Local triviality of equivariant algebras

Serge Skryabin

Chebotarev Research Institute, Universitetskaya St. 17, 420008 Kazan, Russia E-mail: Serge.Skryabin@ksu.ru

This paper was motivated by the observation that in the presence of some additional structure for an algebra A over a commutative ring R one can prove that the reductions of A modulo two maximal ideals of R are isomorphic. In [5, 9.1] and [6, 11.8] this fact is explained by means of an analytic argument. Suppose that B is a smooth bundle of algebras over a differentiable manifold X of class C^{∞} . Let φ_t be the local flow of a smooth vector field D on X. We interpret D as a derivation of the ring $C^{\infty}(X)$ of smooth functions on X. Suppose that there exists a D-compatible derivation \mathcal{D} of the algebra of global sections $\Gamma(X, B)$. Then \mathcal{D} gives rise to a vector field on B, and the corresponding local flow ψ_t induces an algebra isomorphism $B_x \cong B_{\varphi_t(x)}$ between the fibers of B for all t in a suitable neighbourhood of 0 in \mathbb{R} where $x \in X$ is some fixed point. In the list of open problems [2, III.10.1, Q.4] Brown and Goodearl asked whether a purely algebraic approach to results of this kind can be found.

We will assume in the paper that the ring R itself is an algebra over a field k. In general the term "algebra" will be used in the universal sense. More precisely, by an R-algebra we mean an R-module equipped with any indexed set of R-multilinear operations. An R-algebra A will be called *finite* if its underlying R-module is finitely generated. Denote by $\text{Der}_k R$ and $\text{Der}_k A$ the Lie algebras of k-linear derivations of R and A. Given $D \in \text{Der}_k R$, we say that $\mathcal{D} \in \text{Der}_k A$ is D-compatible if

$$\mathcal{D}(ca) = D(c)a + c\mathcal{D}(a) \text{ for all } c \in R, \ a \in A$$

Let $L \subset \text{Der}_k R$ be a Lie subalgebra. For a prime ideal $\mathfrak{p} \in \text{Spec } R$ denote by \mathfrak{p}_L the largest *L*-stable ideal of *R* contained in \mathfrak{p} . The equality $\mathfrak{p}_L = \mathfrak{q}_L$ for two primes $\mathfrak{p}, \mathfrak{q}$ defines an equivalence relation on Spec *R*, called the *L*-stratification.

Theorem. Suppose that the field k is algebraically closed, the R-algebra A is finite, and for each $D \in L$ there exists a D-compatible derivation in $\text{Der}_k A$. Then there is a noncanonical isomorphism of k-algebras $A/\mathfrak{m}A \cong A/\mathfrak{n}A$ for any pair of maximal ideals $\mathfrak{m}, \mathfrak{n}$ of R with residue field k lying in the same L-stratum.

Actually a stronger conclusion will be proved. If $\mathfrak{m}_L = 0$, then for any $\mathfrak{p} \in \operatorname{Spec} R$ with $\mathfrak{p}_L = 0$ there exists a ring homomorphism $R \to R'$ with respect to which R' is a finitely generated R-algebra, the ring $R'_{\mathfrak{p}} = R' \otimes_R R_{\mathfrak{p}}$ is faithfully flat over the local ring $R_{\mathfrak{p}}$, and the R'-algebra $A \otimes_R R'$ is isomorphic to $A/\mathfrak{m}A \otimes_k R'$. This property may be viewed as the local triviality of A in a neighbourhood of \mathfrak{p} with respect to the quasicompact faithfully flat Grothendieck topology.

The technique used in this paper is Hopf algebraic, and the main results are established when an arbitrary cocommutative Hopf algebra H acts on R and A. The theorem stated in the introduction is a special case of Theorem 2.3 in which H is taken to be the universal enveloping algebra of the Lie algebra

$$\widehat{L} = \{ (D, \mathcal{D}) \in L \times \operatorname{Der}_k A \mid \mathcal{D} \text{ is } D \text{-compatible} \}$$

Since the projection $\widetilde{L} \to L$ is surjective, the *L*-stable ideals of *R* are precisely the *H*-stable ideals, so that the *L*-stratification coincides with the *H*-stratification.

In a special case the previous theorem applies to the Poisson orders introduced by Brown and Gordon [3]. Suppose that R is equipped with a k-bilinear Poisson bracket $\{-,-\}$. For each $a \in R$ the formula $D_a(z) = \{a, z\}, z \in R$, defines a derivation $D_a \in \text{Der}_k R$. A Poisson *R*-order is an associative unital finite *R*-algebra A such that R is identified with a central subring of A and each D_a , $a \in R$, extends to a k-linear derivation of A (the latter is then D_a -compatible). The assumption that A is finitely generated as a k-algebra is also included in [3], but we do not need it. Take $L = \{D_a \mid a \in R\}$. Then \mathfrak{p}_L is the largest Poisson ideal of R contained in a prime ideal **p**. The L-strata in this case were called the symplectic cores of the Poisson algebra R in [3]. Thus $A/\mathfrak{m}A \cong A/\mathfrak{n}A$ whenever k is algebraically closed and $\mathfrak{m}, \mathfrak{n}$ are two maximal ideals of R with residue field k lying in the same symplectic core. In the case $k = \mathbb{C}$ this result was obtained in [3, Th. 4.2]. Besides the quantized function algebras at a root of 1 considered by De Concini, Lyubashenko, Procesi other interesting examples of Poisson orders are found among the symplectic reflection algebras of Etingof and Ginzburg [8]. I thank A. Premet for mentioning the results of [3] to me.

