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1. ВВЕДЕНИЕ

В [1] был предложен способ построения противопотоковых неконформных схем метода ко�
нечных элементов (МКЭ) произвольного порядка аппроксимации для решения линейных не�
стационарных задач конвекции–диффузии, который далее был обобщен в [2] для аналогичных
квазилинейных уравнений. В этих работах была исследована устойчивость схем, но не было по�
лучено соответствующих оценок точности. В данной работе мы восполняем этот пробел и иссле�
дуем точность схем из [2] для аппроксимации следующей стационарной задачи2):

(1)

в многогранной области Ω ⊂ Rd, d ≥ 1, с границей ΓD. Предполагается, что коэффициенты k(x, ξ) =

= (k1(x, ξ), k2(x, ξ), …, kd(x, ξ)), k0(x, ξ) непрерывны по x ∈  при любых значениях ξ ∈ Rd + 1; кро�
ме того, для любого x ∈ Ω справедливы оценки

(2)

(3)

(Согласно теории монотонных операторов этих условий достаточно для существования и един�

ственности обобщенного решения задачи в пространстве Соболева (Ω)).
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Исследуемая нами схема была получена как некоторая предельная аппроксимация Галерки�
на–Петрова, основанная на смешанной форме записи уравнения (1) в виде следующей системы
уравнений первого порядка:

(4)

Позднее было обнаружено, что она является представителем более широкого класса так называ�
емых схем разрывного метода Галеркина (DG� или DGFEM�схем), и для линейной эллиптиче�
ской задачи близкая схема несколько ранее была предложена и исследована в [3]. DG�методы
(см. [4]) занимают промежуточное положение между методом конечных объемов и МКЭ и име�
ют немало хороших свойств обоих методов; это обеспечивает практическую основу для разработ�
ки высокоточных методов на основе неструктурированных сеток. DG�методы были предложены
в начале 1970�х годов и получили признание как методы решения гиперболических задач, а так�
же параболических задач с доминирующей частью первого порядка, характерных для механики
жидкостей и газов, электродинамики и физики плазмы.

Последние 15 лет активно разрабатываются DG�схемы и для решения эллиптических задач
второго и четвертого порядков. Отметим работы [5]–[7], посвященные линейным задачам (в [6]
также имеется исторический обзор развития DG�методов); в [7] проведено сравнение различных
методов с практической точки зрения. Число публикаций, посвященных нелинейным задачам,
постоянно растет (см., например, схемы со штрафом из [8]–[12]). Как и схемы МКЭ, DG�схемы
для эллиптических задач имеют две формулировки – основную и смешанную, в зависимости от
формы записи исходных уравнений. Благодаря локальному характеру используемых аппрокси�
маций, в DG�схемах легко перейти от смешанной формы к основной, поэлементно исключая
вторичные неизвестные; в этом случае получается дискретная задача для определения прибли�
жения к решению u.

Основная проблема, которую приходится преодолевать при конструировании DG�схем, свя�
зана с обеспечением ее однозначной разрешимости. В классическом МКЭ эта проблема реша�
лась за счет конформности метода, т.е. введением достаточных связей между элементами; в не�
конформном МКЭ межэлементные связи ослаблены, и поэтому их однозначная разрешимость
устанавливается сложнее (например в случае, когда определенная непрерывность приближений
требуется лишь в отдельных узлах на межэлементных границах). В DG�схемах связи между эле�
ментами максимально ослаблены и задаются лишь определением межэлементных “потоков”.
В этом кроется причина того, что в большинство DG�схем вводятся дополнительные слагаемые,
“штрафующие” за нарушение непрерывности приближенного решения и обеспечивающие од�
нозначную разрешимость схемы.

Смешанные DG�методы имеют седловую структуру, и их однозначная разрешимость напря�
мую связана с выполнением условия Ладыженской–Бабушки–Брецци (с LBB�оценкой, см., на�
пример, [13, п. II.2.3, с. 57]). Нам не известно его доказательство для какой�либо DG�схемы без
штрафа; в данной работе мы установим оценку LBB для схемы из [2], не содержащей дополни�
тельных параметров стабилизации решения (см. далее оценку (10) и разд. 7). Наличие LBB�оцен�
ки позволяет не только установить устойчивость схемы, но и существенно упростить задачу ис�
следования ее точности.

Дадим краткий обзор содержания работы. В следующем разделе мы даем определение схемы,
в разд. 3 доказывается ее устойчивость, оценки точности устанавливаются в разд. 4. В разд. 5
кратко обсуждаются способы построения векторного поля p единичных нормалей на гранях ко�
нечных элементов, которое используется в конструкции схемы. В разд. 6 дается описание
“осредненной по p” схемы. И, наконец, в разд. 7 приводится доказательство LBB�оценки.

