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Autism, or autism spectrum disorder (ASD), is a multifactorial disease characterized not only by disturbanc-
es in psychoemotional status and social interaction, but also by somatic dysfunctions. A number of studies 
have also reported changes in the musculoskeletal system in patients with ASD. We report here studies using 
video movement analysis demonstrating decreases in horizontal and vertical motor activity; in addition, 
deviant movements were recorded, indicating deranged locomotor activity and increased anxiety in rats 
with the valproate model of autism. However, a mechano-myographic study did not reveal any signifi cant 
changes in the contractility parameters of isolated skeletal muscles of rats with the model of ASD. This leads 
to the conclusion that general differences in movement may be an independent factor in the diagnosis of 
autism. A more rigorous study using a larger group and detailed kinematic analysis may help with further 
evaluation of motor variability as a potential diagnostic and prognostic marker for ASD.
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Experimental Pathology of Higher Nervous Activity

 Introduction. The US Autism and Developmental 
Disabilities Monitoring Network estimated that one in 36 
eight-year-old children (approximately 4% of boys and 1% 
of girls) had an autism spectrum disorder (ASD) in 2020 
[Maenner et al., 2023]. ASD is a neurodevelopmental dis-
order characterized by impairments in social interaction, a 
predominance of stereotypical behavior patterns, and a nar-
rowed range of interests [Widiger and Hines, 2022]. Despite 
its increasing prevalence, ASD remains a disorder whose 
pathophysiology is poorly understood and the search for drug 
therapies is slow. The etiology of ASD remains unknown; 
some authors associate the occurrence and progression of 
ASD with the infl uence of genetic predisposition and en-
vironmental factors [Taylor et al., 2020]. Among the main 
pathophysiological mechanisms of the development of ASD 
are oxidative stress, neuroinfl ammation, various immune dis-
orders, and mitochondrial dysfunction [Saffari et al., 2019; 
Citrigno et al., 2020; Doi et al., 2022; Singh et al., 2023].

 The role of animal models has been decisive in making 
signifi cant progress in understanding the complex patho-
physiology of ASD [Qi et al., 2021]. A useful model, which 
is supported by exhaustive animal studies, is based on ex-
posing rodents to valproic acid (VPA); this shows striking 
similarities to the behavior, anatomy, and cellular and mo-
lecular changes observed in patients with autism. Many an-
atomical studies have also demonstrated that the VPA mod-
el provides good reproduction of central nervous system 
dysplasia in ASD, providing a valuable tool for studies of 
the underlying mechanism of ASD [Mabunga et al., 2015].
 Published studies have demonstrated the involvement 
of the purinergic signaling pathway in the development of 
the nervous system, mediated by its infl uence on mecha-
nisms such as cell proliferation, differentiation, formation 
of neuron-glial cell interactions, migration of neuronal 
precursors, and neurite outgrowth [Burnstock et al., 2011], 
though the link between anomalous purine metabolism and 
the etiology of ASD is still unclear. However, ontogenetic 
theory indicates that defects in early developmental process-
es contribute to the onset of various mental illnesses later in 
life [Ren et al., 2016; Williams et al., 2018; Courchesne et 
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 Methods. Study object. The experiments used mon-
grel male laboratory rats weighing 160–240 g. Animals 
were kept with free access to food and water in conditions 
of natural alternation of daily illumination.
 The following experimental groups were used:
 1) control group (n = 12);
 2) a group with the model of autism (MA, n = 12).
 Rat model of ASD. High-dose valproic acid blocks 
enzymes involved in the deacetylation of histone proteins, 
which affects the expression of certain genes, modifying their 
functioning. Administration to pregnant females induces fetal 
valproate syndrome in the offspring of laboratory animals, 
this producing manifestations similar to those of ASD [Zheng 
et al., 2019]. Fetal valproate syndrome in the offspring was 
induced by giving female rats single s.c. injections of valproic 
acid sodium salt (500 mg/kg) in the shoulder area on days 
12–13 of pregnancy. There was no increase in fetal deaths, 
no increase in postimplantation losses, and no decrease in lit-
ter size or fetal weight. Rats born after this exposure method 
were used in experiments at age six months. Pups of the same 
age, born to rats not exposed to drugs, were used as controls.
 Open fi eld test. The open fi eld was a white square are-
na. The fl oor was divided into 25 rectangles of identical area 
to support visual recording of the animals’ horizontal motor 
activity at the periphery, in 2/3 of the arena, and its center.
 The open fi eld (OF) test is used to study the innate 
characteristics of orientational and exploratory behavior 
and stress resistance [Kozlovsky and Kenunen, 1992]. This 
method was used to assess the orientational-exploratory 
reaction (OER) in terms of the number of squares crossed 
within the arena and the number of rearings onto the hind 
legs (vertical motor activity, VMA) under artifi cial lighting.
 An animal placed in an unfamiliar open area displays 
orientational-exploratory reactions such as characteristic 
freezing, which is required for assessment of the level of 
risk [Blume et al., 2018].
 Experimental protocol. An animal was placed with all 
four paws in the central square of the arena and its move-
ments in the arena were recorded using a video system for 
3 min. The arena was treated with water to remove odor 
after each animal was tested.
 The following indicators were recorded:
 1) horizontal motor activity (HMA). The main criterion 
for HMA was involvement of all four paws in the animals’ 
movement. One square crossed with all paws was taken as 
a unit of movement. HMA was recorded at the periphery, in 
2/3 of the arena, and at the center;
 2) vertical motor activity (VMA). This consists of two 
types of rearing: the animal’s hind legs remaining on the 
fl oor of the arena with the front legs resting against the wall 
of the fi eld (wall rearing) and with the paws remaining sus-
pended (free rearing). The numbers of rearings in the open 
and by the wall were counted separately.
 Video movement analysis on the Vicon platform. The 
gait of rats of the control group was compared with that of 