When char k > 0, all L-strata in Spec R reduce to single points. This cannot be said about the H-strata, for example, when H is a group algebra or when H contains an infinite sequence of divided powers for some primitive element. So the conclusion of Theorem 2.3 is nontrivial in any characteristic.

1. Prime lying-over in equivariant extensions

Throughout the whole paper we assume that H is a cocommutative Hopf algebra over the ground field k and R is a commutative left H-module algebra. Thus R is a commutative ring extension of k which also has a left H-module structure such that the multiplication map $R \otimes_k R \to R$ is H-linear and the unity $1 \in R$ is H-invariant. We assume that H acts in the tensor products via the comultiplication $H \to H \otimes_k H$ written symbolically as $h \mapsto \sum h_{(1)} \otimes h_{(2)}$. An R-module M is H-equivariant if Mis equipped with a left H-module structure such that the action of R is given by an H-linear map $R \otimes_k M \to M$. The compatibility of the two module structures mean precisely that M may be regarded as a left module over the smash product R # H, and we denote by $_{R \# H} \mathcal{M}$ the category of H-equivariant R-modules. We say that $M \in _{R \# H} \mathcal{M}$ is R-finite if M is finitely generated as an R-module.

Given two objects $M, N \in {}_{R \# H}\mathcal{M}$, the *R*-modules $M \otimes_R N$ and $\operatorname{Hom}_R(M, N)$ will be regarded as objects of ${}_{R \# H}\mathcal{M}$ too. In the first case the action of *H* is obtained by observing that the kernel of the canonical surjection $M \otimes_k N \to M \otimes_R N$ is *H*-stable. In the second case the action is defined by the formula

$$(hq)(v) = \sum h_{(1)}q(S(h_{(2)})v)$$

where $h \in H$, $q \in \operatorname{Hom}_R(M, N)$, $v \in M$ and $S : H \to H$ is the antipode. In particular, the *R*-dual $M_R^* = \operatorname{Hom}_R(M, R)$ is an *H*-equivariant *R*-module.

Let Ω be a fixed set written as a disjoint union of subsets Ω_n , n = 0, 1, 2, ... An *R*-algebra with the operator domain Ω is an *R*-module *A* together with a collection of maps

$$\Omega_n \to \operatorname{Hom}_R(A_R^{\otimes n}, A), \qquad n = 0, 1, 2, \dots,$$

where $A_R^{\otimes n}$ stands for the *n*th tensor power of the *R*-module *A*. In other words, to each element of Ω_n there corresponds an *R*-multilinear operation $A^n \to A$ (cf. [4]). Further on the set Ω will not be mentioned explicitly, and we will speak simply about *R*-algebras. An *H*-equivariant *R*-algebra is an *R*-algebra *A* equipped with a left *H*-module structure with respect to which *A* is an *H*-equivariant *R*-module and each structure map $A_R^{\otimes n} \to A$ is *H*-linear.

By a ring extension we mean any ring homomorphism $\varphi : R \to R'$ where the ring R' is assumed to be commutative, and we also call R' an extension of R. Furthermore, φ is an *H*-equivariant extension if φ is a homomorphism of commutative *H*-module algebras. For a prime ideal $\mathfrak{p} \in \operatorname{Spec} R$ denote

$$\mathfrak{p}_H = \{ a \in R \mid Ha \subset \mathfrak{p} \}.$$

So \mathfrak{p}_H is the largest *H*-stable ideal of *R* contained in \mathfrak{p} . We say that two primes $\mathfrak{p}, \mathfrak{q}$ lie in the same *H*-stratum if $\mathfrak{p}_H = \mathfrak{q}_H$. Denote by $R_\mathfrak{p}$ the local ring of \mathfrak{p} and by $M_\mathfrak{p}$ the corresponding localization $R_\mathfrak{p} \otimes_R M$ of an *R*-module *M*.

Proposition 1.1. If $M \in {}_{R\#H}\mathcal{M}$ is *R*-finite, then $M_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$ -module for each $\mathfrak{p} \in \operatorname{Spec} R$ such that $\mathfrak{p}_H = 0$.

A stronger form of this result is given in [10, Cor. 1.5]. When H = U(L) is the universal enveloping algebra of a Lie algebra L, the proof can be obtained especially easily. In this case the actions of L on R and M extend to actions on $R_{\mathfrak{p}}$ and $M_{\mathfrak{p}}$. So one may assume R to be local and \mathfrak{p} maximal. Let $v_1, \ldots, v_n \in M$ be elements whose cosets give a basis for $M/\mathfrak{p}M$ over the residue field R/\mathfrak{p} . By Nakayama's Lemma $M = \sum Rv_i$. Denote by I the ideal of R generated by all elements which occur as a coefficient in some relation $a_1v_1 + \ldots + a_nv_n = 0$. If $a_1, \ldots, a_n \in R$ satisfy this relation and $D \in L$, then

$$\sum (Da_i)v_i = -\sum a_i(Dv_i) \in IM = \sum Iv_i.$$

Therefore for each *i* there exists $b_i \in I$ such that $Da_i - b_i \in I$, but then $Da_i \in I$. This shows that *I* is *L*-stable, hence *H*-stable. However, $I \subset \mathfrak{p}$ since v_1, \ldots, v_n are linearly independent modulo \mathfrak{p} . The assumption $\mathfrak{p}_H = 0$ now forces I = 0. In other words, v_1, \ldots, v_n are a basis for *M* over *R*.