2. ОПРЕДЕЛЕНИЕ СЕТОЧНОЙ СХЕМЫ

Пусть {�h}h есть регулярное семейство разбиений области Ω на d�симплексы (будем называть
их также симплексами или конечными элементами и считать открытыми множествами; 2�сим�
плекс – это треугольник, 3�симплекс – тетраэдр) максимального диаметра h > 0 такое, что всякая
грань симплекса из �h ((d – 1)�симплекс) есть или подмножество границы ΓD, или грань сосед�
него симплекса (см. [14, с. 134]). (Т.е. для любого K ∈ �h справедливо отношение h/ρK ≤ c, где ρK

есть радиус шара максимального диаметра, вписанного в ; здесь и всюду далее буквы c или C,
возможно с индексами, будут означать различные положительные постоянные, не зависящие от h.)
Произвольный симплекс условимся обозначать через K, через ∂K – его границу; под Γh будем по�

∇– q q0+⋅ f, q k x u σ, ,( ), q0 k0 x u σ, ,( ), σ ∇u.= = = =

K
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нимать объединение множества всех внутренних граней элементов из �h; под e – произвольную
грань элементов. Далее nK означает поле единичных нормалей на ∂K, направленных вне K; под
|K| и |e| будем понимать d�мерную меру K и (d – 1)�мерную меру e соответственно.

Пусть, далее, Pm(K) есть множество полиномов степени не выше m по совокупности перемен�
ных, определенных на K. Пространство конечных элементов для аппроксимации решения u
определим при заданном m ≥ 1 следующим образом:

Аналогично введем пространство для аппроксимации q0 и компонент q и σ:

Отметим, что функции из этих пространств не обязаны быть непрерывными в Ω; также заметим,

что Vh ⊂ Wh, ∇hVh ⊂ , где ∇h определяется поэлементно как ∇. 

Пространство Vh снабдим нормой ,

где [v] означает скачок функции v; пространство  наделим нормой ||w||0, Ω = . В [15]

доказано, что имеет место следующий дискретный аналог неравенства Фридрихса:

(5)

Функции из Vh и  на множестве Γh являются двузначными. Чтобы заложить в конструкцию

схемы подходящий механизм отбора их однозначных значений, в [2] предложено использовать
специальное кусочно�постоянное векторное поле p единичных нормалей на Γh ∪ ΓD, которое на�
зовем потоком на Γh ∪ ΓD; если K и K ' – два соседних элемента с общей гранью e, а вектор p|e на�
правлен из K в K ', то будем говорить, что p|e выходит из K и входит в K '. Поле p определяется про�
извольным образом, но так, чтобы для любого элемента K ∈ �h нашлась выходящая из K нор�
маль p|e, так что (p · nK)–|e = 0. Здесь и далее v± = max{±v, 0} есть положительная и отрицательная
части функции v; v = v+ – v–. Конструктивные способы построения таких полей p обсуждаются
далее в разд. 5.

Для предельных значений функций, терпящих разрыв на Γh, введем обозначение вида w±p(x) =

= , через [w]p(x) = w+p(x) – w–p(x) обозначим скачок w в точке x ∈ Γh вдоль нормали p(x).

Положим [w]p(x) = 0, если x ∈ ΓD. В схему закладывается следующий противопотоковый способ
отбора значения функции uh ∈ Vh на общей границе e двух элементов K и K ': uh|e = uh, –p =

= (p · nK)+uh|K + (p · nK)–uh|K'; наоборот, для qh ∈  принимается значение по потоку: qh|e =

= qh, +p = (p · nK)+qh|K' + (p · nK)–qh|K. (В [3] принят аналогичный способ:  =  +

+  – ,  =  –  – , где β =  · nK)/2, v0 ∈ H(div, Ω) –

любое кусочно�постоянное векторное поле (см. разд. 5).)

Под разрывным смешанным методом Галеркина для приближенного решения задачи (1) бу�
дем понимать следующую дискретную задачу: найти функцию uh ∈ Vh, а также вектор�функции σh,

qh ∈  и q0, h ∈ Wh такие, что uh удовлетворяет тождеству (правильнее было бы писать , ,

Vh v L∞ Ω( ) : v K Pm K( ) K �h v ΓD
,∈,∈ ∈ 0={ }.=

Wh w L∞ Ω( ) : w K Pm K( ) K �h∈,∈ ∈{ }, Wh
d

Wh[ ]d
.= =

Wh
d

· 1 h,

v 1 h,
2 ∇v

2
xd

K

∫
K �h∈

∑ h
1–

v[ ]2
s,d

Γh

∫+=

Wh
d

w L2 Ω( )

v 0 Ω, c v 1 h, v∀ Vh.∈≤

Wh
d

w x ηp±( )
η +0→
lim

Wh
d

uh e uh K uh K'+( )/2

uh K( uh K' )β qh e qh K qh K'+( )/2 qh K( qh K' )β v0(sign

Wh
d

ah
p( )

uh
p( )

