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Abstract: There are few effective therapies for small cell lung cancer (SCLC), a highly aggressive
disease representing 15% of total lung cancers. With median survival <2 years, SCLC is one of the
most lethal cancers. At present, chemotherapies and radiation therapy are commonly used for SCLC
management. Few protein-targeted therapies have shown efficacy in improving overall survival;
immune checkpoint inhibitors (ICIs) are promising agents, but many SCLC tumors do not express ICI
targets such as PD-L1. This article presents an alternative approach to the treatment of SCLC: the use
of drug conjugates, where a targeting moiety concentrates otherwise toxic agents in the vicinity of
tumors, maximizing the differential between tumor killing and the cytotoxicity of normal tissues.
Several tumor-targeted drug conjugate delivery systems exist and are currently being actively tested in
the setting of SCLC. These include antibody-drug conjugates (ADCs), radioimmunoconjugates (RICs),
small molecule-drug conjugates (SMDCs), and polymer-drug conjugates (PDCs). We summarize the
basis of action for these targeting compounds, discussing principles of construction and providing
examples of effective versus ineffective compounds, as established by preclinical and clinical testing.
Such agents may offer new therapeutic options for the clinical management of this challenging disease
in the future.
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1. Introduction

An estimated 606,880 Americans will die from cancer in 2019, with lung cancers causing the
greatest number of deaths [1]. Although small cell lung cancer (SCLC) only accounts for about 10–15%
of lung cancer cases overall, it is responsible for 28,000 deaths annually, making it the seventh most
common source of cancer mortality. SCLC is associated with poor survival: post-diagnosis median
survival is 15–20 months for patients diagnosed with limited stage (LS) disease (defined as a cancer
that is limited to one side of the thorax and adjacent lymph nodes, and treatable by radiotherapy), and
9–12 months for patients with more widely disseminated extensive-stage (ES) disease [2]. The current
standard of treatment for LS-SCLC is concurrent radiotherapy and chemotherapy with etoposide in
combination with a platinating agent such as carboplatin or cisplatin (etoposide-platinating agent
(EP)). However, ~75% of SCLC patients are diagnosed at an advanced stage, when treatment options
are limited, treatment resistance rapidly emerges, and dose-limiting toxicities are a major issue [3].

Until relatively recently, the first-line treatment for ES patients remained chemotherapy with an EP
doublet [4]. Some trials have explored alternative chemotherapy regimens. For instance, in a Japanese
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randomized phase 3 clinical trial, irinotecan/cisplatin demonstrated superior efficacy with over three
months’ improvement in overall survival compared to EP in Japan. However, phase 3 trials conducted
in the EU and USA failed to show superiority [5]. Second-line therapies in common use for ES SCLC
are generally based on conventional chemotherapies [4], but their efficacy is limited.

The emergence of immune checkpoint inhibitors (ICIs) in the last decade has attracted considerable
interest in SCLC and in other cancers; there is ongoing assessment of numerous ICIs in clinical trials.
Immunotherapy with pembrolizumab, a humanized immunoglobulin (Ig) G4 (IgG4) antibody targeting
programmed death 1 (PD-1) receptors, demonstrated a durable response (overall response rate (ORR)
33%) in PD-L1-expressing SCLC tumors, even in patients with pretreated SCLC [6]. Nivolumab,
a fully humanized IgG4 antibody targeting PD-1, showed a striking response and encouraging
improvements in survival in patients with pretreated SCLC, whether used as a monotherapy or in
combination with ipilimumab (a fully humanized IgG1 antibody targeting cytotoxic T lymphocyte
antigen-4 (CTLA-4)) [7,8]. Recently, FDA approval was granted for the programmed death ligand
1 (PD-L1)-targeting monoclonal antibody atezolizumab as a new standard of targeted therapy in
SCLC [9]. Addition of atezolizumab to chemotherapy in the first-line treatment of ES-SCLC resulted in
gains in overall survival (OS) and progression-free survival (PFS) versus chemotherapy alone, and
quickly became a new treatment standard. However, although these gains were statistically significant,
the magnitude of OS improvement was modest (12.3 vs., 10.3 months [9]). These results have led to
continued investigations into immune oncology, particularly for ES-SCLC. In SCLC (as in other cancers),
higher tumor mutational burden is a direct, independent predictive biomarker for positive response to
ICIs [10,11]. Typically, SCLC is characterized by high tumor mutational burden (TMB) [12,13], which
is promising for the use of ICIs. However, while other cancers, including non-small-cell lung cancer
(NSCLC) [14], have seen transformative effects of ICIs, some factors potentially limit their promise in
SCLC. For example, the expression of PD-L1 is relatively uncommon in SCLC (∼28.6% [6]), limiting
the pool of tumors likely to respond.