Corollary 1.2. Suppose that $M \in {}_{R\#H}\mathcal{M}$ has a chain $0 = M_0 \subset M_1 \subset M_2 \subset \cdots$ of *R*-finite ${}_{R\#H}\mathcal{M}$ -subobjects such that $M = \bigcup M_i$. Then $M_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$ -module for each $\mathfrak{p} \in \operatorname{Spec} R$ with $\mathfrak{p}_H = 0$. If $N \subset M$ is an arbitrary ${}_{R\#H}\mathcal{M}$ -subobject, then $N_{\mathfrak{p}}$ is a direct summand of $M_{\mathfrak{p}}$ for any such \mathfrak{p} .

Proof. Each quotient M_i/M_{i-1} , i > 0, is an *R*-finite object of $_{R\#H}\mathcal{M}$. Therefore $(M_i)_{\mathfrak{p}}/(M_{i-1})_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$ -module, and $(M_{i-1})_{\mathfrak{p}}$ is a direct summand of $(M_i)_{\mathfrak{p}}$. It

follows that $M_{\mathfrak{p}} \cong \bigoplus (M_i)_{\mathfrak{p}}/(M_{i-1})_{\mathfrak{p}}$ is free. Since M/N satisfies the same assumptions as M, the $R_{\mathfrak{p}}$ -module $M_{\mathfrak{p}}/N_{\mathfrak{p}}$ is also free, whence the final conclusion. \Box

Proposition 1.3. Assume $M \in {}_{R\#H}\mathcal{M}$ to be *R*-finite. If *N* is any ${}_{R\#H}\mathcal{M}$ -subobject of *M*, then for each $\mathfrak{p} \in \operatorname{Spec} R$ with $\mathfrak{p}_H = 0$ the $R_{\mathfrak{p}}$ -module $N_{\mathfrak{p}}$ is finitely generated free and its rank rk $N_{\mathfrak{p}}$ does not depend on \mathfrak{p} .

Proof. It has been verified in [10, Prop. 1.1] that all Fitting invariants Fitt_i M of the R-module M are H-stable ideals of R (when H = U(L) this can be done straightforwardly). Hence Fitt_i M = 0 whenever Fitt_i $M \subset \mathfrak{p}$ for at least one $\mathfrak{p} \in \operatorname{Spec} R$ with $\mathfrak{p}_H = 0$. There is an integer $r \geq 0$ such that $\operatorname{Fitt}_{r-1} M = 0$, but $\operatorname{Fitt}_r M \not\subset \mathfrak{p}$ for each \mathfrak{p} with $\mathfrak{p}_H = 0$. By [7, Cor. 20.5] the Fitting invariants of the $R_{\mathfrak{p}}$ -module $M_{\mathfrak{p}}$ are extensions of the ideals $\operatorname{Fitt}_i M$. Thus $\operatorname{Fitt}_i M_{\mathfrak{p}}$ is zero for i = r - 1 and equals $R_{\mathfrak{p}}$ for i = r. By [7, Prop. 20.8] $M_{\mathfrak{p}}$ is projective, hence free, of rank r. This shows that the ranks of $M_{\mathfrak{p}}$'s have the same value for all $\mathfrak{p} \in \operatorname{Spec} R$ with $\mathfrak{p}_H = 0$. Replacing M with M/N, we deduce the same conclusion for the ranks of $M_{\mathfrak{p}}/N_{\mathfrak{p}}$'s. Now $N_{\mathfrak{p}}$ is a direct summand of $M_{\mathfrak{p}}$. Hence $N_{\mathfrak{p}}$ is free with $\operatorname{rk} N_{\mathfrak{p}} = \operatorname{rk} M_{\mathfrak{p}} - \operatorname{rk} M_{\mathfrak{p}}/N_{\mathfrak{p}}$.

In the next result we may regard R' as an *H*-equivariant *R*-module, and it is already clear from Corollary 1.2 that $R'_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$ -module. If φ is injective then $R'_{\mathfrak{p}}$ is faithfully flat over $R_{\mathfrak{p}}$, which implies the existence of a prime $\mathfrak{p}' \in \operatorname{Spec} R'$ lying over \mathfrak{p} . It will later be essential to find \mathfrak{p}' with additional properties.

Proposition 1.4. Let $\varphi : R \to R'$ be an *H*-equivariant extension of commutative rings such that $R' = \varphi(R)[V]$ (i.e. R' is generated by $\varphi(R) \cup V$) where $V \subset R'$ is an *H*-stable finitely generated *R*-submodule, and let *J* be an *H*-stable ideal of R'. Put $X = \{ \mathfrak{p} \in \operatorname{Spec} R \mid \mathfrak{p}_H = 0 \}$ and

 $X(J) = \{ \mathfrak{p} \in X \mid \text{there exists } \mathfrak{p}' \in \operatorname{Spec} R' \text{ such that } J \not\subset \mathfrak{p}' \text{ and } \varphi^{-1}(\mathfrak{p}') = \mathfrak{p} \}.$

If
$$X(J) \neq \emptyset$$
 then $X(J) = X$.

