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P. Srivastava and S. Kumar [3] introduced the generalized difference operator A, on the sequence space o
as follows: A, : g — ¢ is defined by

Ayri= A, (In) = (UnTn = Up—1Zn—1) withz_1 =0,

where (vy) is either constant or strictly decreasing sequence of positive real numbers satisfying klim vg=1L >
ook

0 and vy < 2L. Also, P. Srivastava and 8. Kumar [3] determined the spectrum and the fine spectrum of the
operator A, on the sequence space ¢p.

In this paper we determine the spectrum of the generalized difference operator A, on the sequence space
lp, (1 < p < oc). The results of our paper not only generalize the corresponding results of [1] and [2] but also

give results for some more operators.
By B(X), we denote the set of all bounded linear operators on the Banach space X into itself.

We have the following main result:
Theorem 1.

1. Ay € B(X) with norm ||Ayl|, = vo + v1.
2. o(Ap,e)={aeC:la-L|<L}.
3 a(A,0).
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The Peierls-Bogoliubov inequality in von Neumann algebras and characterization of tracial
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(Kazan State University, Russia)
E-mail: Airat. Bikchentaev@ksu.ru

It is an important issue in statistical mechanics to calculate the value of the so-called partition function
tr(eH ), where the Hermitian matrix H is the Hamiltonian of a physical system. Since that computation is often
difficult, it is easier to compute the related quantity tr(e”), where H is a convenient approximation of the
Hamiltonian H. Let § = H + K. The Peierls-Bogoliubov inequality provides useful information on tr(ef+&)
from tr(e). This inequlity states that, for two Hermitian operators H and K

H tr(e” K) JH+K
tr(e” ) exp _tr(eT) < tr(e )

A positive linear functional ¢ on a von Neumann algebra M is said to be normal if (sup A;) = sup p(A;)
for every bounded increasing net {A;} of positive operators in M; tracial if ¢(AB) = ¢(BA) for all A, B in M.
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