3
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 и т.д., однако для краткости мы опускаем зависимость схемы и, соответственно, решения от
потока p)

(6)

где функции σh = σh(uh), qh = qh(uh) и q0, h = q0, h(uh) определяются по uh из тождеств

(7)

(8)

Отметим, что локальная ориентация p не влияет на значение выражения [wh]p · p на Γh в (7).
Например, [wh]p · p =  · nK на e ⊂ ∂K для любого K ∈ �h; это замечание справедливо и для

выражения [vh]p p в определении формы ah. Важно определение сомножителей при этих величи�
нах. Суть их определения раскрывает следующая 

Лемма 1. Пусть билинейные формы bh на Vh ×  и ch на  × Vh заданы так, что выполняются
соотношения

σh = σh(uh) определяется из тождества (7). Тогда имеем

(9)

(10)

Доказательство утверждения (9) фактически содержится в лемме 2 ниже, доказательство (10),
в силу его громоздкости, вынесено в заключительный разд. 7. Заметим, что форма bh фигури�
рует в (7), а форма ch является частью формы ah. Оценка (10), как нетрудно видеть, эквива�
лентна LBB�оценке

Отметим также, что естественные способы выбора в конструкции схемы  = (  +

+ )/2,  = (  + )/2, либо  = ,  = , либо  = ,  = , при�

водят к тому, что утверждение (9) для таких схем сохраняется, но оценка (10) не имеет места.
Вследствие этого схемы оказываются вырожденными и для их практического использования
требуется вводить дополнительные параметры, “штрафующие” разрывы uh (см., например, [16]
для первого варианта выбора пары (uh, qh)|e).

σh
p( )

ah uh vh,( ) fh vh( ) vh∀ Vh,∈=

ah uh vh,( ) q0 h, vh xd

Ω

∫ qh

K

∫
K �h∈

∑ ∇vhdx⋅ qh +p,  · p vh[ ]p s, fh vh( )d

Γh

∫+ + fvh x,d

Ω

∫= =

σh

Ω

∫ whdx⋅ uh∇

K

∫
K �h∈

∑ whdx uh p–, wh[ ]p

Γh

∫ pds⋅+⋅+ 0 wh∀ Wh
d
,∈=

qh k x uh σh, ,( )–( ) wh q0 h, k0 x uh σh, ,( )–( )w0 h,+⋅[ ] xd

Ω

∫ 0 wh∀ Wh
d
, w0 h, Wh.∈ ∈=

wh[ ]nK

Wh
d

Wh
d

bh uh wh,( ) uh∇

K

∫
K �h∈

∑ whdx uh p–, wh[ ]p

Γh

∫ pds,⋅+⋅=

ch wh uh,( ) wh

K

∫
K �h∈

∑ ∇uhdx wh +p,

Γh

∫ p uh[ ]pds,⋅+⋅=

bh uh wh,( ) ch wh uh,( ) uh∀– Vh, wh Wh
d
,∈ ∈=

σh uh( ) 0 Ω, C uh 1 h, uh∀ Vh.∈≥

bn uh wh,( )
uh 1 h, wh 0 Ω,

���������������������������
wh Wh

d
∈

sup
uh Vh∈

inf C 0.>≥

uh e uh K

uh K' qh e qh K qh K' uh e uh K' qh e qh K uh e uh K qh e qh K'
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3. УСТОЙЧИВОСТЬ СЕТОЧНОЙ СХЕМЫ

Установим сильную монотонность формы ah.

Лемма 2. Пусть выполнено условие (3). Тогда для любых ,  ∈ Vh справедливо неравенство

Доказательство. Через σα, h, qα, h, q0, α, h обозначим решения уравнений (7), (8) при uh = uα, h,
α = 1, 2. Для z = u1, h – u2, h, zq = q1, h – q2, h, zq, 0 = q0, 1, h – q0, 2, h и zσ = σ1, h – σ2, h имеем

(11)

а также

(12)

(13)

(14)

Положим wh = –zq в (12), wh = zσ в (13), w0, h = z, а затем сложим полученные равенства и (11).
В результате получим соотношение

(15)

Так как z∇ · zq + zq · ∇z = ∇ · (z zq) и  = , то слагаемое в квадратных скобках
равно нулю; поэтому, благодаря (3) и (10) (zσ = σh(z)), из (15) вытекает оценка

(16)

Теорема 1. Пусть uα, h, σα, h, qα, h, q0, α, h – решение схемы (6)–(8) с правой частью fα, h ∈ , α = 1, 2,
и выполнены условия (2), (3). Тогда справедлива оценка устойчивости

где  есть норма на ,  = .