al., 2019]. Additional evidence has emerged showing that 
purines, purine-metabolizing ectoenzymes, and purinocep-
tors are also involved in the pathophysiological processes of 
neural development [Fumagalli et al., 2017] and psychiatric 
disorders [Cieslak et al., 2016].
 Depending on ligand, purinergic signaling receptors 
are divided into two main classes: P1 (adenosine receptors) 
and P2 (ATP/ADP and UTP/UDP receptors) [Burnstock, 
2007]. The latter group includes P2X and P2Y receptors, 
which mediate hyperactivation of glial cells and the onset 
of infl ammatory responses in the central nervous system 
(CNS) [Abbracchio and Ceruti, 2006; Inoue, 2008; Huang 
et al., 2019]. In addition, the expression of P2X7 receptors, 
which play a key role in the pathophysiology of CNS disor-
ders and mediate the most severe signs of neuroinfl amma-
tion, has been shown to be decreased in children with ASD 
[Lister et al., 2007; Naviaux et al., 2013].
 Dysfunction of the purinergic signaling system is asso-
ciated with the initiation of ASD, which in turn allows this 
signaling system to be seen as a potential therapeutic target. 
There is evidence that treatment of rats with the ASD model 
with suramin (20 mg/kg, i.p.) restores their communication 
abilities and reduces anxiety as measured using the elevat-
ed plus maze [Hirsch et al., 2020]. Treatment with suramin 
does not affect valproic acid-induced activation of P2X4 and 
P2Y2 receptors in the hippocampus or P2X4 receptor ex-
pression in the medial prefrontal cortex, though it normaliz-
es elevated interleukin 6 (IL-6) levels [Smith et al., 2007].
 Comorbidity has long been recognized in children with 
developmental disorders such as autistic disorder and atten-
tion defi cit hyperactivity disorder [Gillberg et al., 1995; 
Watson et al., 2003]. And although ASD is regarded as a 
mental disorder, dysfunctions of other internal organs and 
systems may also be associated with ASD. Such features 
include, in particular, sensory abnormalities [Kern et al., 
2006], sensory-motor defi cits [Piek and Dyck, 2004], prob-
lems with fi ne and gross motor skills [Provost et al., 2007], 
movement disorders/motor skills [Green et al., 2009], bal-
ance problems [Minshew et al., 2004], muscle weakness 
[Hardan et al., 2003], and hypotonia [Ming et al., 2007].
 Motor abnormalities have been recognized as an in-
tegral part of autism spectrum disorders [Ghaziuddin and 
Butler, 1988]. Moreover, observations have shown that 
movement abnormalities in autism are diverse and can cause 
disturbances in different parts of the central nervous system. 
The involvement of multiple structures is expected, because 
of the complex distribution of the motor system at the levels 
of the spinal cord, brainstem, cerebellum, and subcortical 
and cortical areas of the nervous system [Kingsley, 2000]. 
We suggested that in addition to the core behavioral symp-
toms of ASD, other neurodevelopmental problems associat-
ed with motor dysfunction might also be apparent in rats.
 These observations made the purpose of this study to 
evaluate the general nature of changes in the motor activity 
of skeletal muscles in rats with a model of ASD.
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 Mechano-myographic method for recording muscle 
contractile responses. Before experiments, animals were 
anesthetized by i.p. injection of sodium ethaminal solution at 
a dose of 40 mg/kg and exsanguinated, and soleus and exten-
sor digitorum longus muscles with nerve stumps were har-
vested and placed in a suction electrode of an original design 
[Grishin et al., 2023]. Myoneural preparations were fi xed 
at the tendon ends and then immersed in 10-ml reservoirs 
fi lled with Krebs solution (NaCl 118.0 mM, KCl 4.75 mM, 
CaCl2 2.5 mM, NaHCO3 24.8 mM, KH2PO4 1.18 mM, 
MgSO4·7H2O 1.18 mM, glucose 11 mM), pH 7.4, t = 37°C.
 Contractions were induced in muscle samples using 
a Digitimer MultiStimul D330 (UK) electrical stimula-
tor; rectangular impulses of amplitude 10 V and duration 
0.5 msec were applied at a frequency of 0.1 Hz for 2 min. 
Muscle contraction force was recorded using a Linton 
FСG-01 motor activity sensor (UK) and the analog signal 
was converted by a Biopack MP100MSW data acquisition 
system (USA).
 The initial load on myoneural preparations was 1 g on 
soleus muscles and 0.5 g on EDL muscles. After adaptation 
of muscle preparations to the environment for 30 min, the 
stability of contractile responses was assessed twice with an 
interval of 5 min.
 The effects of purinergic agonists and antagonists were 
assessed by adding 100 μM ATP to the vessel, followed by 
assessment of muscle mechanical responses 7 min later. 
Muscles were then washed with Krebs solution and incubat-
ed with suramin solution (100 μM) for 20 min, which was 
followed by addition of 100 μM ATP and repeat recording 
of muscle mechanical responses.
 All responses captured within two minutes (12 contrac-
tile responses) were averaged and processed as a single result. 
Results were then calculated as percentages relative to the 
baseline results obtained at the beginning of the experiment.
 Statistical data were processed in SPSS Statistics. 
Compliance of data with the normal distribution was test-
ed using the Kolmogorov test. The arithmetic means of the 
parameters analyzed and standard errors were calculated. 
The statistical signifi cance of changes was assessed using 
Student’s t test for independent and pairwise matched sam-
ples. Differences were taken as signifi cant at p < 0.05.
 Results. Analysis of orientational-exploratory activity 
in the open fi eld test showed that horizontal motor activity 
(HMA) in animals of the MA group was reduced as com-
pared with the control group (Fig. 2).
 The number of squares crossed was 30.5 ± 7.5, com-
pared with 41 ± 3.6 in the control group. Once they had 
left the central zone of the fi eld, the animals did not return 
to it, indicating a higher anxiety level in animals of this 
group. Vertical motor activity (VMA), refl ecting both motor 
and exploratory reactions, was lower in animals of the MA 
group, at 3.2 ± 1.6 vertical rearings (p < 0.05) (Fig. 2). The 
MA group showed a tendency towards decreased motor ac-
tivity, as well as increased anxiety.

