

Temperature dependence of the magnetic penetration depth and multicomponent order parameter in the $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$

D.A. Sunyaev¹, M.V. Eremin¹

¹Kazan (Volga region) Federal University, Institute of Physics, Kremlevskaya 18, Kazan 420008, Russian Federation.

e-mail: dasforrum@rambler.ru

Abstract We have analyzed the temperature dependencies of the superfluid density in $\text{YBa}_2\text{Cu}_3\text{O}_7$ along a- and b- crystallographic axes using the multicomponent order parameter for the superconducting gap. Estimated values of the gap components for the d-wave and the isotropic s-wave are $\Delta_d=29\text{meV}$ and $\Delta_s=5\text{meV}$ correspondently. Band structure parameters were taken accordingly ARPES and neutron scattering data.

Keywords: Superconductivity, multicomponent order parameter, superfluid density

Introduction

Intensive studies of HTSC cuprates by different experimental methods displayed the unbelievable complexity of these materials [1]. Telplov et al. [2,3] at early stages of HTSC activity have demonstrated that even most perfect compounds $\text{TmBa}_2\text{Cu}_4\text{O}_8$ show an anomalies in Tm -NMR line width at $T < T^*$. Afterwards, Müller and Keller [4] pointed some evidence that HTSC cuprates are unconventional superconductors with multicomponent order parameter. For now this intriguing phenomena is under debate of many studies [5,6]. In this paper we focus on the temperature dependence of the superfluid density in orthorhombic $\text{YBa}_2\text{Cu}_3\text{O}_{6.98}$ reported in [7] and show that this data allows us to extract the relative value of s- and d- component of superconducting gap. It is clear that in addition to other possibilities to measure the multicomponent order parameter (via ARPES [8], by neutron scattering [9,10] tunneling experiments [11,12], or via Raman [13] spectroscopy) it will give us a new information about the nature of interactions yielding the superconducting pairing.

Temperature dependencies of the superfluid density

Our calculations are based on the energy dispersion for carriers in CuO_2 plane, which has been extracted from ARPES data [9]. The general expression for the superfluid density was discussed for details in paper [14]. It is written as follows

$$\frac{1}{\lambda^2} = 4\pi \left(\frac{e}{c\hbar} \right)^2 \left\{ \sum_k \frac{\partial \varepsilon_k}{\partial k_x} \left[\frac{|\Delta_k|^2}{E_k^2} \frac{\partial \varepsilon_k}{\partial k_x} - \frac{(\varepsilon_k - \mu)}{2E_k^2} \frac{\partial |\Delta_k|^2}{\partial k_x} \right] \left[\frac{1}{E_k} - \frac{\partial}{\partial E_k} \right] \tanh \left(\frac{E_k}{2k_B T} \right) \right\}. \quad (1)$$

Here it is assumed that the field is applied along the x -axis in CuO_2 -plane (ab). ε_k is the energy dispersion for quasiparticles in the normal state, μ – chemical potential, $E_k = \sqrt{(\varepsilon_k - \mu)^2 + |\Delta_k|^2}$ – Bogolubov's quasiparticles energy in the superconducting state, Δ_k is the energy gap, which depends on wave vector and temperature. Energy dispersion has been taken in form [9]: