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We propose the new method of fluid structure investigation which is based on numerical analytical contin-

uation of structural correlation functions with Pade approximants. The method particularly allows extracting

hidden structural features of non-ordered condensed matter systems from experimental diffraction data. The

method has been applied to investigating the local order of liquid gallium which has non-trivial structure

in both the liquid and solid states. Processing the correlation functions obtained from molecular dynamic

simulations, we show the method proposed reveals non-trivial structural features of liquid gallium such as the

spectrum of length-scales and the existence of different types of local clusters in the liquid.

DOI: 10.7868/S0370274X16060059

Introduction. Gallium is a very specific metal [1].

First of all, it has enormously large domain of its phase

diagram corresponding to liquid state. For example,

the temperature interval of stable liquid state at ambi-

ent pressure is (302.93, 2477)K. Diffraction experiments

have shown that the local structure of liquid gallium

is very complicated and it differs much from the lo-

cal structure of typical simple liquids [2–5]. Accordingly,

the crystal structure of gallium is also nontrivial: below

its melting temperature Tm = 302.93K at the ambient

pressure the stable phase corresponds to the orthorhom-

bic lattice which in nontypical for one-component metal-

lic systems [6] (amount the other metals, the only Eu

has the same lattice structure at ambient pressure). At

higher pressures there is a lot of polymorphic transitions

to other nontrivial crystal structures [7, 8].

Last time a lot of theoretical efforts were con-

centrated on investigation of the local structures and

anomalies of gallium in liquid phase [9–12]. But there

is a gap between theoretical investigations of gallium

and experiment. The main problem is that the only

1)See Supplemental material for this paper on JETP Letters
suit: www.jetpletters.ac.ru.

2)e-mail: nms@itp.ac.ru

way to directly access the local structure is perform-

ing molecular dynamic (MD) simulations which can not

unambiguously describe structure of real materials. In-

deed, classical MD deals with model approximate poten-

tials and first-principles MD has a problem of restricted

spatial and time scales available in simulations. Exper-

iment also can not directly access the local structure:

the information about angle correlations is mostly lost

in the static structure factor or radial distribution func-

tion (RDF); so only radial correlations can be extracted.

Here, we develop a new method of correlation function

processing based on complex analysis with Pade approx-

imants.

Using this method we study local structure of liquid

gallium and extract its non-trivial features. Analysing

structural correlation functions obtained from MD sim-

ulations with EAM potentials, we extract the spectrum

of spatial length scales and the existence of two types

of local clusters. We show that the best fit of the gal-

lium RDF can be performed using Lorentzians instead

of Gaussians which are usually used for that purpose.

Local order of gallium. For MD simulations of liq-

uid gallium, we have used LAMMPS molecular dynam-

ics package. The system of N = 20000−100000 particles

interacting via EAM potential [13], specially designed
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Fig. 1. (Color online) Pade spectroscopy of radial distribution function. (a) – Radial distribution function (RDF) g(r) of

liquid gallium (solid lines) and its distance-dependent co-ordination number N(< r) (dashed lines) at different temperatures

T (indicated on the plot). (b–d) – Liquid gallium, T = 500K. (b) Doing the Pade approximation we find characteristic scales

of gallium for particle distribution in the first coordination sphere: r = 2.58, 2.69, 2.84 Å. The scale r = 3.33 Å corresponds to

the tail of the first coordination sphere. (c) – The density plot of the Pade approximant while. Panel d shows for comparison

the first peak of g(r)

for gallium [14], was simulated under periodic boundary

conditions in Nose–Hoover NPT ensemble. This amount

of particles is enough to obtain satisfactory results. More

simulation details can be found in Ref. [15] where simi-

lar simulation has been described. We checked that ra-

dial distribution functions obtained by our simulation

quantitatively agree with those extracted from experi-

ment [15].

Here, we focus on gallium at ambient pressure and

investigate how its properties in liquid state depend on

temperature. Fig. 1a shows the radial distribution func-

tion g(r) of gallium taken for several temperatures in

the range of (313, 1073)K. The distance-dependent co-

ordination number N(< r) ≡ 4πρ
∫ r

0 r′2g(r′)dr′, which

is the mean number of particles inside a sphere of ra-

dius r, is also plotted in Fig. 1a; in part, the distance-

dependent co-ordination number N(< r) shows the

number of nearest neighbors in the first coordination

shell.

It is clear from the figure that the shape of the first

RDF peak is nontrivial. It can be seen that the first

RDF peak of gallium has clear shoulder. Particles form-

ing the local clusters are mostly located at distances cor-

responding to the first coordination sphere (first peak

of RDF). That suggests that local structure of liquid

gallium is rather nontrivial. More detailed information

can be extracted only after specific processing of RDF.