rats of the MA group by video movement analysis. 3D data 
were captured using six Vicon MX cameras (Vicon Motion 
Systems, Oxford, UK) placed on special mounts in a semi-
circle. An Active Wand calibration marker (Vicon Motion 
Systems, Oxford, UK) was used to calibrate and synchro-
nize the cameras. A Sony video camera was used to capture 
standard video images. Ten passive refl ective markers were 
placed on the back muscles, sacral bone, knee joints, and 
ankle joints, as shown in Fig. 1.
 During video capture, the rats began to move freely in 
the open fi eld under artifi cial lighting. Spline interpolation 
was used to resample the Vicon data to 30 Hz before analy-
sis. Gait cycle phases were defi ned with time stamps for gait 
events: foot liftoff and renewal of contact with the surface. 
Kinematic analysis was performed for the complete gait cy-
cle of each rat tested.
 Captured data were processed in Vicon Nexus 2.9 soft-
ware to complete the 3D motion model manually and re-
move artifacts from recordings.
 Data captured by Vicon Nexus 2.9 were converted into 
text format using the ASCII module and then processed using 
MATLAB software; the calculation method is described in 
detail in [Smirnova et al., 2022]. For each group, curves were 
obtained by averaging 30 steps by angle into the phases of a 
single step. This yielded data in the form of angulograms: the 
kinematic profi les of the knee joints of rats normalized by 
step phase. Angulograms were used to calculate the fl exion 
angles of the knee joints as the difference between the angle 
at the beginning of the swing phase and the angle at the be-
ginning of the push phase. Foot movement trajectories were 
constructed to determine the range of motion of the limb and 
the point of maximum footraise, as well as step length.
 Data were processed statistically in SPSS Statistics. 
The compliance of the experimental data with the normal 
distribution was tested using the Kolmogorov test. Data on 
the parameters of motor activity in the open fi eld and the 
step characteristics on execution of movement are present-
ed as means and standard deviations M ± SD. Kinematic 
analysis parameter data are presented as medians and low-
er and upper quartiles (Me; Q1; Q3). Independent samples 
were compared using the Mann–Whitney U test. Calculated 
Mann–Whitney U values were compared with critical val-
ues at a signifi cance level of p < 0.05: if the calculated 
U value was equal to or less than the critical value, the dif-
ference was taken as statistically signifi cant.