There are currently few effective protein-targeted therapies for SCLC. In contrast to other cancers,
where mutations often occur in targetable signaling pathways (such as kinase-activating mutations [13]),
the high TMB of SCLC is typically associated with nontargetable changes. Rather, characteristic features
arising from mutations include inactivation of the tumor suppressors TP53 (~85% of cases) and RB1
(~57% of cases), reduction in activity of NOTCH (~14%), altered function of the TP53-related protein
TP73 (~13%), and amplification causing overexpression of MYC (~7%) [12]. Nevertheless, there are
currently a number of preclinical studies and clinical trials assessing the efficacy of novel targeted
therapies for SCLC [15]. Some examples of these include targeting signaling proteins displayed on the
cell surface, such as NOTCH [16], the NOTCH ligand DLL3 [17], CD56 (also known as NCAM) [18,19],
CD24 [20], CD47 [21], and the proto-oncogene c-KIT (also known as CD117) [22], using inhibitory
antibodies or small molecules. There are also ongoing trials involving small molecule inhibitors
of PARP (poly-(ADP)-ribose polymerase) [23–25] and EZH2 (enhancer of zeste homolog 2), which
regulate DNA damage responses and modulate chromatin [26]; and inhibitors of angiogenesis, using
various strategies to target VEGF, FGFR1, and CD13 [27,28]. The success of these agents remains to
be established.

There remains an urgent need for new therapeutic approaches for the management of SCLC:
ideally, approaches that leverage and improve those approaches that have been successful. One critical
barrier to the effective treatment of SCLC (and other tumors) with chemotherapies and other cytotoxic
drugs is the inability to concentrate these compounds in tumors at sufficient levels to achieve therapeutic
benefit without simultaneously inducing untenable degrees of damage to normal tissues. Towards this
end, extensive efforts have been devoted to design site-selective drug delivery strategies to deliver
chemotherapeutic agents to the tumors. These include antibody-drug conjugates (ADCs) [29–31],
radioimmunoconjugates (RICs) [32,33], small molecule-drug conjugates (SMDCs) [34], and drug
conjugates to tumor-targeting peptides and synthetic polymers (PDCs) [35,36]. Such conjugate-based
drug delivery systems share commonalities with respect to their functional construction, comprising
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a tumor recognition moiety and cytotoxic payload connected via chemical linkage. Some examples
of this approach have been proven to be successful in some solid tumor settings, as demonstrated
by the recent FDA approval of the antibody-drug conjugates brentuximab vedotin (Adcetris) in
Hodgkin’s lymphoma [37], ado-trastuzumab emtansine (Kadcyla) in HER2+ breast cancer [38,39], and
polatuzumab vedotin-piiq (Polivy) in relapsed or refractory diffuse large B-cell lymphoma [40,41].
In this review, we summarize the relative promise of the numerous tumor-targeted drug conjugate
therapies currently under evaluation in preclinical studies and in clinical trials for SCLC.

2. Antibody-Drug Conjugates (ADCs) and Radioimmunoconjugates (RICs)

The German physician Paul Ehrlich first proposed the concept of selectively delivering a cytotoxic
drug to a tumor via a targeting agent at the beginning of the 20th century [42]. It took some decades to
introduce this concept to practice, and the efficient production of monoclonal antibodies of defined
ligand specificity provided a critical enabling step for widespread application. However, ADCs and
RICs exploit Ehrlich’s original concept to target tumors. Compared with conventional chemotherapies,
these agents extend the therapeutic window, lowering the minimum effective dose for tumors and
increasing the maximum tolerated dose because antibody-mediated drug delivery causes fewer
systemic effects [43].