Доказательство. Воспользуемся принятыми при доказательстве леммы 2 обозначениями.
Пользуясь оценками в (16), заключаем, что

Отсюда и из второй оценки в (16) имеем

(17)

u1 h, u2 h,

ah u1 h, u1 h, u2 h,–,( ) ah u2 h, u1 h, u2 h,–,( )– c u1 h, u2 h,– 1 h,
2

.≥

ah u1 h, z,( ) ah u2 h, z,( )– zq ∇z zq 0, z+⋅( ) xd

K

∫
K �h∈

∑ zq +p,

e

∫
e Γh⊂

∑ p z[ ]pds,⋅+=

zσ
Ω

∫ whdx z∇

K

∫
K �h∈

∑ whdx z p– wh[ ]p

e

∫
e Γh⊂

∑ pds⋅+⋅+⋅ 0 wh∀ Wh
d
,∈=

zq

Ω

∫ whdx⋅ k x u1 h, σ1 h,, ,( ) k x u2 h, σ2 h,, ,( )–( )

Ω

∫ whdx wh∀ Wh
d
,∈⋅=

zq 0, w0 h,

Ω

∫ dx k0 x u1 h, σ1 h,, ,( ) k0 x u2 h, σ2 h,, ,( )–( )

Ω

∫ w0 h, dx w0 h,∀ Wh.∈=

ah u1 h, z,( ) ah u2 h, z,( )– z∇ zq zq ∇z⋅+⋅( ) xd

K

∫
K �h∈

∑ z[ ]pzq +p, z p– zq[ ]p+( )

e

∫
e Γh⊂

∑ pds⋅+= +

+ k x u1 h, σ1 h,, ,( ) k x u2 h, σ2 h,, ,( )–( ) zσ k0 x u1 h, σ1 h,, ,( ) k0 x u2 h, σ2 h,, ,( )–( )z+⋅[ ] x.d

Ω

∫

z[ ]pzq +p, z p– zq[ ]p+ z zq[ ]p

ah u1 h, u1 h, u2 h,–,( ) ah u2 h, u1 h, u2 h,–,( )– α σh z( ) 0 Ω,

2
Cα z 1 h,

2
.≥ ≥

Vh
*

u1 h, u2 h,– 1 h, σ1 h, σ2 h,– 0 Ω, q1 h, q2 h,– 0 Ω, q0 1 h, , q0 2 h, ,– 0 Ω, c  f1 h, f2 h,– 1– h, ,≤+ + +

· 1– h, Vh
*  f 1– h, sup

vh Vh∈  f vh( ) / vh 1 h,( )

α σ1 h, σ2 h,– 0 Ω,

2
ah u1 h, u1 h, u2 h,–,( ) ah u2 h, u1 h, u2 h,–,( )–≤ f1 h, f2 h,–( ) u1 h, u2 h,–( )= ≤

≤  f1 h, f2 h,– 1– h, u1 h, u2 h,– 1 h, C
1–

 f1 h, f2 h,– 1– h, σ1 h, σ2 h,– 0 Ω, .≤

u1 h, u2 h,– 1 h, σ1 h, σ2 h,– 0 Ω, c  f1 h, f2 h,– 1– h, .≤+

3*
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Из (13), (14) и липшицевости коэффициентов непосредственно следует также, что

(18)

Утверждение теоремы теперь следует из оценок (17), (18). Теорема доказана.

4. ТОЧНОСТЬ СЕТОЧНОЙ СХЕМЫ

Для норм и полунорм в пространстве Hk(D) мы используем соответственно обозначения 

и . Далее нам потребуются следующие утверждения, справедливые для регулярного семей�
ства триангуляций �h и K ∈ �h.

Лемма 3 (см. [17]). Справедлива оценка  ≤ cmh–1/2 , vh ∈ Pm(K), m ≥ 0. 

Лемма 4 (см. [18]). Пусть IK(v) есть L2(K)�проекция v ∈ Hk + 1(K) на Pm(K), m, k ≥ 0, � = min{k, m}.
Тогда имеем  ≤ ch� + 1|u|� + 1, K,  ≤ ch� + 1/2|v|� + 1, K.

Лемма 5 (см. [19]). Существует проектор IΩ : (Ω)  Vh ∩ C( ) такой, что для u ∈ Hk + 1(Ω) ∩

∩ (Ω), k ≥ 0, � = min{k, m}, справедлива оценка ||u – IΩ(u)||1, Ω ≤ ch�|u|� + 1, Ω. (Пространство Vh ∩ C( )
представляет собой обычное в МКЭ пространство конформных симплециальных конечных эле�
ментов степени m, например лагранжевых.)