Fig. 1. Positioning of markers for video motion analysis.
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 The abnormality in locomotor activity described above 
in animals with ASD prompted us to run the next series of 
experiments. Evidence supporting the involvement of the 
synaptic component of the peripheral nervous system in 
various models of disorders has been reported [Khairullin et 
al., 2023a, 2023b]. Purinergic transduction is a key element 
of plasticity in neuromuscular transmission [Ziganshin et 
al., 2020]. We therefore elected to compare the mechanical 
activity of the lower leg muscles in rats from the control 
group and with that of rats with the model of ASD in condi-
tions of purinergic modulation.
 The data obtained here show that there were no signif-
icant changes in the contraction parameters of the muscles 
studied (Table 1). ATP retained signifi cant modulating abil-
ity; no differences were found between the groups studied.
 Discussion. A number of rodent models of ASD have 
been established as an approach to developing new thera-
peutics, these recapitulating many of the behavioral pheno-
types observed in humans with ASD [Pardo and Meffert, 

 Angulograms of the hindlimb joints were constructed 
using video recordings of movement, as shown in Fig. 3, 
a, b. The angulograms show increases in the angle in the 
push phase in rats of the MA group as compared with the 
control group.
 In the fi rst third of the cycle, inappropriate movements 
were observed at the end of the push phase during movement 
initiation in animals of the MA group – the rat squeezed its 
hind paw, which was followed by a low-amplitude push 
(Fig. 3, c, d). The body transfer phase was shorter in the 
MA group. This type of movement may indicate the anxi-
ety and reduced motor function characteristic of this group. 
However, changes in the ranges of motion of the knee and 
hip joints were not statistically signifi cant (Fig. 4).
 Rats in the MA group showed a signifi cant decrease 
in step length and a signifi cant increase in step duration as 
compared with the control group: 131 ± 38 mm (p < 0.05) 
and 0.63 sec (p < 0.05), respectively. Leg raise height was 
the same in both groups (Fig. 5).

Fig. 2. Measures of horizontal (HMA) and vertical (VMA) motor activity in animals of the control group and the group with the model of autism (MA) in the 
open fi eld test. Data presented as means; error bars show standard deviations. Signifi cant differences compared to the control group, p < 0.05.