2.1. ADCs

ADCs have a tripartite structure, including an antibody or antibody fragment, a linker, and
a cytotoxic moiety (Figure 1). Initially, the antibody component was typically derived from a mouse
monoclonal antibody (mAb); in recent years, humanized antibodies have resulted in a significant
improvement of therapeutic properties [44,45]. When targeting antibodies are conjugated with cytotoxic
payloads, they typically retain any original ability to activate immune responses such as antibody-
dependent cellular cytotoxicity (ADCC) or complement-dependent cytotoxicity [45], augmenting
tumor-killing activity.
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For optimal ADC function, the antibody moiety targets an antigen that is highly and
homogeneously expressed on tumors to be targeted, expressed at low levels or absent on normal tissue,
and expressed in the extracellular space of tumor cells but not shed from the tumor surface (to prevent
unspecific binding within the circulation) [46]. Human epidermal growth factor receptor (EGFR) and
related proteins epidermal growth factor receptors 2 and 3 (HER2, HER3), prostate-specific membrane
antigen (PSMA), and c-MET are examples of successfully targeted antigens expressed on both normal
and tumor tissues, although typically at higher levels on tumors [47]. However, some studies indicate
that targeting antigens with relatively low expression in tumors is feasible, particularly if there is
minimal expression in normal tissue [45]. In cases where there is not homogeneous expression of
the target antigen in solid tumors, this issue is sometimes rendered moot by the efficient bystander
effect: a process by which an antigen-positive tumor cell internalizes the ADC and cleaves the
cytotoxic payload from the linker, releasing a membrane-permeable moiety that can induce cell death
in neighboring tumor cells that lack the antigen [45,48]. However, this is not ideal, as such cleavage
and release may result in an increased rate of off-target systemic toxicity.

Other features of effective ADCs include antibody moieties that are efficiently internalized by
receptor-mediated endocytosis of the target antigen, and those for which that expression of the target
antigen is not downregulated after treatment of a tumor with the ADC [48]. Other factors such as
tumor size and properties of intratumoral cellular organization, including degree of fibrosis, tumor
vascularization, and other physical barriers, can diminish payload uptake [45,48]. Some studies have
shown that targeting not only tumor cells, but also components of the tumor microenvironment such
as the stromal fibroblasts, the tumor vasculature [49,50], and tumor-initiating cancer stem cells [49,51],
is an alternative way to target tumors with ADCs.

The linker moiety plays a crucial role in ADC pharmacokinetics, pharmacodynamics, and
efficacy [44,46,52]. Ongoing research seeks to optimize stable linkers that prevent ADCs from release
of the cytotoxic drug before reaching its tumoral target, to prevent off-target toxicity, but which allow
effective release of the payload once the ADC is internalized by the target tumor cell [53]. Examples
of linkers that have been successfully deployed include both noncleavable and cleavable linkers.
Noncleavable linkers, such as are used in ado-trastuzumab emtansine, rely on complete lysosomal
degradation of the antibody moiety to allow the cytotoxic payload to act [46]. Cleavable linkers
are designed to release payload molecules after bond cleavage. Such linkers can be acid-sensitive,
so that they release both the free drug and the antibody selectively in the low-pH conditions present in
lysosomes or endosomes; this approach is used in the ADCs gemtuzumab, ozogamicin, and inotuzumab
ozogamicin [46]. Other types of cleavable linker are sensitive to proteases found specifically in the
lysosome (an approach used in the ADC brentuximab vedotin) [54], or require glutathione as a cofactor
for cleavage, where targeting benefits from the higher concentration of glutathione in tumor cells [51].

The cytotoxic payload is the third major component of an ADC. Optimally, payloads should
be soluble, amenable to conjugation, and stable. They typically have extremely high cytotoxic
potency for intracellular targets. The first generation of ADCs used classical chemotherapy agents,
including doxorubicin and methotrexate, as payloads [46]. Payloads currently undergoing assessment
in clinical trials generally fall into three categories: antimitotic (often tubulin filament-damaging),
DNA-damaging, and transcriptional inhibitors.

Tubulin filament-targeting agents that disrupt mitosis include maytansinoids, which suppress
microtubule dynamic instability, inducing mitotic arrest. This is similar to the mode of action of
vinblastine [55] and taxol derivatives, which promote microtubule assembly and inhibit disassembly
via direct interaction with microtubules, which enhances tubulin polymerization, causing G2/M
arrest [56]. The maytansinoid mertanzine (DM1) is a part of the FDA-approved ADC ado-trastuzumab
emtansine [38]. Other tubulin-targeting payloads include auristatins, which bind α,β-tubulin during
interphase to inhibit tubulin-dependent guanosine triphosphate (GTP) hydrolysis and microtubule
assembly [51,57]. The payload monomethyl auristatin E (MMAE) is successfully used in the treatment
of Hodgkin lymphoma as a part of the ADC brentuximab vedotin [37]. Tubulysin analogs fall into
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a third group of antimitotic agents; these cause rapid disintegration of the cytoskeleton and mitotic
machinery of dividing cells, leading to apoptosis [58].