The promising way to extract features of local order

hidden in RDF is performing analytical continuation to

complex plane of distances. This is usual way in the

theory of correlation functions of quantum systems es-

pecially for analytical continuation of the Greens func-

tions from imaginary (Matsubara [16]) frequencies to

the real frequency domain [17–19]. Recently the method

of numerical analytical continuation was successfully ap-

plied to investigations of velocity autocorrelation func-

tion of Lennard-Jones (LJ) fluid [20, 21] and in classical

hydrodynamics of the Stokes waves [22]. Here we use

this method for analysis of gallium RDFs. For numeri-

cal analytical continuation we build the Pade approxi-

mant [23, 24] like it was done in [17, 21]. More details

we move into Supplementary Material [25].

The static structure factor is related to RDF as [26]:

S(k) = 1 +
4π

ρ
Im

∫

∞

0

r[g(r) − 1]eikrdr. (1)

So, if g(r) has a pole, at the position rp, we should ex-

pect that the contribution of this pole to the structure

factor oscillates like cos(kRe rp) or sin(kRe rp) and de-

cays with k like e−k Im rp . Thus, knowledge of the poles

gives important scales characterizing the particle sys-

tem.

In Figs. 1b and c we show the results of the typical

processing of gallium RDF by Pade approximants. As

follows we use Pade approximant of RDF for its analyt-

ical continuation in complex-r. Fig. 1b shows the abso-

lute value of RDF in complex-r plane while the peaks

correspond to the poles. We see a limited number of

poles near the real axis: so the Lorenzian fit of RDF per-

fectly matches all its basic features, see Figs.1c and d.

The real parts of the positions of the poles are impor-

tant length scales characterizing gallium: as follows, in

the first coordination sphere: r = 2.58, 2.69, 2.84 Å; the

scale r = 3.33 Å corresponds to the tail of the first co-

ordination sphere. These scales are in fact characteris-

tic interparticle distances in the first coordination shell.

Thus we see that analytical continuation with Pade ap-

proximants allows extracting multi-scale character of lo-
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cal structure of liquid gallium. In that connection, re-

member that, at ambient pressure, gallium crystallizes

into non-trivial orthorhombic lattice and so it is inter-

esting to find relation between unusual multiscale local

order of the liquid and non-trivial crystal symmetry.

In Fig. 2 we show RDF obtained for ideal lattice of

α-Ga (orthorhombic) with small random noise which

Fig. 2. RDF obtained for ideal lattice of α-Ga with

small random noise which mimics thermal vibrations. The

distance-dependent coordination number N(< r) is also

plotted by dashed line to evaluate the number of atoms at

different shells

mimics thermal vibrations. We see that first coordina-

tion shell contains two atoms located at short distance

of 2.46 Å. Such Ga2 dimers were earlier suggested to be

formed by covalent-like bonding [27]. Each Ga atom has

another six nearest neighbour located in pairs in differ-

ent coordination shells at distances 2.7, 2.73, 2.79 Å. So

the crystal structure of α-Ga demonstrates spectrum of

spatial scales. The comparison of these scales with those

obtained from analytical continuation of RDF shows

good agreement. Indeed the ratios of maximal and min-

imal distances are 1.134 for experimental lattice struc-

ture and 1.1 for scales extracted from liquid RDF. Of

course the analytical continuation of liquid RDF does

not distinct two nearly located scales. Recently, the sim-

ilar analysis of liquid Ga structure was performed in

[15] where simulated RDF were approximated by a set

of Gaussians that gave similar interval of spatial scales.

However, this methods can distinct only two scales in

mentioned interval. Moreover the results strongly de-

pend on the choice of approximation parameters such

as the number and the shape of approximating func-

tions [25].

For comparison we investigated LJ fluid and saw,

unlike Gallium, two merging poles deep in the complex

plain corresponding to the first peak of RDF. The poles

show one characteristic scale – maximum of RDF [25].

Orientational order of Gallium. More detailed

structural information can be obtained from analysis of

orientational local order. The simplest way to describe it

is calculating angular distribution function P (θ) which

is probability density of angle θ between two vectors

connecting a particle with its two nearest neighbors.

Fig. 3 shows bond angle distribution functions of liq-

uid gallium at different temperatures T (indicated on

the plot). Additionally the BADF of LJ-melt (which

is nearly universal on the LJ melting curve) is also

plotted for the comparison. Figs. 3b–d show BADF for

T = 500K. Looking at BADFs at real-θ axis, it is diffi-

cult to say something specific about the clusters form-

ing the local order. But after its processing with the

Pade approximant we see a number of poles in complex-

θ plane. The positions of poles (Re θ) give characteris-

tic angles between the particles forming the local order

clusters. Particulary, we see two pronounced poles at the

vicinity of the first peak which are located near the an-

gles 45 and 60. The value of θ = 60 is typical for simple

liquids and corresponds to tetrahedral local order [28].

But the angle θ = 45 suggests non-trivial symmetry of

local clusters probably caused by the existence of short-

bonded particles revealed by RDF analysis.