Fig. 3. Knee joint angulograms of rats of the group with the model of autism (MA) (a) and the control group (b). Representative images of hindlimb position 
of rats during the step phase in rats of the MA group (c) and the control group (d). Purple lines show the trajectory of the foot and blue triangles show the 
ranges of motion of the hindlimb. Arrows show the moment at which the push phase ends.
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in the etiology and pathophysiology of altered behavior 
[Gandhi and Lee, 2021]. One of the neurotransmitter sys-
tems involved in the pathophysiology of mental disorders is 
the purinergic system [Cheffer et al., 2018]. Pathologies of 
purine and pyrimidine metabolism are known to damage the 
nervous system (producing developmental delay, epileptic 
seizures, autism).
 P2 receptors are closely associated with the embryonic 
development of the nervous system, and any disruption of 
purinergic signaling could be the underlying process lead-
ing to mental illness in general [Oliveira et al., 2016].
 P2X and P2Y receptors are known to control a wide 
range of biological characteristics relevant to autism; for 
example, purinergic signaling modulates normal synapto-
genesis and brain development [Pan et al., 2020], innate and 
adaptive immune responses, chronic infl ammation [Lee et 
al., 2015], neuroinfl ammation, antiviral signaling [Mitchell 
et al., 2017], activation of microglia, neutrophil chemotaxis, 
autophagy, intestinal motility [Talos et al., 2012], intestinal 
permeability [Amiet et al., 2008], chemosensory taste trans-

2018; Chaliha et al., 2020]. Valproic acid (VPA) is currently 
the most relevant pharmacological model for ASD in ani-
mal models, as administration of VPA in early pregnancy 
has been shown to lead to various abnormalities in brain 
development, including hyperactivity, attention defi cit dis-
order, and ASD [Wood, 2014; Christensen et al., 2019].
 As long ago as 1996, Rodier et al. discovered morpho-
logical changes in the brain occurring as a result of admin-
istration of VPA to pregnant rats: the number of neurons in 
the nuclei of the cranial nerves decreased and there were 
abnormalities in cerebellar development [Rodier et al., 
1996]. Later studies demonstrated derangements in the be-
havior of rats with the valproate model of ASD, apparent as 
an increase in the threshold of pain sensitivity, a decrease in 
social exploratory activity, an increase in motor activity, and 
hyperactivity manifest as stereotypical behavior [Schneider 
and Przewłocki, 2005].
 Animal models of neuropsychiatric and neurodevelop-
mental disorders, including autism, have yielded valuable 
data on the neural circuits and target receptors involved 

Fig. 4. Ranges of joint motion: left and right knees and hips, in the control group (C) and the group with the model of autism (MA). Data are presented as 
medians and spreads within groups are shown as interquartile ranges.

Fig. 5. Stepping characteristics on performance of movements in the open fi eld identifi ed using a video motion capture system (Vicon) in rats of the control 
group and the group with the model of autism (MA): (a) step length, mm; (b) step height, mm; and (c) step duration. Data are presented as means and standard 
deviations. Statistically signifi cant difference between groups, *p < 0.05.
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et al., 2015] and with clinical studies showing that children 
with ASD spend less time actively exploring their environ-
ment [Elandaloussi et al., 2023]. ASD is also associated 
with anxiety disorders, and estimates of the prevalence of 
anxiety in people with ASD vary widely, from 22% to 84% 
[Nimmo-Smith et al., 2020]. We also found increased anx-
iety in rodents with prenatal exposure to VPA, as indicated 
by a decrease in VPA, changes in gait structure, and a lack of 
exploration of the central area in the open fi eld test, which is 
consistent with other studies [Kataoka et al., 2013; Cartocci 
et al., 2018; Servadio et al., 2018]. Changes in exploratory 
behavior may refl ect developmental disorders of the central 
nervous system. One possible explanation for the decrease 
in exploratory behavior in rats with VPA may be a decrease 
in the number of Purkinje cells in the cerebellar lobules of 
the vermis [Fatemi et al., 2012]. Similarly, decreases in the 
lobules of the cerebellar vermis correlating with decreased 
exploratory activity have been observed in children with 
autism [Pierce and Courchesne, 2001]. Furthermore, im-
paired cerebellar activity may also be indicated by a signif-
icant decrease in step length and an increase in step dura-
tion in MA rats as compared with the control group [Main 
and Kulesza, 2017]. A second possible explanation could 
be changes in neural structures involved in the regulation 
of fear. These include the medial prefrontal cortex and the 
amygdala. Abnormalities in these structures have been 
seen both in rats with a VPA model [Sui and Chen, 2012] 
and in autistic people [Bachevalier and Loveland, 2006; 
Arutiunian et al., 2023]. Schneider and Przewłocki [2005] 