Among DNA-damaging payloads, duocarmycin is a powerful alkylating compound that
demonstrated potency in multidrug-resistant cancer models. Duocarmycin-based ADCs conjugated
to the anti-HER2 antibody trastuzumab underwent phase 1 investigation in clinical trials, with
trial results pending (NCT02277717, see Table 1) [59]. Calicheamicin causes double-strand DNA
breaks in a manner independent of the cell cycle stage, making it useful against tumors with
lower rates of proliferation [51,60]. The FDA has approved two ADCs bearing calicheamicin as
a payload—gemtuzumab ozogamicin in acute myeloid leukemia (AML), and inotuzumab ozogamicin
in acute lymphoblastic lymphoma (ALL) [61,62]. The topoisomerase inhibitor SN-38 (the active
metabolite of irinotecan) has been used in numerous trials as an antibody conjugate, with an ongoing
trial in SCLC (NCT01631552, discussed further below) [63]. Pyrrolobenzodiazepines (PBDs) bind to
discrete DNA sequences, causing multiple DNA cross-links, and have attracted interest because they
do not present any cross-resistance with common chemotherapeutic agents [64]. PBDs conjugated
with an antibody to c-MET are currently being assessed in a clinical trial for c-MET-positive solid
tumors, NCT03859752 [57]. Alpha-amanitin is a potent RNA polymerase II inhibitor, derived from
the mushroom Amanita phalloides; this agent is showing promising results in preclinical assessment
in a pancreatic cancer setting, when used as part of an ADC with antibodies targeting epithelial cell
adhesion molecules (EpCAMs) [65].

2.2. Clinical Use of ADCs for SCLC

As of the middle of 2019, three ADCs have been licensed by the FDA for solid tumor malignancies.
Ado-trastuzumab emtansine (T-DM1, Kadcyla) [38,39] has been assessed in clinical trials in NSCLC,
where it demonstrated a 44% partial response rate and a five-month PFS in HER2-positive patients [66].
Brentuximab vedotin (Adcetris) [37] and polatuzumab vedotin-piiq (Polivy) [40,41], also licensed, have
not yet been investigated in lung cancer.

T-DM1 is composed of trastuzumab, a humanized IgG1 anti-HER2 antibody fused via a
noncleavable linker to the maytansinoid DM1 [38]. T-DM1 has a tolerable toxicity profile [38]
and merits potential investigation in SCLC clinical trials, as preclinical assessment of this compound
in vivo in trastuzumab-resistant HER2-positive SCLC xenografts demonstrated that-DM1 was able to
induce apoptosis in SBC-3/SN-38 xenografts to a greater extent than trastuzumab monotherapy [67].
Brentuximab vedotin (BV, Adcetris) is composed of an anti-CD30 mAb connected via a cleavable
peptide to MMAE [68], while polatuzumab vedotin-piiq (Polivy) is composed of B-cell antigen receptor
complex-associated protein beta chain (CD79B) conjugated via a protease-cleavable peptide linker, to
MMAE [41]. Although highly potent against Hodgkin’s lymphoma, where the CD30 ligand is highly
expressed [37,54], and non-Hodgkin’s lymphoma, which abundantly expresses CD79B [69], these two
ADCs are less immediately promising for SCLC, where these antigens are not known to be expressed.
Overall, research addressing the clinical utility of ADCs is a very active field, with almost 120 ongoing
clinical trials involving over 60 unique ADCs. Although most of these trials focus on hematological
malignancies, some show promising results in the setting of SCLC or other lung cancers (Table 1).
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Table 1. List of active trials assessing tumor-targeted drug conjugates in lung cancers. ADC, antibody- drug conjugate; RIC, radioimmunoconjugate; PDC, polymer-drug
conjugate; SMDC, small molecule- drug conjugate.