Proof. Setting $V_0 = \varphi(R)$ and inductively $V_i = V_{i-1} + V_{i-1}V$ for i > 0, we get a chain of *R*-finite $_{R \# H}\mathcal{M}$ -subobjects whose union equals R'. Suppose that $\mathfrak{p} \in X$. By Corollary 1.2 $J_{\mathfrak{p}}$ is an $R_{\mathfrak{p}}$ -module direct summand of $R'_{\mathfrak{p}}$. Hence

$$\mathfrak{p}R'_{\mathfrak{p}}\cap J_{\mathfrak{p}}=\mathfrak{p}J_{\mathfrak{p}}$$

The inclusion $J_{\mathfrak{p}} \subset \mathfrak{p}R'_{\mathfrak{p}}$ holds if and only if $J_{\mathfrak{p}} = \mathfrak{p}J_{\mathfrak{p}}$. Since the $R_{\mathfrak{p}}$ -module $J_{\mathfrak{p}}$ is projective, and even free by Kaplansky's Theorem, the last equality is equivalent to $J_{\mathfrak{p}} = 0$. Since $J = \bigcup (J \cap V_i)$, the equality $J_{\mathfrak{p}} = 0$ amounts to the condition that $(J \cap V_i)_{\mathfrak{p}} = 0$ for all i > 0. Applying Proposition 1.3 to the subobjects $J \cap V_i$ of the *R*-finite $_{R\#H}\mathcal{M}$ -objects V_i , we conclude that the inclusion $J_{\mathfrak{p}} \subset \mathfrak{p}R'_{\mathfrak{p}}$ holds for some prime in X if and only if it holds for all primes in X.

Suppose that $\mathbf{q} \in X(J)$, and let $\mathbf{q}' \in \operatorname{Spec} R'$ be such that $J \not\subset \mathbf{q}'$ and $\varphi^{-1}(\mathbf{q}') = \mathbf{q}$. Then \mathbf{q}' coincides with the preimage of $\mathbf{q}'R'_{\mathbf{q}}$ in R', which forces $J_{\mathbf{q}} \not\subset \mathbf{q}'R'_{\mathbf{q}}$. Since $\mathbf{q}R'_{\mathbf{q}} \subset \mathbf{q}'R'_{\mathbf{q}}$, we get $J_{\mathbf{q}} \not\subset \mathbf{q}R'_{\mathbf{q}}$. As we have seen, this implies that $J_{\mathbf{p}} \not\subset \mathbf{p}R'_{\mathbf{p}}$ for all $\mathbf{p} \in X$. Moreover, J^n is an H-stable ideal of R' and $J^n \not\subset \mathbf{q}'$ for any n > 0 since \mathbf{q}' is prime. Replacing J with J^n in the preceding arguments, we deduce that $J^n_{\mathbf{p}} \not\subset \mathbf{p}R'_{\mathbf{p}}$ for all n > 0 and all $\mathbf{p} \in X$. Now fix some $\mathfrak{p} \in X$ and denote by I the extension of J in the ring $R'_{\mathfrak{p}}/\mathfrak{p}R'_{\mathfrak{p}}$. Then I^n is the extension of J^n . So $J^n_{\mathfrak{p}} \not\subset \mathfrak{p}R'_{\mathfrak{p}}$ yields $I^n \neq 0$. In other words, the ideal I is not nilpotent. The ring $R'_{\mathfrak{p}}/\mathfrak{p}R'_{\mathfrak{p}}$ is noetherian since it is a finitely generated algebra over the residue field $R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$. It follows that I is finitely generated, and therefore I is not contained in the nil radical of $R'_{\mathfrak{p}}/\mathfrak{p}R'_{\mathfrak{p}}$. Hence $R'_{\mathfrak{p}}/\mathfrak{p}R'_{\mathfrak{p}}$ has a prime ideal which does not contain I. Take the preimage \mathfrak{p}' in R' of such an ideal. Then $\mathfrak{p}' \in \operatorname{Spec} R'$ and $J \not\subset \mathfrak{p}'$. Since the composite $R \to R' \to R'_{\mathfrak{p}}/\mathfrak{p}R'_{\mathfrak{p}}$ factors through $R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$, we also have $\varphi^{-1}(\mathfrak{p}') = \mathfrak{p}$.

2. Construction of trivializing extensions

Let \mathfrak{m} be a maximal ideal of R. For each R-module M put

$$\mathcal{J}_{\mathfrak{m}}(M) = \operatorname{Hom}_{k}(H, M/\mathfrak{m}M).$$

In particular, $\mathcal{J}_{\mathfrak{m}}(R) = \operatorname{Hom}_{k}(H, R/\mathfrak{m})$ is a commutative ring, extension of k, with respect to the convolution multiplication (see [9] or [11]). The unity 1 of $\mathcal{J}_{\mathfrak{m}}(R)$ is the counit $\varepsilon : H \to k$. We will view $\mathcal{J}_{\mathfrak{m}}(M)$ as a module over $\mathcal{J}_{\mathfrak{m}}(R)$ and a module over H with respect to the actions

$$(\xi\eta)(h) = \sum \xi(h_{(1)})\eta(h_{(2)}), \qquad (g \rightharpoonup \eta)(h) = \eta(hg)$$

where $\xi \in \mathcal{J}_{\mathfrak{m}}(R)$, $\eta \in \mathcal{J}_{\mathfrak{m}}(M)$ and $g, h \in H$. It is checked straightforwardly that $\mathcal{J}_{\mathfrak{m}}(R)$ is an *H*-module algebra and $\mathcal{J}_{\mathfrak{m}}(M)$ is an *H*-equivariant $\mathcal{J}_{\mathfrak{m}}(R)$ -module. Each *H*-invariant element in $\mathcal{J}_{\mathfrak{m}}(M)$ is of the form $h \mapsto \varepsilon(h)u$ for some $u \in M/\mathfrak{m}M$. Thus $M/\mathfrak{m}M$ may be identified with the *k*-subspace of *H*-invariant elements in $\mathcal{J}_{\mathfrak{m}}(M)$. This gives rise to a homomorphism of *H*-equivariant $\mathcal{J}_{\mathfrak{m}}(R)$ -modules

$$M/\mathfrak{m}M \otimes_k \mathcal{J}_\mathfrak{m}(R) \to \mathcal{J}_\mathfrak{m}(M)$$