Теорема 2. Пусть и есть решение исходной задачи (1); функции q, q0 и σ определяются согласно (4)
и uh, qh, q0, h и σh – решение схемы (6)–(8). Пусть выполнены условия (2), (3) и u ∈ Hm + 1(Ω), q ∈
∈ [Hm(Ω)]m, q0 ∈ Hm(Ω). Тогда справедлива оценка

Доказательство. Пусть uI = IΩ(u) определяется согласно лемме 5. Определим поэлементно

σ� = ∇uI. Ясно, что σ� ∈ . Отметим прежде всего два одинаково проверяемых тождества:

(19)

(20)

Для их проверки достаточно проинтегрировать по частям, учесть уравнение (1), непрерывность uI

и то, что значения  и  · p на e не зависят от ориентации нормали p. 

Сформулируем дискретную задачу, решение которой есть uI. Для этого по uI и σ� = ∇huI, удо�

влетворяющему условию (20), определим q� ∈  и q0, � ∈ Wh такие, что

(21)

q1 h, q2 h,– 0 Ω, q0 1 h, , q0 2 h, ,– 0 Ω, c u1 h, u2 h,– 1 h, σ1 h, σ2 h,– 0 Ω,+( ).≤+

· k D,

· k D,

vh 0 ∂K, vh 0 K,

v IK v( )– 0 K, v IK v( )– 0 ∂K,

H0
1 Ω

H0
1 Ω

q qh–
2

q0 q0 h,–
2 ∇u σh–

2 ∇u ∇uh–
2

+ + +( ) xd

K

∫
K �h∈

∑
1/2

+

+ u uh– 0 Ω,

1
h
�� uh[ ]2

sd

e

∫
e Γh⊂

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

1/2

ch
m

u m 1 Ω,+ q m Ω, q0 m Ω,+ +( ).≤+

Wh
d

k x u ∇u, ,( ) ∇vh k0 x u ∇u, ,( )vh+⋅( ) xd

K

∫
K �h∈

∑ +

+ k x u ∇u, ,( ) · p vh[ ]p sd

e

∫
e Γh⊂

∑ fvh x vh∀d

Ω

∫ Vh,∈=

σ� wh⋅ xd

K

∫ uI∇

K

∫ whdx⋅+
K �h∈

∑ uI wh[ ]p

e

∫
e Γh⊂

∑ pds⋅+ 0 wh∀ Wh
d
.∈=

vh[ ]pp wh[ ]p

Wh
d

q� k x uI σ�, ,( )–( ) wh q0 �, k0 x uI σ�, ,( )–( )w0 h,+⋅[ ] xd

Ω

∫ 0=
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для любых wh ∈ , w0, h ∈ Wh. Тождества (20) и (21) соответствуют тождествам (7) и (8) в опреде�
лении формы ah. По определению имеем

Определим функционал f�(vh) = ah(uI, vh), vh ∈ Vh; таким образом мы получили искомое тожде�
ство для uI ∈ Vh : ah(uI, vh) = f�(vh) ∀vh ∈ Vh. Сравнивая эту задачу со схемой (6)–(8), согласно тео�
реме об устойчивости получаем

(22)

Воспользуемся тождеством (19), которое дает эквивалентное определение функционала fh. Тогда
для ψh = fh – f� получим следующее представление:

(23)

где q� определяется тождеством (21). Липшиц�непрерывность коэффициентов ki позволяет про�
сто оценить первое слагаемое в (23) (с привлечением оценки (5)):

(24)

Второе слагаемое в (23) представим в виде (q = k(x, u, ∇u))

(25)

где q� ∈  является L2(Ω)�проекцией элемента q на пространство :

Для оценки первого слагаемого в правой части (25) воспользуемся неравенством Коши,

а затем леммой 4 (e есть грань K, в который входит поток p, k = m – 1). Будем иметь

(26)

Wh
d

ah uI vh,( ) q� ∇vh q0 �, vh+⋅( ) xd

K

∫
K �h∈

∑ q� +p,

Γh

∫ p vh[ ]pds.⋅+=

uh uI– 1 h, σh σ�– 0 Ω, qh q�– 0 Ω, q0 h, q0 �,– 0 Ω, c  fh f�– 1– h, .≤+ + +

ψh vh( ) k x u ∇u, ,( ) k x uI ∇uI, ,( )–( ) ∇vh k0 x u ∇u, ,( ) k0 x uI ∇uI, ,( )–( )vh+⋅[ ] xd