Drug Name Type of Conjugate Disease Target Payload NCT# Phase

IMMU-132 (sacituzumab govitecan) ADC SCLC, NSCLC, other epithelial cancers Trop-2 SN-38 (topoisomerase I inhibitor) NCT01631552 1, 2

Rovalpituzumab tesirine (Rova-T) ADC SCLC, solid tumors DLL3 Pyrrolobenzodiazepine dimer (PBD) (DNA
cross-linking)

NCT03033511,
NCT03000257 3, 1

A166 ADC Lung cancer, other HER2+ cancers HER2 undisclosed NCT03602079 1, 2

ABBV-399 (telizotuzumab vedotin) ADC NSCLC cMet Monomethyl auristatin E (MMAE)
(antimitotic)

NCT02099058,
NCT03539536 1

AVID100 ADC NSCLC, other solid tumors EGFR Maytansinoid mertansine DM1 NCT03094169 1, 2

BA3011 (CAB-AXL) ADC NSCLC, other solid tumors Axl Monomethyl auristatin E (MMAE)
(antimitotic) NCT03425279 1, 2

BA3021 (CAB-ROR2) ADC NSCLC, other solid tumors ROR2 undisclosed NCT03504488 1, 2

BAY 94-9343 (anetumab ravtansine) ADC NSCLC, mesothelin positive, others mesothelin Maytansinoid DM4 (antimitotic) NCT01439152,
NCT03455556 1

BMS-986148 ADC NSCLC, other solid tumors mesothelin Duocarmycin-related (DNA-alkylating
agent) NCT02341625 1, 2

CX-2009 ADC NSCLC, other solid tumors CD166 Maytansinoid DM4 (antimitotic) NCT03149549 1, 2

CX-2029 ADC NSCLC, other solid tumors CD71 Monomethylauristatin E (MMAE)
(antimitotic) NCT03543813 1, 2

DS-8201a ADC NSCLC, HER2 positive HER2 Topoisomerase I inhibitor NCT03505710,
NCT02564900 2

Enapotamab vedotin ADC NSCLC, other solid tumors Axl Monomethylauristatin E (MMAE)
(antimitotic) NCT02988817 1, 2

FS-1502 (Trastuzumab Monomethyl
Auristatin F) ADC NSCLC, breast and other solid tumors HER2 Auristatin F-HPA (antimitotic) NCT03944499 1

MEN1309 ADC Metastatic NSCLC, other solid tumors CD205/Ly75 Maytansinoid DM4 (antimitotic) NCT03403725 1

MGC018 ADC NSCLC, other solid tumors B7-H3 Duocarmycin (DNA-alkylating agent) NCT03729596 1, 2

SHR-A1403 ADC NSCLC, other solid tumors cMet Microtubule inhibitor NCT03856541 1

SYD985 (trastuzumab vc-seco-DUBA) ADC NSCLC, other solid tumors HER2 Duocarmycin (DNA-alkylating agent) NCT02277717 1

TR1801 ADC NSCLC, other solid tumors cMet Pyrrolobenzodiazepine dimer (PBD) (DNA
cross-linking) NCT03859752 1

U3 1402 ADC NSCLC HER3 Topoisomerase I inhibitor DX 8951 NCT03260491 1

W0101 ADC NSCLC, other solid tumors IGF-1R Auristatin derivative (antimitotic) NCT03316638 1, 2
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Table 1. Cont.

Drug Name Type of Conjugate Disease Target Payload NCT# Phase

XMT-1522 ADC NSCLC, breast cancer HER2 Multiple, x15 auristatin molecules
(antimitotic) NCT02952729 1

XMT1536 ADC NSCLC, ovarian cancer SLC34A2/NaPi2b Auristatin F-HPA (antimitotic) NCT03319628 1

90-yttrium-conjugated FF-21101 RIC NSCLC, other solid tumors P-cadherin Yttrium-90 NCT02454010 1

188-rhenium-conjugated P2045 RIC SCLC, NSCLC SSTR2 Rhenium-188 NCT00100256 1, 2

64-cuprum-DOTA-trastuzumab RIC Solid tumors HER2 Cuprum-64 NCT02226276 1

CRLX101 PDC SCLC, NSCLC, other epithelial cancers tumor cells Camptothecin NCT03531827 1, 2

BT1718 PDC NSCLC, other solid tumors MMP14 Maytansinoid mertansine DM1 NCT03486730 1

NKTR102 (Pegylated irinotecan) PDC SCLC tumor cells Irinotecan NCT01876446 1

SDX-7320 PDC NSCLC, other solid tumors tumor cells Methionine aminopeptidase 2 (MetAP2)
inhibitor NCT02743637 1