It is an isomorphism whenever $R/\mathfrak{m} = k$ and $\dim_k M/\mathfrak{m}M < \infty$. Assuming further that $M \in {}_{R\#H}\mathcal{M}$, define $\theta^M : M \to \mathcal{T}_m(M)$

by the rule

is H-linear and

$$O_{\mathfrak{m}}^{M}(u)(h) = -M(hu) \qquad u \in M(h)$$

$$\theta_{\mathfrak{m}}^{M}(v)(h) = \pi_{\mathfrak{m}}^{M}(hv), \quad v \in M, \ h \in H,$$

where $\pi_{\mathfrak{m}}^{M}: M \to M/\mathfrak{m}M$ is the canonical map. Then $\theta_{\mathfrak{m}}^{M}$ is *H*-linear and

$$\theta_{\mathfrak{m}}^{M}(av) = \theta_{\mathfrak{m}}^{R}(a) \, \theta_{\mathfrak{m}}^{M}(v) \quad \text{for all } a \in R, \ v \in M$$

This means that $\theta_{\mathfrak{m}}^{R}: R \to \mathcal{J}_{\mathfrak{m}}(R)$ is a homomorphism of *H*-module algebras, while $\theta_{\mathfrak{m}}^{M}$ is a morphism in $_{R\#H}\mathcal{M}$ when $\mathcal{J}_{\mathfrak{m}}(M)$ is viewed as an *R*-module via $\theta_{\mathfrak{m}}^{R}$.

Each R/\mathfrak{m} -linear map $f: M/\mathfrak{m}M \to R/\mathfrak{m}$ induces a homomorphism of H-equivariant $\mathcal{J}_{\mathfrak{m}}(R)$ -modules $\mathcal{J}_{\mathfrak{m}}(f): \mathcal{J}_{\mathfrak{m}}(M) \to \mathcal{J}_{\mathfrak{m}}(R)$. Then the map

$$c_f: M \to \mathcal{J}_{\mathfrak{m}}(R), \qquad c_f = \mathcal{J}_{\mathfrak{m}}(f) \circ \theta_{\mathfrak{m}}^M,$$
$$c_f(av) = \theta_{\mathfrak{m}}^R(a) c_f(v) \quad \text{for all } a \in R, \ v \in M.$$

We call c_f the coefficient function on M associated with f. Denote by $\mathcal{E}_{\mathfrak{m}}(M)$ the subring of $\mathcal{J}_{\mathfrak{m}}(R)$ generated by the image of $\theta_{\mathfrak{m}}^R$ and the images of all c_f 's, when f runs over the dual of the R/\mathfrak{m} -vector space $M/\mathfrak{m}M$. Clearly $\mathcal{E}_{\mathfrak{m}}(M)$ is stable under the action of H. We will always view $\mathcal{E}_{\mathfrak{m}}(M)$ as an H-equivariant extension of R via $\theta_{\mathfrak{m}}^R: R \to \mathcal{E}_{\mathfrak{m}}(M)$.

Lemma 2.1. Suppose that $M \in {}_{R\#H}\mathcal{M}$ is *R*-finite and $R/\mathfrak{m} = k$. Then $\mathcal{E}_{\mathfrak{m}}(M)$ is generated as an *R*-algebra by an *H*-stable finite *R*-submodule. In particular, $\mathcal{E}_{\mathfrak{m}}(M)$ is the union of a chain of *H*-stable finite *R*-submodules. Also,

$$\operatorname{Im} \theta_{\mathfrak{m}}^{M} \subset M/\mathfrak{m} M \otimes_{k} \mathcal{E}_{\mathfrak{m}}(M).$$

Proof. Let e_1, \ldots, e_r be any k-basis for $M/\mathfrak{m}M$ and f_1, \ldots, f_r the dual basis for the dual vector space $(M/\mathfrak{m}M)^*$. Each $f \in (M/\mathfrak{m}M)^*$ is a k-linear combination of f_1, \ldots, f_r , whence c_f is a k-linear combination of c_{f_1}, \ldots, c_{f_r} . Now it follows that $\mathcal{E}_{\mathfrak{m}}(M) = \theta_{\mathfrak{m}}^R(R)[V]$ where $V = \sum c_{f_i}(M)$ is an H-stable finite $\theta_{\mathfrak{m}}^R(R)$ -submodule in $\mathcal{J}_{\mathfrak{m}}(R)$. By definitions

$$\theta_{\mathfrak{m}}^{M}(v)(h) = \sum c_{f_{i}}(v)(h) e_{i} \text{ for all } v \in M, \ h \in H,$$

i.e. $\theta_{\mathfrak{m}}^{M}(v) = \sum e_{i} \otimes c_{f_{i}}(v) \in M/\mathfrak{m}M \otimes_{k} \mathcal{E}_{\mathfrak{m}}(M)$ under the identification of $\mathcal{J}_{\mathfrak{m}}(M)$ with $M/\mathfrak{m}M \otimes_{k} \mathcal{J}_{\mathfrak{m}}(R)$.

