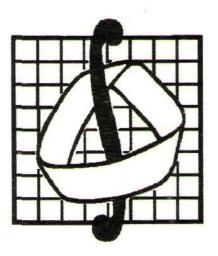
СОВРЕМЕННЫЕ ПРОБЛЕМЫ АНАЛИЗА И ПРЕПОДАВАНИЯ МАТЕМАТИКИ

материалы Международной научной конференции, посвященной 105-летию академика Сергея Михайловича Никольского.



References.

- F. Başar and B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Mathematical Journal, Vol. 55, no. 1, 2003, 136-147.
- 2. A. M. Akhmedov and F. Başar, The fine spectrum of the difference operator Δ over the sequence space bv_p ($1 \le p \le \infty$), Acta Math. Sinica, vol. 23, no. 10, Oct. (2007), 1757-1768.
- 3. P. D. Srivastava and S. Kumar, On the spectrum of the generalized difference operator Δ_v over the sequence space c_o , Communications in mathematical analysis, vol. 6, no.1 (2009), 8-21.

On the spectrum of a generalized difference operator over the sequence space c A.M. Akhmedov, S.R. El-Shabrawy

(Baku State University, Mech. and Math. Faculty) E-mail: akhmedovali@rumbler.ru, srshabrawy@yahoo.com

P. Srivastava and S. Kumar [3] introduced the generalized difference operator Δ_v on the sequence space c_0 as follows: $\Delta_v : c_0 \to c_0$ is defined by

$$\Delta_{v}x = \Delta_{v}(x_{n}) = (v_{n}x_{n} - v_{n-1}x_{n-1})$$
 with $x_{-1} = 0$,

where (v_k) is either constant or strictly decreasing sequence of positive real numbers satisfying $\lim_{k\to\infty} v_k = L > 0$ and $v_0 \leq 2L$. Also, P. Srivastava and S. Kumar [3] determined the spectrum and the fine spectrum of the operator Δ_v on the sequence space c_0 .

In this paper we determine the spectrum of the generalized difference operator Δ_v on the sequence space l_p , $(1 \le p \le \infty)$. The results of our paper not only generalize the corresponding results of [1] and [2] but also give results for some more operators.

By B(X), we denote the set of all bounded linear operators on the Banach space X into itself.

We have the following main result:

Theorem 1.

- 1. $\Delta_v \in B(X)$ with norm $\|\Delta_v\|_c = v_0 + v_1$.
- 2. $\sigma(\Delta_v, c) = \{\alpha \in \mathbb{C} : |\alpha L| \le L\}$.
- 3. $\sigma(\Delta_v,c)$.

References.

- 1. A. M. Akhmedov and F. Başar, On the spectrum of the difference operator Δ over the sequence space l_p ($1 \le p \le \infty$), Demonstratio Mathematica, vol. 39, no. 3 (2006), 585-595.
- B. Altay and F. Başar, On the fine spectrum of the difference operator on c₀ and c, Information Sci., 168 (2007), 217-224.
- 3. P. D. Srivastava and S. Kumar, On the spectrum of the generalized difference operator Δ_v over the sequence space c_0 , Communications in mathematical analysis, vol. 6, no.1 (2009), 8-21.

The Peierls-Bogoliubov inequality in von Neumann algebras and characterization of tracial functionals

A.M. Bikchentaev

(Kazan State University, Russia) E-mail: Airat.Bikchentaev@ksu.ru

It is an important issue in statistical mechanics to calculate the value of the so-called partition function $\operatorname{tr}(e^{\widehat{H}})$, where the Hermitian matrix \widehat{H} is the Hamiltonian of a physical system. Since that computation is often difficult, it is easier to compute the related quantity $\operatorname{tr}(e^H)$, where H is a convenient approximation of the Hamiltonian \widehat{H} . Let $\widehat{H} = H + K$. The Peierls-Bogoliubov inequality provides useful information on $\operatorname{tr}(e^{H+K})$ from $\operatorname{tr}(e^H)$. This inequality states that, for two Hermitian operators H and K

$$\operatorname{tr}(e^H)\exp\frac{\operatorname{tr}(e^HK)}{\operatorname{tr}(e^H)}\leq\operatorname{tr}(e^{H+K}).$$

A positive linear functional φ on a von Neumann algebra \mathcal{M} is said to be *normal* if $\varphi(\sup A_i) = \sup \varphi(A_i)$ for every bounded increasing net $\{A_i\}$ of positive operators in \mathcal{M} ; tracial if $\varphi(AB) = \varphi(BA)$ for all A, B in \mathcal{M} .