K

∫
K �h∈

∑ +=

+ k x u ∇u, ,( ) q� +p,–( ) · p vh[ ]p sd

e

∫
e Γh⊂

∑ ψΩ ψΓ,+=

ψΩ c u uI– 1 Ω, vh 1 K,
2

K �h∈

∑⎝ ⎠
⎜ ⎟
⎛ ⎞ 1/2

c u uI– 1 Ω, vh 1 h, .≤ ≤

ψΓ q q+p
�

–( )

e

∫
e Γh⊂

∑ p vh[ ]pds q+p
�

q� +p,–( )

e

∫
e Γh⊂

∑ p vh[ ]pds,⋅+⋅=

Wh
d

Wh
d

q
�

q–( )

Ω

∫ whdx⋅ 0 wh∀ Wh
d
.∈=

q q+p
�

–( )

e

∫
e Γh⊂

∑ p vh[ ]pds⋅ h q q+p
�

–
2

sd

e

∫
e Γh⊂

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

1/2

1
h
�� vh[ ]p

2
sd

e

∫
e Γh⊂

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

1/2

,≤

q q+p
�

–( )

e

∫
e Γh⊂

∑ p vh[ ]pds⋅ ch
m

q m Ω, vh 1 h, .≤
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Второе слагаемое в (25) оценим, воспользовавшись аналогично предыдущему неравенством Ко�
ши, леммой 3 при vh = q� – q�, а также следующей оценкой:

В результате получим оценку

(27)

Из оценок (24), (26), (27), слагаемых в (23) и леммы 5 при k = m следует, что

Используем эту оценку в (22); применяя неравенство треугольника, получаем:

поскольку

Аналогично получается оценка ||q0 – q0, �||0, Ω ≤ chm. Теорема доказана.

5. СПОСОБЫ ЗАДАНИЯ ПОТОКА

Изученная выше дискретная схема и, соответственно, ее решение зависят от потока p на Γh

как от параметра. Хотя такие важные макро�свойства схемы, как устойчивость и точность, уста�
новлены нами равномерно по этому параметру, все же ясно, что выбор p оказывает влияние на
качество схемы. Укажем некоторые возможные способы выбора допустимого p.

1. Пусть v1, v2, …, vd – произвольная линейно независимая система векторов в Rd. Сужение p
на грань e ⊂ Γh ∪ ΓD определим так, чтобы выполнялось первое из строгих неравенств  · vi > 0,
i = 1, …, d. Ясно, что такое поле p определяется единственным образом. Кроме того, для любого
элемента K ∈ �h обязательно найдется как входящая в K нормаль p|e (т.е. (p · nK)|e < 0), так и выхо�
дящая из K (т.е. (p · nK)|e > 0). Действительно, пусть, например, на грани e ∈ ∂K имеем v1 · nK > 0,
т.е. p = nK, p · v1 > 0, p · nK > 0. Тогда найдется τ ⊂ ∂K, на которой v1 · nK < 0, т.е. p = –nK, p · v1 > 0,
p · nK < 0, поскольку

Если на грани e ∈ ∂K имеем v1 · nK = 0, то обязательно найдется наименьшее j > 1 такое, что vj · nK > 0,
и рассуждения можно повторить с vj вместо v1.

Такой выбор p был использован в [1], [2]. При этом векторы vi определялись произвольно
фиксированным (управляющим) вектором v = (r1, …, rd) так, чтобы имело место v1 = v, v2 =
= (r1, …, rd – 1, 0), v3 = (r1, …, rd – 2, 0, 0), …, vd = (r1, 0, …, 0).

2. Можно ограничиться лишь одним управляющим вектором v и принять следующее опреде�
ление: сужение p на грань e ⊂ Γh ∪ ΓD задается так, что p|e · v > 0; если p|e · v = 0, то ориентация

q
�

q�– 0 Ω, q
�

q�–( )

Ω

∫ whdx⋅ / wh 0 Ω,

wh Wh

d
∈

sup=  =

=  k x u ∇u, ,( ) k x uI ∇uI, ,( )–( )

Ω

∫ whdx⋅ / wh 0 Ω,

wh Wh

d
∈

sup c u uI– 1 Ω, .≤

q+p
�

q� +p,–( )