If A is an *H*-equivariant *R*-algebra, then $\mathcal{J}_{\mathfrak{m}}(A)$ will be viewed as an *H*-equivariant $\mathcal{J}_{\mathfrak{m}}(R)$ -algebra (and as an *R*-algebra via $\theta_{\mathfrak{m}}^R$) with the same operator domain. The structure map $\hat{\mu}$ for $\mathcal{J}_{\mathfrak{m}}(A)$ corresponding to a structure map $\mu : A_R^{\otimes n} \to A$ is defined as

$$\hat{\mu}(\eta_1 \otimes \cdots \otimes \eta_n)(h) = \sum \mu_{\mathfrak{m}}(\eta_1(h_{(1)}) \otimes \cdots \otimes \eta_n(h_{(n)})).$$

where $\eta_1, \ldots, \eta_n \in \mathcal{J}_{\mathfrak{m}}(A)$, $h \in H$ and $\mu_{\mathfrak{m}}$ is the structure map of the R/\mathfrak{m} -algebra $A/\mathfrak{m}A$ induced by μ . It is checked straightforwardly that $\theta_{\mathfrak{m}}^A : A \to \mathcal{J}_{\mathfrak{m}}(A)$ is a homomorphism of H-equivariant R-algebras.

In the next theorem R'_t stands for the ring of fractions of R' with respect to the multiplicatively closed set of powers of t and the functor $? \otimes_{R'} R'_t$ on the category of R'-modules is denoted by the subscript t.

Theorem 2.2. Let A be an H-equivariant finite R-algebra and \mathfrak{m} a maximal ideal of R such that $R/\mathfrak{m} = k$ and $\mathfrak{m}_H = 0$. Put $R' = \mathcal{E}_{\mathfrak{m}}(A)$. For each $\mathfrak{p} \in \operatorname{Spec} R$ with $\mathfrak{p}_H = 0$ there exists $t \in R'$ such that $(R'_t)_{\mathfrak{p}}$ is faithfully flat over $R_{\mathfrak{p}}$ and there is an isomorphism of R'_t -algebras

$$A \otimes_R R'_t \cong A/\mathfrak{m}A \otimes_k R'_t.$$

Proof. The map $R' \to R/\mathfrak{m}, \ \xi \mapsto \xi(1)$, is a ring homomorphism whose composite with $\theta_{\mathfrak{m}}^R$ coincides with the canonical map $R \to R/\mathfrak{m}$. Therefore the kernel

$$\mathfrak{m}' = \{\xi \in R' \mid \xi(1) = 0\}$$

is a maximal ideal of R' lying over \mathfrak{m} . Since $\theta_{\mathfrak{m}}^A : A \to \mathcal{J}_{\mathfrak{m}}(A) \cong A/\mathfrak{m}A \otimes_k \mathcal{J}_{\mathfrak{m}}(R)$ has image in $A/\mathfrak{m}A \otimes_k R'$, it extends to a homomorphism of H-equivariant R'-algebras

$$\psi: A \otimes_R R' \to A/\mathfrak{m}A \otimes_k R'$$

Put $K = \text{Ker }\psi$, $C = \text{Coker }\psi$, and denote by J the annihilator of C in R'. Since C is an H-equivariant R'-module, J is an H-stable ideal of R'. Note that C is

R'-finite because $\dim_k A/\mathfrak{m}A < \infty$. Since $R'/\mathfrak{m}' \cong R/\mathfrak{m}$, the map $\psi \otimes_{R'} R'/\mathfrak{m}'$ is identified with the canonical isomorphism $A \otimes_R R/\mathfrak{m} \to A/\mathfrak{m}A$. Hence $C = \mathfrak{m}'C$, and therefore $J \not\subset \mathfrak{m}'$ by Nakayama's Lemma. This entails $\mathfrak{m} \in X(J)$ in the notation of Proposition 1.4. But then $\mathfrak{p} \in X(J)$ as well. Let $\mathfrak{p}' \in \operatorname{Spec} R'$ be any prime ideal lying over \mathfrak{p} such that $J \not\subset \mathfrak{p}'$.

Suppose that $t \in J$, but $t \notin \mathfrak{p}'$. From the exact sequence of R'_t -modules

$$0 \longrightarrow K_t \longrightarrow A \otimes_R R'_t \xrightarrow{\psi_t} A/\mathfrak{m}A \otimes_k R'_t \longrightarrow C_t = 0$$

we deduce that ψ_t (i.e. $\psi \otimes_{R'} R'_t$) is surjective. Since $A/\mathfrak{m}A \otimes_k R'_t$ is a free R'_t -module, K_t is a direct summand of $A \otimes_R R'_t$. In particular, K_t is R'_t -finite. By Proposition 1.3 the R_p -module A_p and the R_m -module A_m are both free of equal rank r. Clearly $r = \dim_k A/\mathfrak{m}A$. Then the $R'_{\mathfrak{p}'}$ -module $A \otimes_R R'_{\mathfrak{p}'} \cong A_p \otimes_{R_p} R'_{\mathfrak{p}'}$ is also free of rank r. Thus

$$\psi \otimes_{R'} R'_{\mathfrak{p}'} : A \otimes_R R'_{\mathfrak{p}'} \to A/\mathfrak{m}A \otimes_k R'_{\mathfrak{p}'}$$

is a homomorphism between two free modules of equal rank. Since $R' \to R'_{\mathfrak{p}'}$ factors through R'_t , this homomorphism is surjective. But then $\psi \otimes_{R'} R'_{\mathfrak{p}'}$ has to be bijective, and it follows that $K_t \otimes_{R'_t} R'_{\mathfrak{p}'} \cong K_{\mathfrak{p}'} = 0$. By Nakayama's Lemma K_t is annihilated by some element $s \in R' \smallsetminus \mathfrak{p}'$. Replacing t with st, we obtain an element $t \in J \backsim \mathfrak{p}'$ for which $K_t = 0$, so that ψ_t is an isomorphism.

