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Abstract—In this paper we discuss the possibility of using the categorical groupoids and the com-
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1. INTRODUCTION

In our paper we have two main aims. The first aim is the discussion of two new platforms for algebraic
cryptography. Recall that an algebraic system (a group, a ring, a field, etc.), the elements of which
are used in the cryptographic protocols for the submission of some information and processing this
information, is called the platform in algebraic cryptography (see [1, 2]). A cryptographic protocol
is based on the computationally difficult problem. And often, this problem is the problem for an algebraic
structure. The first new platform, which is offered in our paper, is the categorical groupoids (see [3, 4,
5]). Apparently, these objects have not been used in cryptography earlier. We discuss the categorical
groupoids in Section 3. The second platform, which is discussed in our paper, is the commutative
operads. The commutative operad’s platforms were introduced and investigated in our previous paper [6].
Section 4 of this paper can be considered as a continuation of [6].

The second aim of our paper is the description of a new method, improving the cryptographic security.
We call this method a masking of the algebraic system (for instance, a group, a ring, a field, etc.), that is
used as a platform. This method is described in Section 2, and its specific implementations are described
in Section 3 and 4. The method of masking the algebraic system allows to realize the following. Let
us assume that we have some specific protocol (the encryption, or the digital signature protocol, or key
exchange). And also assume that we want to modify this protocol so that it is unavailable for all possible
attacks for some finite time necessary for us. We will call it, for definiteness, the final protocol. In
fact, it is the final stage of the modified protocol. And in the first stages, there is the modification of used
algebraic platform performed. As a result, the original public platform becomes a certain time public only
to the protocol’s participants. Thus, it becomes the secret to outsiders. Of course, this is only possible
under some assumptions, which appear to us reasonable. More detailed analysis of these assumptions
will be continued in our subsequent publications.
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2. MASKED GROUPS

At present, algebraic cryptography develops, mostly, on the basis of the group theory (see, for
example, [1, 2, 7, 8]). Thus, we begin by discussing the case of a group platform.

Let G be a group with the multiplication xy and with the fixed element c ∈ G. We define a new
multiplication on the set G by x · y = xcy. Then (G, ·) is a group with the identity element c−1. The
element c−1x−1c−1 is the inverse element of the element x. Denote the resulting group by Gc. We call it
a masked group with the masking element c.

It is known that G ∼= Gc. This isomorphism is given by the correspondence x �→ c−1x.
The meaning of the transition from G to Gc for cryptography is as follows. Suppose we have some

cryptosystem (the encryption, or the digital signature, or the creation of a common secret key) on the
platform of the group G. Then there is a public description of the group G, suitable for the deployment of
G elements in computer memory, and for the convenient processing of the data. The group’s elements
are usually represented by bit strings.

To be specific let us assume that the group G is defined by a finite set of generators and relations.
At the same time, it is required that the elements of G should have a normal form. The normal form is
the way of writing some element as a word composed of the generators and their inverses. Moreover,
different elements must have different normal forms. Suppose that the fixed bit strings are compared
with the generators and their inverses. Then the element in the normal form is associated with a string
concatenation which corresponds to multipliers. The multiplication of the elements in the normal form
involves two stages. In the first stage two words are written to each other. This action corresponds to
the concatenation of strings of the multipliers. In the second stage the resulting word is transformed into
a normal form. Thus, there must be an algorithm that processes an arbitrary word, or more precisely,
the product of the generators and their inverses, into a normal form. This algorithm solves the word
problem. Moreover, this algorithm must be an efficient algorithm. It is known that only the groups with
the algorithm of this kind are suitable for cryptography.

Suppose now that the protocol’s participants created a shared secret masking element, and also
suppose that they implement the protocol in the masked group. It means that there are some changes
of the following data: the normal form of the elements, the relations and the algorithm, converting the
words to the normal form. The masking element is converted into the secret parameter. Externally the
coding method of the generators by bit strings remains the same. However, the bit strings corresponding
to other elements are changed. An attacker does not know the element c. Herewith the method of
changing is unknown to the attacker. Note that if you don’t know c, it will be impossible to carry out any
action in Gc. Thus, an attack on the protocol is impossible.

Let P be some auxiliary protocol of the creation of a shared secret key. Then the protocol’s
participants compute the secret masking element c using the protocol P . Denote by c = P (G) the
result of the protocol P .