PEN-866 SMDC SCLC, NSCLC, other epithelial cancers HSP90 SN-38 (topoisomerase I inhibitor) NCT03221400 1, 2
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Among the agents under investigation for SCLC is rovalpituzumab tesirine (SC16LD6.5 or Rova-T):
the antibody moiety (SC16) targets DLL3, a surface marker of tumor-initiating cells, expressed in
about 80% of SCLC patients. SC16 is conjugated to D6.5, a small molecule that is a potent, cell
cycle-independent DNA-damaging agent. A phase 1 trial of this agent (NCT01901653) demonstrated
encouraging single-agent antitumor activity with a manageable safety profile [70], leading to several
additional trials that investigated Rova-T as a frontline and second-line treatment in ES-SCLC
(NCT0281999, NCT03334487). Unfortunately, despite encouraging interim data reported in press
releases in 2018, the phase 3 second-line trial was terminated due to Rova-T arm patients having inferior
survival compared to patients on topotecan [71]. However, Rova-T has not yet been abandoned as
a potentially useful clinical agent for SCLC. The results of a study investigating Rova-T as a third-line
treatment in 199 patients with ES-SCLC with and without DLL3 expression (NCT02674568) were
published in 2018 [72]. This study demonstrated positive results, with an overall response rate (ORR)
of 38% and progression-free survival (PFS) of 4.3 months in DLL3-positive patients, but no benefit in
an unselected cohort, which had an ORR of 18% and PFS of 2.8 months. Currently, Rova-T is being
assessed as a maintenance therapy in ES-SCLC following first-line platinum-based chemotherapy
(NCT03033511).

CD56/NCAM is an attractive target for SCLC, as it is expressed in almost all SCLC tumors [73].
In lorvotuzumab mertansine, the humanized anti-CD56 antibody lorvotuzumab is joined via a cleavable
disulfide linker to the maytansinoid DM1. This ADC demonstrated significant antitumor potency
in preclinical SCLC human xenograft studies, both as a monotherapy and in combination with
chemotherapy (carboplatin/etoposide) [19]. However, a phase 1/2 clinical trial with this compound in
ES-SCLC was terminated due to a lack of efficacy and safety concerns (NCT01237678) [18]. Currently,
this compound is undergoing phase 2 trial for neuroblastoma, Wilms tumors, and several other
malignancies in younger patients (NCT02452554); it is possible that it may find use as a combination
agent for SCLC. Another anti-CD56 antibody conjugate that demonstrated encouraging results in
preclinical assessment is promiximab-duocarmycin, in which a CD56 antibody is conjugated to a potent
DNA alkylating agent, duocarmycin (DUBA) using a novel linker with reduced interchain disulfides.
This ADC demonstrated high efficacy in SCLC xenograft models [74], suggesting that further clinical
assessment of this compound may be useful.

The ADC sacituzumab govitecan consists of a humanized mAb targeting Trop-2 (trophoblastic
antigen-2), which is highly expressed in numerous epithelial cancers [75], fused to SN-38 (the active
metabolite of irinotecan, [76]), which inhibits topoisomerase I to induce double- and single-strand DNA
breaks. This conjugate demonstrated an encouraging result in a phase 1 clinical trial, with a predictable
pharmacokinetic profile and manageable toxicity [77]. A phase 1/2 trial (NCT01631552) assessed its
activity in patients with advanced cancers, where it demonstrated positive results in heavily pretreated
hormone receptor (ER+/PR+)-positive/HER2-negative metastatic breast cancer patients, and was well
tolerated, with a safety profile consistent with the reports of the previous trial [78]. Evaluation of
sacituzumab govitecan in a single-arm study performed in heavily pretreated metastatic SCLC patients,
including patients who were chemoresistant or chemosensitive to first-line chemotherapy, indicated
some efficacy, with an overall response rate of 14% and a 34% clinical benefit rate (in this study defined
as complete response + partial response + stable disease ≥ 4 months). The median OS was 7.5 months,
and the median PFS was 3.7 months [79]. Currently sacituzumab govitecan is undergoing several
trials, including one phase 1/2 trial in SCLC, where it is being evaluated as a single agent in previously
treated patients with advanced SCLC or other epithelial cancers (NCT01631552).

c-KIT overexpression is well recognized in numerous malignancies, including SCLC [80], as well
as melanoma [81], non-small-cell lung cancer (NSCLC) [82], acute myelogenous leukemia (AML) [83],
and gastrointestinal stromal tumors (GIST) [84]. LOP628 comprises a humanized anti-c-KIT antibody
LMJ729, conjugated via a noncleavable linker to DM1; this ADC exhibited potent antiproliferative
activity in c-KIT-positive cell lines versus antibody alone in cell culture and murine xenograft models [22].
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The positive results of this preclinical study strongly suggest further clinical evaluation of LOP628 in
patients with SCLC, GIST, and AML.

Tucotuzumab celmoleukin is a fusion protein developed along the concepts of an ADC [85].
This agent is comprised of the humanized mAb tucotuzumab (which recognizes EpCAM, commonly
expressed on SCLC tumors [86]) fused to active interleukin-2 (IL2). Subsequently, the localized IL2
moiety of this fusion protein helps stimulate a local cytotoxic T-cell antitumor immune response.
Clinical assessment of this compound (NCT00016237) in 64 patients with ES-SCLC in combination
with cyclophosphamide demonstrated a trend toward prolonged PFS and OS versus supportive care
(n = 44), particularly in a subgroup of patients receiving previous prophylactic cranial irradiation
(n = 26) [85]. These data suggest the potential for statistically significant results in a larger population.

2.3. RICs

Designed in line with the principles of ADC construction, in radioimmunoconjugates (RICs),
radionuclides are used as the payloads linked to tumor-targeting antibodies (Figure 1). The use of RICs
has several specific limitations, because of the nature of their radioactive payloads. There is a need for
a reliable supply chain of radionuclides and the production pipeline can be expensive. The delivered
dose of radionuclides is dependent on the antibody component for pharmacokinetic biodistribution,
and hence has a low dose rate at the tumor site approximately two orders of magnitude lower in
intensity compared with conventional external beam radiation therapy, making it difficult to measure
the dose–response relationship with outcomes in patients [87,88]. However, RICs also have some
advantages, including their use in tumor imaging.

Current applications for RICs include diagnostic immunoscintigraphy and radioimmunotherapy [33].
For diagnostic applications, the preferred radionuclides are positron (β+)-emitting isotopes, such as short
half-life 68Ga and 44Sc, and long half-life 64Cu and 89Zr, which enable high-resolution positron emission
tomography (PET) imaging [89,90]. (β−)-emitting and α-emitting isotopes are used in therapeutic
applications. Radionuclide choice is based on the tumor size: 90Y exhibits long-range (β) emission
and can be used for larger masses; 177Lu and 188Re have a short range, favoring treatment of minimal,
residual disease [33]. α-emitting isotopes, such as 225Ac, 213Bi, and 211At, deliver a high proportion of
their energy inside the targeted cells, leading to highly efficient killing [91,92]. The current consensus of
treatment is that RICs may be most useful for cases of small disseminated tumors, clusters of malignant
cells, or residual disease, particularly in cases where the antibody component can assure significant
tumor-specific targeting. Currently, RICs are under investigation in a number of solid tumors, particularly
in treating minimal residual disease in prostate and colorectal cancer [33], and are also being explored for
SCLC [93,94].

2.4. RICs’ Clinical Use in SCLC

The first clinical application of radioimmunotherapy was for the treatment of non-Hodgkin’s
lymphoma [95]. Two RICs targeting CD20 have been approved for the treatment of this disease:
90Y-ibritumomab tiuxetan, and 131I-tositumomab [96]. In this study 90Y-ibritumomab demonstrated
a 77.8% response rate (RR) with a 41.7% complete response (CR) in a group of 36 patients, and
131I-tositumomab demonstrated similar numbers (70.9% RR and 35.5% CR); however, despite its
efficacy, tositumomab production was later discontinued for market reasons, given the availability of
other effective treatments for this disease. RICs targeting CD20 are potentially of interest in SCLC: as
in lymphomas, CD20 is widely expressed in SCLC tumors [97], and was demonstrated to be associated
with clinical prognosis for SCLC [98]. Another promising target for RICs in SCLC is somatostatin
receptor (SSTR), which is overexpressed in ~48% of SCLC cases [98]. A phase 1 trial assessing the
efficacy of 188Re-P2045, a β-emitter conjugated to a somatostatin analog peptide, in both NSCLC and
SCLC demonstrated good tolerability of the compound and stable disease [99]. Besides justifying
further exploration of this RIC, these data suggest that a similar SSTR2 targeting approach with other
compounds may be useful in SCLC.
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DLL3 expression can serve as an immunoscintigraphy imaging biomarker for SCLC [93]. Recently,
a RIC in which 89Zr-labeled SC16 (a mAb targeting DLL3) was designed as a companion diagnostic
agent to facilitate the selection of patients for treatment with rovalpituzumab teserine (Rova-T) based
on a noninvasive interrogation of the in vivo status of DLL3 expression using PET imaging [94]. In this
study, DLL3-guided immunoPET yielded a rank-order correlation for response to Rova-T therapy in
SCLC patient-derived xenograft models. At present, the development of RIC compounds is mainly
ongoing in the public, academic sector. However, the pharmaceutical industry is beginning to focus
more on this technology as promising data emerge [89,90,100,101].