Another way to analyse orientational order is the

well known bond order parameter method, which is

widely used to characterize order in simple fluids, solids

and glasses [29–33], hard spheres [34, 35], colloidal sus-

pensions [36], complex plasmas [37–39], and metallic

glasses [40].

Each particle i is connected via vectors (bonds) with

its Nnn(i) nearest neighbors (NN), and the rotational

invariants (RIs) of rank l of second ql(i) and third wl(i)

orders are calculated as:

ql(i) =

[

4π

2l+ 1

l
∑

m=−l

| qlm(i)|2

]1/2

, (2)

wl(i) =

∑

m1,m2,m3
m1+m2+m3=0

[

l l l

m1 m2 m3

]

qlm1
(i)qlm2

(i)qlm3
(i), (3)

where qlm(i) = Nnn(i)
−1

∑Nnn(i)
j=1 Ylm(rij), Ylm are

the spherical harmonics and rij = ri − rj are vec-

tors connecting centers of particles i and j. In Eq. (3),
[

l l l

m1 m2 m3

]

are the Wigner 3j-symbols, and

the summations performed over all the indexes mi =

= −l, ..., l satisfying the condition m1 + m2 +m3 = 0.

As shown in the pioneer paper [29], the bond order pa-

rameters ql and wl can be used as measures to charac-

Письма в ЖЭТФ том 103 вып. 5 – 6 2016



Pade spectroscopy of structural correlation functions. . . 441

Fig. 3. (Color online) Pade spectroscopy of bond angle distribution function (BADF). (a) – BADF of liquid gallium at differ-

ent temperatures T (indicated on the plot). Additionally the BADF of LJ melt (which is nearly universal on the LJ melting

curve) is also plotted for the comparison. (b–d) – BADF for T = 500 K and its processing with Pade approximant. We see

a number of poles, their positions (Re θ) give characteristic angles between the particles forming local order clusters

Fig. 4. (Color online) Pade spectroscopy of probability distribution functions (PDF). (a, b) – Orientational local order of

liquid gallium: PDFs of the bond order parameters ql (l = 4, 6) taken at two temperatures T = 313K (blue line) and 1073 K

(red line). Green solid lines represent the same PDFs for the LJ melt taken on the melting line (it can be shown that along

the melting line these PDFs are practically universal). (c, d) – The absolute value of PDF (l = 6) of gallium for T = 500 K in

complex q6-plane. (e) – PDF of gallium for T = 500K plotted for comparison with poles of the PADE-approximant in panel

d. The poles are situated at Re q6 = 0.32, 0.42

terize the local orientational order and the phase state

of considered systems.

Because each lattice type has a unique set of bond

order parameters, the method of RIs can be also used to

identify lattice and liquid structures in mixed systems.

The values of ql and wl for a few common lattice types

(including liquid-like Lennard-Jones melt) are presented

in Table 1.

To quantify the local orientational order, it is also

convenient to use the probability distribution functions

(PDFs) P (ql) and P (wl). Fig. 4 shows the PDFs at dif-

ferent l (l = 4, 6) at different temperatures of liq-

uid gallium in comparison to those calculated for LJ

liquid [25, 28] whose PDFs are nearly universal along

the melting line. We see again that such PDFs calcu-

lated at real-ql axis (Figs. 4a and b) reveal no interest-

Table 1

Lattice type q4 q6 w4 w6

hcp (12 NN) 0.097 0.485 0.134 −0.012

fcc (12 NN) 0.19 0.575 −0.159 −0.013

ico (12 NN) 1.4 · 10−4 0.663 −0.159 −0.169

bcc ( 8 NN) 0.5 0.628 −0.159 0.013

bcc (14 NN) 0.036 0.51 0.159 0.013

LJ melt (12 NN) ≈ 0.155 ≈ 0.37 ≈ −0.023 ≈ −0.04

ing features of liquid gallium structure. We see broad

dome-shaped distributions which are similar to those

for LJ liquids [25]. But analytical continuation in the

complex-q plane reveals that P (ql) are in fact composed

of two Lorenzian-like peaks with similar values of both

the maximum location (Re(q)) and peak width (Im(q)).
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This fact suggests the structure of liquid gallium con-

sists of two types of local order that is in agreement with

the earlier obtained results [5, 11].

Conclusions. We propose the new method of

fluid structure investigation which is based on numeri-

cal analytical continuation of structural data obtained

from both experiment and computer simulations. The

method particularly allows extracting hidden structural

features of non-ordered condensed matter systems from

experimental diffraction data. The method has been

applied to investigating the local order of liquid gal-

lium which is supposed to have complex structure. We

show that analytical continuation of structural correla-

tion functions such as radial distribution function, bond

angle distribution function and bond orientational or-

der parameters reveals non-trivial structural features

of liquid. Firstly, we show that, processing the liquid

RDF, our method allows easily obtaining the spectrum

of length-scales which are in close agreement with those

for crystal state. Secondly, we show for the first time

that correlation functions of orientational order also

have non-trivial features probably caused by the exis-

tence of different types of local clusters in the liquid.
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