We accept the following assumption. Let t be a runtime of the protocol P (more precisely, the upper
limit for all possible particular implementations). Let us assume that there is an attack to P , which
allows to find c. Also, assume that the runtime of the attacking algorithm is not less than T in all
possible cases. Our main assumption is the following inequality: t < T . Let Δ = T − t > 0. Then it is
possible to implement the following cyclic process:

Step 1. c1 = P (G), G1 = Gc1 ;

Step 2. c2 = P (G1), G2 = (G1)c2;
...

...
...

Step n − 1. cn−1 = P (Gn−2), Gn−1 = (Gn−2)cn−1 ;

Step n. cn = P (Gn−1).

Next the protocol is implemented in the masked group (Gn−1)cn .
At each step of this cyclic process, the attacker lags behind for the time Δ. Thus, the attacker lags

behind for the time nΔ within n steps. Herewith the, protocol’s participants may choose the number
n arbitrarily large. The protocol of the creation of a shared secret key includes a random selection of
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some parameters. Therefore, the attacker can not jump even through one step. To find the final masking
element, he will have to spend at least time Tn. The protocol’s participants will compute the masking
element cn at most for the time tn.

As a result, it may take time, at least Δn, until the attacker can attack the protocol. During this
time, the protocol will be protected. Thus, there is a theoretical possibility of constructing the fairly good
protocols even from the vulnerable components. In our understanding, good enough protocols are the
protocols, providing the cryptographic security for some end, but sufficiently long time, and this time
can be adjusted by the protocol’s participants.

The conditions of performing the inequality t < T , will be investigated in our consequent papers. It is
connected with the study of the lower limits of the complexity of some particular algorithms. It is known
that many secret key exchange protocols are based on the complexity of these algorithms. Thus, it is
expected that the lower bounds of the complexity is also very considerable.

As well as the masking of groups, we can mask any associative ring R with an identity. Select the
masking element c in the group U(R) of invertible elements of the ring. Next, construct new masked ring
Rc, which coincides with R as an Abelian group. But on Rc we define new multiplication as x · y = xcy.

As a result, we obtain an associative ring with the identity c−1, and U(Rc) = U(R) again. Clearly,
the rings are isomorphic: R ∼= Rc, x ↔ c−1x. Previous discussions for the groups can be repeated to
the rings almost word for word. More precisely, we can provide sufficient cryptographic security of the
protocols on a platform of some “good” rings. Possible requirements for rings are as follows. Firstly,
the group U(R) should be large enough, and secondly, there must be a good algorithm for selecting a
random invertible element of a ring.

To increase the cryptographic security of group-based cryptosystems, we can use more than one
group, namely, the large parameterized family of groups. Let I be some large family of parameters, and
for any i ∈ I there is given the group G(i). We can assume that these groups are generally known (not
secret). Suppose now that the protocol’s participants choose the shared secret parameter j ∈ I in some
way. Then they will be able to perform the protocol in the group G(j). Herewith G(j) will be an unknown
to the attacker. Of course, this will require some additional conditions. One of these conditions may be
as follows. Assume that there is the group G given and for any i ∈ I, the element ci ∈ G is given too.
Then G(i) = Gci . The elements ci can be computed by some quite easy rule. For instance, assume
I = {1, 2, . . . ,m}, and also assume that there is given the element c ∈ G, where the order of c is strictly
less than m. Then we can put ci = ci. So, G(i) ∼= G for any i, but the multiplication in G(i) is arranged
as x · y = xciy. Suppose we need to perform some protocol on the platform G. In this case, the protocol’s
participants previously choose the shared secret parameter j ∈ I, and then they perform the protocol in
the group G(j) = Gcj . As noted above, an attack on the protocol will not be possible, until the attacker
computes j, and finds cj . Hence, in particular, we obtain economical use of the memory.

We can enhance the degree of protection as follows. Let us assume that originally there is given a
family of the public elements cj . Then for each of them it is possible to apply the above cyclic process.
Thus, we can get the secret for the attacker the parameter c∗j . After that, all parameterized family
G∗(j) = Gc∗j

becomes the secret to the attacker. In order to exclude brute-force search, the set I should

be large. More specifically, if, for example, cj = cj , then it will be sufficient to apply the above cyclic
process to the element c. Put c1 = c, and further continue as above. Of course, this is not the only
option to create the difficulties for the attacker. Difficulties in this case are necessary to spend a lot of
time before it will be possible to attack the final protocol. Again, we assume that the attacker can attack
all parts of the upgraded protocol. And we also assume that it attacks on every step of the protocol are
slower than every step of the protocol are performed.