By Corollary 1.2 $R'_{\mathfrak{p}}$ is flat over $R_{\mathfrak{p}}$. Hence $(R'_t)_{\mathfrak{p}} \cong (R'_{\mathfrak{p}})_t$ is also flat over $R_{\mathfrak{p}}$. Since $\mathfrak{p}'R'_t$ is a prime ideal of R'_t lying over \mathfrak{p} , we have faithful flatness.

Theorem 2.3. Assume the field k to be algebraically closed. If A is an H-equivariant finite R-algebra, then $A/\mathfrak{m}A \cong A/\mathfrak{n}A$ for any pair of maximal ideals $\mathfrak{m}, \mathfrak{n}$ of R with residue field k lying in the same H-stratum.

Proof. By the hypothesis $\mathfrak{m}_H = \mathfrak{n}_H$. Passing to the *H*-equivariant R/\mathfrak{m}_H -algebra $A/\mathfrak{m}_H A$, we may assume that $\mathfrak{m}_H = 0$ and apply Theorem 2.2. There exists $t \in R'$ such that $(R'_t)_{\mathfrak{n}}$ is faithfully flat over $R_{\mathfrak{n}}$ and

$$A \otimes_R R'_t \cong A/\mathfrak{m}A \otimes_k R'_t.$$

Faithful flatness ensures that $\mathbf{n}R'_t \neq R'_t$. Since R'_t is a finitely generated *R*-algebra, $R'_t/\mathbf{n}R'_t$ is a finitely generated algebra over $R/\mathbf{n} = k$. As the latter is nonzero, it has at least one maximal ideal. The residue field of such an ideal coincides with k by Hilbert's Nullstellensatz. Taking preimage, we get a maximal ideal \mathbf{n}' of R'_t lying over \mathbf{n} such that $R'_t/\mathbf{n}' = k$. Finally,

$$A/\mathfrak{n}A \cong (A \otimes_R R'_t) \otimes_{R'_t} R'_t/\mathfrak{n}' \cong (A/\mathfrak{m}A \otimes_k R'_t) \otimes_{R'_t} R'_t/\mathfrak{n}' \cong A/\mathfrak{m}A.$$

3. Removing the localization

We want to obtain a stronger conclusion compared with that in Theorem 2.2. Let \mathfrak{m} be a maximal ideal of R such that $R/\mathfrak{m} = k$. Suppose that $M \in {}_{R\#H}\mathcal{M}$ is R-finite and R-projective. Then $M/\mathfrak{m}M$ and $M_R^*/\mathfrak{m}M_R^*$ are mutually dual vector spaces. As explained in section 2, each $p \in M_R^*/\mathfrak{m}M_R^*$ and each $u \in M/\mathfrak{m}M$ determine coefficient functions

$$c_p: M \to \mathcal{J}_{\mathfrak{m}}(R), \qquad c_u: M_R^* \to \mathcal{J}_{\mathfrak{m}}(R).$$

Lemma 3.1. Let $x_1, \ldots, x_n \in M$ and $y_1, \ldots, y_n \in M_R^*$ satisfy $\sum_{j=1}^n \langle y_j, v \rangle x_j = v$ for all $v \in M$. Then

$$\sum_{j=1}^{n} c_p(x_j) c_u(y_j) = \langle p, u \rangle 1 \quad \text{for all } p \in M_R^* / \mathfrak{m} M_R^*, \ u \in M / \mathfrak{m} M.$$

Proof. Consider $T = M \otimes_R M_R^* \in {}_{R \# H} \mathcal{M}$. Identifying $p \otimes u \in M_R^* / \mathfrak{m} M_R^* \otimes_k M / \mathfrak{m} M$ with an element of $(T/\mathfrak{m} T)^*$, we get the coefficient function $c_{p \otimes u} : T \to \mathcal{J}_{\mathfrak{m}}(R)$ such that

$$c_{p\otimes u}(v\otimes q) = c_p(v)c_u(q)$$
 for $v\in M, q\in M_R^*$

Now

$$\sum_{j=1}^{n} c_p(x_j) c_u(y_j) = c_{p \otimes u}(z) \quad \text{where } z = \sum_{j=1}^{n} x_j \otimes y_j \in T.$$

