at least one maximal ideal. The residue field of such an ideal coincides with k by
Hilbert’s Nullstellensatz. Taking preimage, we get a maximal ideal n’ of R} lying
over n such that R;/n’ = k. Finally,

A/nA = (A®R R) ®p, Ry/v = (A/mA®y R;) Qp: Ri/n = A/mA. O

3. Removing the localization

We want to obtain a stronger conclusion compared with that in Theorem 2.2. Let
m be a maximal ideal of R such that R/m = k. Suppose that M € pup M is R-finite
and R-projective. Then M/mM and Mj,/mM}, are mutually dual vector spaces.
As explained in section 2, each p € Mj;/mMj, and each u € M/mM determine
coefficient functions



cp: M — Tu(R), Cu: Mp — Tn(R).

Lemma 3.1. Let z1,...,x, € M and y1,...,y, € M}, satisfy Z;.I:l(yj,v}a:j =
for allve M. Then

Zcp(a:j)cu(yj) = (p,u)l forall p e Mp/mMp, ue M/mM.
j=1

Proof. Consider T' = M ®r M}, € rgnM. Identifying p@u € M, /mMj, @5 M/mM
with an element of (7/mT)*, we get the coefficient function cpgy, : T — JTm(R) such
that

Cpou(V ® q) = ¢cp(v)ey(q) forve M, g€ M.

Now
n

n
cp(j)en(yj) = cpou(z) where z = ij ®y; €T.
j=1 Jj=1
Note that z corresponds to the identity transformation Idy; under the canonical
isomorphism of H-equivariant R-modules T' = Endg (M, M). Since Id,; is an H-

invariant element, so too is z. Hence 0L (2)(h) = e(h)wL(z) for h € H. Identifying
JIm(T) with T/mT ®j Jm(R), we get

On(z) = ma(x) @1 =3 (mal () @ 7™ (37) © 1,

and so

n
*

cpou(2) = (P@u, TH(N1 = (p, m (25)) (u, 7 ™ (;))1.
j=1

Since the pairing M}, /mMj, x M /mM — k coincides with the modulo m reduction
of the pairing My x M — R we have

n M
> (e () (5) = u,
j=1
and the previous formula yields ¢y (2) = (p, u)1. O

Theorem 3.2. Let A and m be as in Theorem 2.2. In addition assume that the
underlying R-module of A is projective of constant rank. With R" = E,(A & A},)
there is an isomorphism of H -equivariant R"-algebras A ®r R" = A/mA @y R".

Proof. We have a homomorphism of H-equivariant R-algebras
V:ARp R — A/mA®, R',  a®bw— 02(a)b.

Both algebras are projective R”-modules of constant rank r = dimy A/mA. Next
we apply Lemma 3.1 to M = A. The required elements in A and A7}, exist by the
dual basis lemma. Let eq,..., e, be any k-basis for A/mA and f1,..., f, the dual
basis for (M/mM)*. Recall that 024 (z;) = >_, e, ® cf,(z;). Lemma 3.1 yields
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T T n

c®l=) (fredea®1l=73 > er®cp(a;)ce(y;) =) (e @ ce(y;))

=1 =1 j=1 j=1

for each i. This shows that 1 is surjective. But then v splits as an epimorphism of
R”-modules. Hence Ker is a projective R”-module of rank 0, i.e. Ker¢y = 0. In
other words, v is bijective. 0

Any H-equivariant R-module M is an R-algebra with the empty operator domain.
When M is R-finite and R-projective of constant rank, Theorem 3.2 says just that
there is an isomorphism of H-equivariant R”-modules M ®r R” = M/mM ®; R".
The question about splittings of equivariant modules arises naturally in the Picard-
Vessiot theory. A Hopf algebraic approach to this theory was developed by Takeuchi
[12]. Originally it dealt with a field acted upon by a cocommutative Hopf algebra
or, more generally, just a coalgebra, and later it was extended to H-simple artinian
module algebras [1]. There the construction of a splitting extension for a given
equivariant module followed a different path.
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