3. CATEGORICAL GROUPOIDS

In this section, we describe another new platform for algebraic cryptography, namely, categorical
groupoids. Note that the categorical groupoids and the groupoids are different mathematical objects.
Recall some necessary definitions (see [9]).

Definition 1. A category K consists of the following data:

1) a class Ob(K) of objects (K-objects);
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2) for any two objects i, j ∈ Ob(K), a set K(i, j) of morphisms with domain i and codomain j;

3) for any object i ∈ Ob(K), an identity morphism 1i : i → i;

4) for any objects i, j, k ∈ Ob(K), and for any morphisms α : i → j, β : j → k, a function
called composition K(j, k) × K(i, j) → K(i, k), (β, α) �→ βα. Call the morphism βα the
composition of β and α.

The above data is required to satisfy the following associativity and unity axioms.
Associativity. Suppose α : i → j, β : j → k, l ∈ Ob(K), and γ ∈ K(k, l). Then there is an equality

α(βγ) = (αβ)γ in K(i, l).
Unity. For any objects i, j ∈ Ob(K), there are equalities: α1i = α = 1jα in K(i, j) for all α ∈

K(i, j).
We do not assume that the reader has any prior knowledge of category theory. The book [9] have all

the category theory that we will need in this paper.
Note that a monoid is a category K with one object i, and with a set K(i, i) of morphisms.
Definition 2. Two objects i and j are isomorphic in the category K if there are the morphisms

α : i → j, β : j → i such that βα = 1i, and αβ = 1j . Morphisms α, β are called isomorphisms; we
write β = α−1.

Definition 3. If A and B are categories, then a functor F from A to B is a function that
assigns to each A-object i a B-object F (i), and to each A-morphism f : i → j a B-morphism
F (f) : F (i) → F (j), in such a way that

1) F preserves composition; i.e., F (fg) = F (f)F (g) whenever fg is defined, and

2) F preserves identity morphisms; i.e., F (1i) = 1F (i) for each A-object i.

Definition 4. A category whose objects form a set and in which every morphism is an
isomorphism is called a categorical groupoid.

For brevity, we use “a groupoid” instead of “a categorical groupoid”. For example, a group, regarded
as a category with one object, is also a groupoid. Groupoids similar to parameterized set of groups
from Section 2. Indeed, if K is groupoid, then for any object i the set K(i, i) = K(i) is group under
composition of morphisms.

Note that if there is the morphism α : i → j then we provide an isomorphism between K(i) and
K(j) as follows: γ �→ αγα−1, where γ : i → i and αγα−1 : j → j. Furthermore, there is an one-to-one
correspondence between K(i, i) and K(i, j) : γ �→ αγ, where γ : i → i and αγ : i → j.

The groupoid’s theory can be found in [3, 4, 5]. Nowadays the groupoids are used mainly in algebraic
topology.

Definition 5. A groupoid K is called connected if K(i, j) is non-empty for all objects i, j of K.
Further we consider only connected groupoids.

Let us describe an example of a groupoid, which can be used in cryptography. Let G be a group, and
let I be a set. The elements in the set I are called the objects of groupoid K. Assume K(i, j) = G for any
i, j. Take the element ci ∈ G for any i ∈ I. Then for α : i → j, β : k → i, we can define the composition
by αβ = αciβ. Note that on the right-hand side of this equality there is the product in the group G.
It is easy to verify that in this case the properties of a category are performed, and 1i = c−1

i . Clearly,
α−1 = c−1

i α−1c−1
j . Therefore, this category is a groupoid.

The described groupoid is suitable for use in cryptography. Let us consider the following example.
Assume that we want to modify (increase the cryptographic security) some final protocol, which was
originally defined in the group platform. We transfer this protocol to the groupoid’s platform. Public
data are the group G and the set of the elements ci ∈ G, i ∈ I, where I is a large set. Hence there is the
groupoid K defined, and it is public. We assume for simplicity that cj = cj, I = {1, 2, . . . ,m} for some
large m, and also assume that the order of c ∈ G is less than m. Firstly, according to the cyclic process
from Section 2, we obtain from c1 = c the secret element c∗ = cn. Then c∗j = (c∗)j , and new groupoid
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K∗ is constructed using these data as above. All compositions of morphisms in the groupoid K∗ are
known only by the protocol’s participants. Hence this groupoid is not public. At the same time, the
attacker spends much time to compute the element c∗.