Note that z corresponds to the identity transformation Id_M under the canonical isomorphism of *H*-equivariant *R*-modules $T \cong \mathrm{End}_R(M, M)$. Since Id_M is an *H*invariant element, so too is z. Hence $\theta_{\mathfrak{m}}^T(z)(h) = \varepsilon(h)\pi_{\mathfrak{m}}^T(z)$ for $h \in H$. Identifying $\mathcal{J}_{\mathfrak{m}}(T)$ with $T/\mathfrak{m}T \otimes_k \mathcal{J}_{\mathfrak{m}}(R)$, we get

$$\theta_{\mathfrak{m}}^{T}(z) = \pi_{\mathfrak{m}}^{T}(z) \otimes 1 = \sum_{j=1}^{n} \left(\pi_{\mathfrak{m}}^{M}(x_{j}) \otimes \pi_{\mathfrak{m}}^{M_{R}^{*}}(y_{j}) \right) \otimes 1,$$

and so

$$c_{p\otimes u}(z) = \langle p \otimes u, \, \pi_{\mathfrak{m}}^{T}(z) \rangle 1 = \sum_{j=1}^{n} \langle p, \, \pi_{\mathfrak{m}}^{M}(x_{j}) \rangle \langle u, \pi_{\mathfrak{m}}^{M_{R}^{*}}(y_{j}) \rangle 1.$$

Since the pairing $M_R^*/\mathfrak{m}M_R^* \times M/\mathfrak{m}M \to k$ coincides with the modulo \mathfrak{m} reduction of the pairing $M_R^* \times M \to R$ we have

$$\sum_{j=1}^{n} \langle u, \pi_{\mathfrak{m}}^{M_{R}^{*}}(y_{j}) \rangle \pi_{\mathfrak{m}}^{M}(x_{j}) = u$$

and the previous formula yields $c_{p\otimes u}(z) = \langle p, u \rangle 1$.

Theorem 3.2. Let A and \mathfrak{m} be as in Theorem 2.2. In addition assume that the underlying R-module of A is projective of constant rank. With $R'' = \mathcal{E}_{\mathfrak{m}}(A \oplus A_R^*)$ there is an isomorphism of H-equivariant R''-algebras $A \otimes_R R'' \cong A/\mathfrak{m}A \otimes_k R''$.

Proof. We have a homomorphism of H-equivariant R''-algebras

$$\psi: A \otimes_R R'' \to A/\mathfrak{m}A \otimes_k R'', \qquad a \otimes b \mapsto \theta^A_\mathfrak{m}(a)b.$$

Both algebras are projective R''-modules of constant rank $r = \dim_k A/\mathfrak{m}A$. Next we apply Lemma 3.1 to M = A. The required elements in A and A_R^* exist by the dual basis lemma. Let e_1, \ldots, e_r be any k-basis for $A/\mathfrak{m}A$ and f_1, \ldots, f_r the dual basis for $(M/\mathfrak{m}M)^*$. Recall that $\theta_{\mathfrak{m}}^A(x_j) = \sum_{l=1}^r e_l \otimes c_{f_l}(x_j)$. Lemma 3.1 yields

$$e_i \otimes 1 = \sum_{l=1}^r \langle f_l, e_i \rangle e_l \otimes 1 = \sum_{l=1}^r \sum_{j=1}^n e_l \otimes c_{f_l}(x_j) c_{e_i}(y_j) = \sum_{j=1}^n \psi \left(x_j \otimes c_{e_i}(y_j) \right)$$

for each *i*. This shows that ψ is surjective. But then ψ splits as an epimorphism of R''-modules. Hence Ker ψ is a projective R''-module of rank 0, i.e. Ker $\psi = 0$. In other words, ψ is bijective.

Any *H*-equivariant *R*-module *M* is an *R*-algebra with the empty operator domain. When *M* is *R*-finite and *R*-projective of constant rank, Theorem 3.2 says just that there is an isomorphism of *H*-equivariant R''-modules $M \otimes_R R'' \cong M/\mathfrak{m} M \otimes_k R''$. The question about splittings of equivariant modules arises naturally in the Picard-Vessiot theory. A Hopf algebraic approach to this theory was developed by Takeuchi [12]. Originally it dealt with a field acted upon by a cocommutative Hopf algebra or, more generally, just a coalgebra, and later it was extended to *H*-simple artinian module algebras [1]. There the construction of a splitting extension for a given equivariant module followed a different path.

References

- K. Amano and A. Masuoka, Picard-Vessiot extensions of artinian simple module algebras, J. Algebra 285 (2005) 743–767.
- K.A. Brown and K.R. Goodearl, Lectures on Algebraic Quantum Groups, Birkhäuser, 2002.
- K.A. Brown and I. Gordon, Poisson orders, symplectic reflection algebras and representation theory, J. Reine Angew. Math. 559 (2003) 193–216.
- 4. P. Cohn, Universal Algebra, Harper and Row, 1965.
- C. De Concini and V. Lyubashenko, Quantum function algebra at roots of 1, Adv. Math. 108 (1994) 205–262.
- C. De Concini and C. Procesi, *Quantum Groups*, in "D-modules, Representation Theory, and Quantum Groups", Lecture Notes Math., Vol. 1565, Springer, 1993, pp. 31– 140.
- D. Eisenbud, Commutative Algebra with a View toward Algebraic Geometry, Graduate Texts in Math., Vol. 150, Springer, 1995.
- 8. P. Etingof and V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002) 243–348.
- S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Regional Conference Series in Mathematics, Vol. 82, American Mathematical Society, 1993.
- S. Skryabin, Projectivity and freeness over comodule algebras, Trans. Amer. Math. Soc. 359 (2007) 2597–2623.
- 11. M.E. Sweedler, Hopf Algebras, Benjamin, 1969.
- M. Takeuchi, A Hopf algebraic approach to the Picard-Vessiot theory, J. Algebra 122 (1989) 481–509.