e

∫
e Γh⊂

∑ p vh[ ]pds⋅ c u uI– 1 Ω, vh 1 h, .≤

ψ 1– h, c u uI– 1 Ω, h
m

q m Ω,+( ) ch
m

u m 1 Ω,+ q m Ω,+( )≤ ≤ Ch
m

.=

uh u– 1 h, σh σ– 0 Ω, qh q– 0 Ω, q0 h, q0– 0 Ω,+ + + ≤

≤ Ch
m

u uI– 1 h, σ σ�– 0 Ω, q q�– 0 Ω, q0 q0 �,– 0 Ω, ch
m

,≤+ + + +

u uI– 1 h, σ σ�– 0 Ω,+ 2 u uI– 1 Ω, ch
m

,≤=

q q�– 0 Ω, q
�

q�– 0 Ω, q q
�

– 0 Ω, c u uI– 1 Ω, h
m

q m Ω,+( ) ch
m

.≤ ≤+≤

p e

0 ∇

K

∫ v1dx⋅ v1

∂K

∫ nKds⋅ τ v1

τ ∂K\e⊂

∑ nK τ
e v1 nK e τ v1

τ ∂K\e⊂

∑ nK τ
.⋅>⋅+⋅= = =
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нормали p на e выбирается произвольно. Очевидно, что при таком определении теряется лишь
единственность способа определения p; по�прежнему для ∀K ∈ �h обязательно найдется как
входящая в K нормаль, так и выходящая из K.

3. Пусть v ∈ H(div, Ω) есть произвольное кусочно�постоянное векторное поле, согласованное
с разбиением �h, такое, что divv ≤ 0. Сужение p на грань e ⊂ Γh ∪ ΓD определим так, что (p · v)|e > 0;
если (p · v)|e = 0, то ориентацию нормали p на e выбирем произвольно. Как и выше, убеждаемся,
что для ∀K ∈ �h обязательно найдется выходящая из K нормаль. Условие divv ≤ 0 вызвано тем,
что, если divv > 0 на каком�либо K ∈ �h, то может не найтись выходящей из K нормали p|e, что не
допускается определением (в этом случае не будет выполнена LBB�оценка; на доказательстве
этого факта мы не останавливаемся).

Мы использовали поле p в определении схемы для однозначного определения значений uh на
межэлементных границах по правилу uh|e = (p · nK)+uh|K + (p · nK)–uh|K'. В [3] принят аналогичный

способ: uh|e = (uh|K + uh|K')/2 + (uh|K – uh|K')β, где β =  · nK)/2, v0 ∈ H(div, Ω) – любое кусочно�
постоянное векторное поле. Сравнивая эти два способа, видим, что они приводят к одному и то�
му же, если β ≠ 0; при β = 0 они различаются (значению β > 0 соответствует p = nK; при β < 0 имеем
p = –nK). Различие имеется также в определении допустимых полей v0.

Интересно отметить также следующий способ выбора потоков на Γh, рассмотренный в [20] в
связи с некоторыми модификациями схемы из [3]. Этот способ определяется по сквозной нуме�
рации элементов из �h: β в формуле uh|e = (uh|K + uh|K')/2 + (uh|K – uh|K')β выбирается равным 1, если
номер K меньше номера K '; иначе принимается β = 0. Аналогично этому способу мы можем
определить поле p по следующему правилу: нормаль p|e направлена из K в K ', если номер K мень�
ше номера K '. Ясно, что этот “алгебраический” способ определения p позволяет оказывать кон�
тролируемое влияние на портрет матрицы схемы в случае линейной задачи. Для нашей схемы мы
не можем рекомендовать этот способ, так как для некоторых K может не найтись выходящих из
них нормалей.

Способы 1 и 2 определения p, указанные выше, кажутся привлекательными в случае решения
задач, в которых есть выделенное направление v, тогда как способ 3 – в случае, когда имеется
(или независимо вычисляется) переменное поле v, связанное с решаемой задачей.

6. СХЕМА НА ОСНОВЕ ОСРЕДНЕНИЯ

Как отмечалось выше, схемы с различными p имеют одинаковые макросвойства и мы не мо�
жем математически описать степень различия схем с разными допустимыми p. Вместе с тем вве�
дение в определение схемы направленности, задаваемой p, при решении задачи с изотропными
свойствами (например задачи Дирихле для уравнения Пуассона), выглядит некоторой “слабо�
стью” схемы. Укажем конструкцию схемы, лишенной подобной направленности, и являющейся
усреднением схем с различными p.

Будем использовать определение поля p посредством управляющего вектора v, как это было
описано в предыдущем пункте. Пусть � = {v = (r1, …, rd) : ri = ±1, i = 1, …, d} – множество управ�
ляющих векторов, включающее 2d различных вектора. Каждый вектор v ∈ � порождает поток

p = p(v) на Γh, который в свою очередь определяет схему  = . Искомую схему опре�
делим следующим образом:

(28)

При заданном uh ∈ Vh для вычисления Ahuh ∈  необходимо вычислить 2d элементов .