The next step of the modified protocol is to select the public object i, the common secret object j, and
the common secret morphism α : i → j. It can be done by using some protocols of selection the shared
secret key.

Then the protocol’s participants use the group K∗
i = K∗(i, i), and generate the input data for the final

protocol. And then they publish such of them, which are public. Note that if in the protocol there are a
hash function, or some other function defined on the group G, or with values in G, then these functions
are trivially redefined as follows. Group G is replaced to the group K(i, i) (or K(j, j)). This is the same
group.

Next, if g is some public (or secret) element of K∗(i, i), then it is mapped to K∗(j, j) by the
isomorphism g �→ αgα−1.

As α is secret, then the initial public element g is mapped to an element that is known only by the
protocol’s participants. As a result, all group data of the original protocol are isomorphically mapped
to the secret group K∗(j, j) using a secret isomorphism. Thus, data, initially public to an attacker, are
minimized. Of course, we assume that each pick of a shared secret key can be attacked. But we also
assume that the attack time is longer than the execution time of the protocol.

At the last step of the modified protocol, the final protocol is performed in the group K∗(j, j), and
most of the initial data (including the group structure) are known only by the protocol’s participants.

Thus, from a few protocols, namely, one final protocol and few protocols of the creating a shared
secret key, we can assemble a new protocol. This protocol solves the same problem as the final protocol,
but it has some certain guarantees of the cryptographic security. These guarantees will be valid, even if
all protocols, which made the assembly, are attackable to some extent.

Above we constructed a groupoid using the group G and the set of its elements cx, x ∈ X. Denote
this groupoid by (G;X; {cx|x ∈ X, cx ∈ G}).

Theorem 1. Let G be a connected groupoid, and let X = Ob(G) be a set. Then G is isomorphic
to the groupoid G0 = (G;X; {cx|x ∈ X, cx ∈ G}).

Proof. Let us fix x0 ∈ X. Assume that G = G(x0, x0). For any x ∈ X pick bx : x0 → x, and
ax : x → x0. Let cx = axbx.

We construct the functor Φ : G0 → G. This functor maps any object x to x, Φ(x) = x.

Let g : x → y be a morphism of G0(x, y). In fact, it is an element of G. The map G0(x, y) →
G(x, y), g �→ Φ(g) is constructed as Φ(g) = bygax. Let us prove that Φ is functor. Assume that g :
x → y, h : z → x are morphisms of G0. In fact, g, h ∈ G. Then g · h : z → y is gcxh = gaxbxh. Clearly,
Φ(g · h) = Φ(gaxbxh) = bygaxbxhaz , Φ(g)Φ(h) = (bygax)(bxhaz). Thus, Φ(g · h) = Φ(g)Φ(h).

The identity morphism of the object x in G0 is c−1
x = b−1

x a−1
x . Then Φ(b−1

x a−1
x ) = bx(b−1

x a−1
x )ax = 1x

is the identity morphism of the object x in G.

Thus, the functor Φ is constructed.

Let us consider the inverse functor Ψ : G → G0. The map G(x, y) → G0(x, y), u �→ Ψ(u) is con-
structed as: Ψ(u) = b−1

y ua−1
x .

Clearly, this map is inverse to the constructed above map Φ. Verify that if u : x → y, v : z → x are
morphisms of G, then Ψ(uv) = Ψ(u) · Ψ(v) = Ψ(u)cxΨ(v).

Indeed, Ψ(uv) = b−1
y uva−1

z , Ψ(u)cxΨ(v) = (b−1
y ua−1

x )axbx(b−1
x va−1

z ), Ψ(1x) = b−1
x 1xa−1

x = c−1
x .

This completes the proof of the theorem. �

Consequence 1. Any connected groupoid is isomorphic to the groupoid of type (G;X; cx),
where cx = 1G is the identity element of the group G for any x.
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4. COMMUTATIVE OPERADS

In [6] we show the use of commutative operads in public-key cryptography. Assume that the
definitions, the notations, and the terminology of [6] are known. The general theory of operads can
be found, for instance, in [10–12]. Commutative operads were introduced in [13] and [14]. In [15] we
studied one class of commutative operads, namely, the operads of multidimensional cubes in Euclidean
spaces and their generalization.

Let R be an operad. Then R(1) is a semigroup with an identity element. Take some invertible element
c ∈ R(1). Then we can construct the masked operad Rc analogously to the masked groups in Section 2.
Namely, we introduce a new operad composition:

Rc(m) × Rc(n1) × · · · × Rc(nm) → Rc(n1 + · · · + nm),

(w,w1, . . . , wm) �→ [ww1 . . . wm]c.