duction [Besag, 2018], and chronic pain syndrome [Lamb et 
al., 2019]. There is no doubt that the causes of most of these 
disorders lie within the central nervous system, though the 
possibility that disturbances in the functioning of the pe-
ripheral nervous system (including neuromuscular synaps-
es) also contribute cannot be excluded.
 Although autism is diagnosed on the basis of three 
main characteristics – social defi cits, communication im-
pairments, and repetitive or stereotyped behavior – other 
behavioral features, such as sensory and motor impair-
ments, are present in more than 70% of people with ASD 
[Bhat, 2021]. Autism-related characteristics such as senso-
ry processing disorders and motor coordination defi cits are 
common but have received less attention from the research 
community. For example, there are a number of qualitative 
and quantitative reports on ASD describing impairments 
to visuomotor and manual dexterity, limb coordination in 
tasks requiring balance, agility, and speed, as well as gait 
impairments and ataxia [Fatemi et al., 2012]. In addition, 
motor impairment may be among the earliest signs of some 
forms of ASD [Ozonoff et al., 2008]. Assessment of move-
ment disorders may therefor aid in the early and quantita-
tive diagnosis of pathology and in identifying dysfunctional 
brain regions and circuits in ASD. We showed that animals 
of the MA group displayed decreased vertical and horizon-
tal motor activity in the open fi eld. This is consistent with 
previous results obtained in animals showing decreased lo-
comotor activity after pre- and postnatal administration of 
VPA [Gedzun et al., 2020; Kataoka et al., 2013; Mabunga 

TABLE 1. Relationship between Contractile Parameters of the Study Muscles in Rats Induced by Electrical Stimulation and Experimental Conditions

Experimental 
conditions Parameter Baseline ATP

(100 μM)
Suramin
(100 μM)

Suramin + ATP
(100 μM)

Soleus

Control
(n = 12)

CS 100.0 ± 3.8 73.1 ± 6.4* 102.7 ± 4.4 96.4 ± 6.5

CT 0.083 ± 0.005 0.082 ± 0.004 0.081 ± 0.005 0.080 ± 0.003

RT/2 0.090 ± 0.006 0.104 ± 0.010 0.092 ± 0.004 0.094 ± 0.011

MA
(n = 12)

CS 98.6 ± 5.1 74.8 ± 5.9* 103.2 ± 6.3 98.7 ± 5.3

CT 0.081 ± 0.004 0.079 ± 0.006 0.080 ± 0.004 0.078 ± 0.006

RT/2 0.091 ± 0.011 0.110 ± 0.013 0.093 ± 0.009 0.095 ± 0.009

Extensor digitorum longus

Control
(n = 12)

CS 100.0 ± 4.8 85.9 ± 3.7* 101.9 ± 4.6 99.2 ± 4.5

CT 0.055 ± 0.006 0.058 ± 0.007 0.060 ± 0.007 0.059 ± 0.005

RT/2 0.068 ± 0.004 0.070 ± 0.006 0.066 ± 0.005 0.069 ± 0.004

MA
(n = 12)

CS 98.5 ± 3.6 84.2 ± 7.1* 97.9 ± 6.3 96.1 ± 5.2

CT 0.059 ± 0.006 0.060 ± 0.005 0.061 ± 0.005 0.061 ± 0.004

RT/2 0.070 ± 0.005 0.072 ± 0.008 0.071 ± 0.007 0.070 ± 0.005

CS – contraction force, CT – contraction time, RT/2 – half-relaxation time. Signifi cant differences compared with baseline, *p < 0.05; signifi cant differences 
compared with control, #p < 0.05.
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vention in ASD. Motor skills should be routinely includ-
ed in comprehensive screening, assessment, and treatment 
planning for ASD, especially after the early developmental 
period when parental attention often shifts to other manifes-
tations of ASD.
 This study was supported fi nancially by a grant from 
the International Scientifi c Council of Kazan State Medical 
University for Young Scientists 2023 within the framework 
of the University Development Program and within the 
framework of the “Strategic Academic Leadership of the 
Kazan Federal University” program (PRIORITY-2030).
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