Для этого по uh определяются последовательно  =  согласно (7),  =  и

 =  – согласно (8). Тогда  порождается формой ah(uh, vh), определяемой полем

нормалей p = p(v). В рассматриваемом нами случае все  совпадают между собой, поскольку
порождаются одним функционалом fh.
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Формально вычисления по схеме (28) включают в 2d раз больше операций, чем по схеме с фик�
сированным p. Но это не совсем так, поскольку немалая часть этих операций не зависит от p. Опера�
тор Ah является сильно монотонным как сумма сильно монотонных операторов; если оператор
исходной задачи является линейным и самосопряженным, то Ah наследует эти свойства. Отме�
тим также, что нетрудно доказывается следующая оценка точности схемы (28):

Вообще говоря, схема (28) представляется достойной более детального рассмотрения. Этому
будет посвящена отдельная статья авторов.

7. ДОКАЗАТЕЛЬСТВО ОЦЕНКИ (10)

Пусть σh = σh(vh) определяется по vh ∈ Vh из тождества

Требуется доказать, что  ≥ .

Пусть K ∈ �h – произвольный симплекс. Выберем wh = 0 вне K; считая, что  = 0 на ΓD,

получаем следующее тождество:

После интегрирования по частям будем иметь

Положим δ = ∇uh, g = ; тогда для ∀w ∈ Wn(K) = [Pm(K)]d имеем

Важно отметить, что существует грань e ⊂ ∂K, на которой (p · nK)– = 0 (и, как следствие, g|e = 0).
Ясно, что для любого w ∈ Wm(K) имеем

Достаточно получить оценки

(29)

для некоторых w1, w2 ∈ Wm(K). Действительно, в этом случае будем иметь
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Искомая оценка получается отсюда суммированием по всем K ∈ �h, поскольку величина (p · nK)–|e +
+ (p · nK')

–|e = 1 на общей грани e ⊂ Γh элементов K и K '.

Для доказательства оценок (29) нам понадобится другая форма записи JK(w). По определению
d�симплекс K имеет d + 1 граней ei и d + 1 вершин ai, i = 1, …, d + 1. Номер d + 1 присвоим грани,
на которой g = 0, а также вершине, не лежащей на ed + 1.

Пусть далее  есть единичный d�симплекс в координатах  с вершинами  = 0,  =

= (1, 0, …, 0),  = (0, 1, …, 0), …,  = (0, 0, …, 1); x =  +  – аффинное преобразование

 на K, отображающее  в ai; отображение  = (x – ad + 1) является обратным и переводит

грань ed + 1 в грань , противолежащую началу координат . Номера остальных граней 

симплекса  определим так, что

Перейдем описанным преобразованием от элемента K к элементу  в определении функци�

онала JK(w); обозначая  = η(  + ad + 1), получаем представление

где , , .

Продолжим преобразование. Примем нормали n1, …, nd к граням e1, …, ed за основной базис

в Rd, и пусть n1, …, nd есть взаимный по отношению к нему базис, т.е. ni · nj = . Разложим  по

основному базису, а  – по взаимному:  =  + … + ,  =  + … + . Положим

 = ( , …, ),  = ( , …, ). Имеем

где λK > 0, ΛK есть минимальное и максимальное собственное значение матрицы GK. Эти значе�
ния зависят только от углов K, поскольку ni · nj = cos(θij) есть косинус угла между гранями ei и ej.
По теореме Гершгорина имеем ΛK ≤ d; в силу регулярности триангуляции θij ∈ [θ0, π – θ0], где θ0

не зависит от K. Поскольку λK непрерывно зависит от θij, то найдется такое число c(θ0), не зави�
сящее от K, что λK ≤ c(θ0). Учитывая сказанное, приходим к оценке

(30)

Первую оценку в (29) получим, если в (30) выберем  =  = ( , …, ) ∈ Wm( ); дей�

ствительно, легко видеть, что в этом случае интегралы по  равны нулю и
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Здесь в последней оценке мы вернулись на элемент K, а также использовали оценки

(31)

Оценка (31) справедлива в силу эквивалентности норм в конечномерном Wm – 1( ).

Для доказательства второй оценки в (29) определим постоянную по переменной  функцию

 ∈ Pm( ), равную  на . По  определим  ∈ Pm – 1( ) из равенства

Ясно, что в силу (31) справедлива оценка  ≤  ≤ . Положим  =  = (  –

– , …,  – ) в (30). Очевидно, что

Из условия регулярности �h следует, что min{|ei|/|K|, i = 1, …, d} ≥ c/h; поэтому имеем

Оценка (10) доказана.
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g̃i K̂ g̃ êi g̃i τ̂i K̂

x̂iτ̂
iη x̂d

K̂

∫ g̃iη x̂ η∀d

K̂

∫ Pm 1– K̂( ), i∈ 1 … d., ,= =

τ̂i
0 K̂, cm

1–
g̃i 0 K̂,

cm
1–
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