Assume

[ww1 . . . wm]c = w(cw1) . . . (cwm) = (w c . . . c
︸ ︷︷ ︸

m

)w1 . . . wm. (1)

Theorem 2. Rc with the operation of composition (1) is an operad. The element c−1 ∈ R(1)
is the identity element of this operad. If the operad R is commutative, then the operad Rc is
also commutative. The operads R and Rc are isomorphic. The isomorphism is given by the set of
mappings ψn : R(n) → Rc(n), ψn(w) = cw.

Remark. The expression cw is the result of operadic composition R(1) × R(n) → R(n). The
expression wc . . . c is the result of operadic composition R(m) × R(1) × · · · × R(1) → R(m).

Proof. By definition. �

Let A be an algebra over the operad R. It means that for all n ≥ 0 a set A is endowed with some
mappings of the form:

R(n) × An → A, (w, a1, . . . , an) �→ wa1 . . . an,

that satisfy certain properties (see [6] for more details).
Let us construct the masked algebra Ac over the operad Rc as follows. Let Ac = A as a set. We

determine the operations of composition as follows:

Rc(n) × An
c → Ac, (w, a1, . . . , an) �→ [wa1 . . . an]c,

where

[wa1 . . . an]c = w(ca1) . . . (can) = (wc . . . c)a1 . . . an. (2)

Theorem 3. The operations (2) determine the structure of an algebra over the operad Rc on
Ac. The varieties Alg(R) and Alg(Rc) are rationally equivalent (see [16, Definition 1.2.2, p. 26]).
If F : Alg(R) → Alg(Rc) is the functor that implements the equivalence, then F is constructed as
F (A) = Ac.

Proof. Direct verification. �

Now we can apply the method of Section 2 to increase the cryptographic security for all protocols
from [6]. This method works, if the group of invertible elements R(1) is large enough. It eliminates the
possibility of iterate of the masking elements.

Assume Z = {Z(n)|n ≥ 1}, where Z(n) = Kn. An element Z(n) is a sequence (string) x̄ =
(x1, . . . , xn) of elements xi ∈ K. The action of an element g ∈ K on the string x̄ is defined as follows
gx̄ = (gx1, . . . , gxn). The composition in this operad is defined as:

Z(m) × Z(n1) × · · · × Z(nm) → Z(n1 + · · · + nm),

(x̄, ȳ1, . . . , ȳm) �→ x̄ȳ1 . . . ȳm,

where x̄ = (x1, . . . , xm) ∈ R(m), ȳi = (yi,1, . . . , yi,ni) ∈ R(ni) for all 1 ≤ i ≤ m, and x̄ȳ1 . . . ȳm =
(x1ȳ1, . . . , xmȳm), xiȳi = (xiyi,1, . . . , xiyi,ni).
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The permutation group Σn acts on a set Z(n) as follows: (x1, . . . , xn)σ = (xσ(1), . . . , xσ(n)).
Example of an R-algebra from [6] is generalized as follows. Let K be an associative commutative

ring or semiring, Z be a commutative operad.
Consider an arbitrary suboperad R of the operad Z, and determine the structure of R-algebra on

A = Km. Let k1, . . . , km be fixed positive integers, y1, . . . , ym ∈ K. We define the mappings:

R(n) × An −→ A, ξa1 . . . an = (b1, . . . , bm),

where ξ = (x1, . . . , xn) ∈ R(n), ai = (a1,i, . . . , am,i), 1 ≤ i ≤ n, and

bi =
n

∑

j=1

ai,jx
ki
j yi (3)

for all i, 1 ≤ i ≤ m.
Lemma 1. The equality (3) defines the structure of R-algebra on Am.
Proof. Straightforward check. �

Denote this algebra by A(k1, . . . , km; y1, . . . , ym), or briefly, by A({ki}; {yi}).

Next, let us recall Protocol 1 from [6]. Recall also that
∑n

i=1
(ξ)ai = ξa1 . . . an.

Protocol 1. The creation of a shared secret key
Alice’s secret is ω ∈ R(n). Bob’s secret is λ ∈ R(m). Public elements are ai,j ∈ A, 1 ≤ i ≤ n,

1 ≤ j ≤ m.

1) Alice computes αj =
∑n

i=1
(ω)ai,j , 1 ≤ j ≤ m.

2) Bob computes βi =
∑m

j=1
(λ), ai,j , 1 ≤ i ≤ n.

3) Alice sends the elements αj to Bob.

4) Bob sends the elements βi to Alice.

5) Finally, Alice computes
∑n

i=1
(ω)βi, and Bob computes

∑m
j=1

(λ)αj .

By definition of a commutative operad,
∑n

i=1
(ω)

∑m
j=1

(λ)ai,j =
∑m

j=1
(λ)

∑n
i=1

(ω)ai,j . Thus, Alice and
Bob receive a shared secret key.

The security of Protocol 1 is based on the complexity of the task of finding ξ ∈ R(k) using known
b1, . . . , bk ∈ A and

∑k
i=1

(ξ)bi ∈ A.
Next, we need a generalization [6, Example 7], where the operad R is based on the tropical semiring

K. Recall that in this case, K = Z as a set, addition is defined by a ⊕ b = min(a, b), and multiplication
is defined by a 
 b = a + b. Note that 0 is the unit of this semiring. Tropical semiring was first used in
cryptography in [17].

According to [6, Theorem 2], the cryptographic security of Protocol 1 for A = A({ki}; {yi}) depends
on the complexity of solving a large system of equations of the type

⎧

⎪
⎨

⎪
⎩

(a1,1 
 x�k1
1 ) 
 y1 ⊕ · · · ⊕ (a1,n 
 x�k1

n ) 
 y1 = b1;
. . . . . . . . . . . .

(am,1 
 x�km
1 ) 
 ym ⊕ · · · ⊕ (am,n 
 x�km

n ) 
 ym = bm

(4)

over a tropical semiring K.
In the standard notation, the system (4) is as follows:

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

min
1≤i≤n

(a1,i + k1xi + y1) = b1;

. . . . . .

min
1≤i≤n

(am,i + kmxi + ym) = bm.
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Suppose that the group of invertible elements of the semigroup R(1) is large enough. Then we have
a possibility to mask the operad R and the algebra A({ki}; {yi}). The way of implementation of it for the
operad, is described above.

In the case of an algebra, we need to do all parameters k1, . . . , km, y1, . . . , ym the secret. It can be
done by using some protocol of the selection of a shared secret key.

We take the masking element c ∈ R(1) = Z. Then the composition in Rc takes the form:

Rc(m) × Rc(n1) × · · · × Rc(nm) → Rc(n1 + · · · + nm),

(w, u1, . . . , um) �→ [wu1 . . . um]c,

where w = (w1, . . . , wm), ui = (ui,1, . . . , ui,ni).
We have

[wu1 . . . um]c = (w1 
 c 
 u1,1, . . . , w1 
 c 
 u1,n1, w2 
 c 
 u2,1, . . . , w2 
 c 
 u2,n2 , . . . )

Note that the equality wi 
 c 
 ui,j = wi + c + ui,j is true in the semiring K.
The algebra Ac is given by the following map:

Rc(n) × An
c → Ac, (w, a1, . . . , an) �→ [wa1 . . . an]c.

Assume that w = (w1, . . . , wn), aj = (a1,j , . . . , am,j), 1 ≤ j ≤ n. Then [wa1 . . . an]c = (z1, . . . ,
zm) ∈ Ac = Km, and

zi = ai,1 
 c�ki 
 w�ki
1 ⊕ · · · ⊕ ai,n 
 c�ki 
 w�ki

n ,

where 1 ≤ i ≤ m, 1 ≤ j ≤ n.
In the case of A = A({ki}; {yi}), we get the following result.
Theorem 4. The cryptographic security of Protocol 1 for the operad Rc and for the algebra

A({ki}; {yi}) depends on the complexity of solving a system of tropical equations of the type:
n

⊕

j=1

(ai,j 
 c�ki 
 x�ki
j 
 yi) = bi, 1 ≤ i ≤ m (5)

where x1, . . . , xn, k1, . . . , km, y1, . . . , ym, and c are unknown.
In the standard notation, the system (5) is as follows:

min
1≤j≤n

(ai,j + kic + kixj + yi) = bi, 1 ≤ i ≤ m.

Proof. By definition and by [6, Theorem 2]. �

Note that, in the general case, the system of equations (5) is significantly nonlinear. We are not
aware the methods for solving the systems of equations of this type. Thus, we expect that Protocol 1 on
a tropical semiring has sufficient cryptographic security.
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