3. Small Molecule-Drug Conjugates (SMDCs)

Small molecule-drug conjugates (SMDCs) are designed along similar principles as ADCs for drug
delivery and tumor targeting applications, with the difference being that the antibody component
is replaced by a targeting ligand that can be a peptide or a small molecule (Figure 2) [102,103].
SMDCs have a number of strengths compared to ADCs. They are frequently easier to synthesize
than biological agents. Most are nonimmunogenic, making them unlikely to provoke an autoimmune
response [104,105]. Transportation, storage, and administration are easier than with ADCs [106].
Molecular weights of SMDCs are much lower then those of ADCs, resulting in better cell permeability
(particularly in solid tumors that may be poorly vascularized) [107]. The low molecular weight and
other chemical features are also associated with better in vitro and in vivo stability than biological
agents including mAbs [108]. Notably, SMDCs are more rapidly removed from the blood through
glomerular filtration in the kidneys than are ADCs. This results in a better toxicity profile; however,
it also has the potential to reduce the effective time on the tumor target [109].Cancers 2019, 11, x FOR PEER REVIEW 9 of 21 
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Figure 2. Small molecule-drug conjugates (SMDCs) and polymer-drug conjugates (PDCs). Schematic
representation of structural features, targets, and mechanism of action. While sharing common
payloads, the targeting mechanism differs (see text). Highlighted in red are the targets, polymers, and
cytotoxic compounds assessed in the SCLC setting; black font indicates moieties under investigation
and showing promise in other cancers, but not yet in SCLC.
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The targeting ligand of an SMDC typically has a binding affinity within the nanomolar range
for its primary target [110], and potent target selectivity. These properties also help to decrease
systemic toxicities upon compound administration [103]. Typically, targeting moieties have been
based on well-defined inhibitors or ligands of transmembrane receptors or other enzymes relevant to
signaling pathways that are highly active in, and often selective for, tumor cells. SMDCs have used
imatinib (a BCR/ABL fusion protein inhibitor, [111]), folic acid (a ligand of the folate receptor, [112]),
glucose transporter 1 (GLUT1) [113], low-density lipoprotein receptor-related protein 1 (LRP1) [114],
prostate-specific membrane antigen (PSMA) [115], aminopeptidase N (APN) [116], somatostatin
receptor (SSTR) [103], and inhibitors of heat shock protein 90 (HSP90) [117,118].

The linker in SMDCs, which consists of a spacer and cleavage bridge, plays a role similar to the
role of the linker component in ADCs. Linkers are designed to preserve the activity of post-cleavage
species and to optimize the drug release, pharmacokinetics, and pharmacodynamics of the targeting
ligand and payload [103,112]. First-generation spacers contain carbohydrate units, repeating acidic
residues, and saccharic acid residues. Second-generation spacers use glutamic acid and glutamine as
epimerization-inert modules [119]. The cleavable bridge retains stability during the SMDC transportation
from the vasculature to the tumor, and is typically cleaved by one of two triggering methods. The first
mechanism is cleavage in the endosomes of the target cells due to low pH. Such a cleavage bridge
comprises acetals and hydrazones [120]. The second mechanism is through use of a disulfide-based
linker, which undergoes cleavage due to an intracellular excess of glutathione (GSH), thioredoxin,
peroxiredoxins, and nicotinamide adenine dinucleotides (NADH and NADPH) [103].

The final component of SMDCs is the small molecule payload. As with ADCs, optimal payloads
have high binding affinity for their targets [103] and are highly cytotoxic, similar to those used in ADCs.
In some cases, to increase the cytotoxic activity of the conjugate, multivalent ligands, comprising
several payloads linked to the targeting compound, are employed. Examples of payloads that target
mitosis, DNA replication, and protein translation that are currently in assessment as SMDCs in lung
cancer and other settings are listed in Table 1.

Clinical Perspective on the Use of SMDCs in SCLC

Among the SMDCS under preclinical and clinical development, several recent preclinical studies
demonstrated the striking potency of HSP90 inhibitor drug conjugates such as PEN-866 (formerly
STA-8666) in xenograft models of solid tumors, including breast, pancreatic, and SCLC [121–123].
As a result of stresses existing within tumors and the tumor microenvironment, HSP90 is highly
overexpressed in tumors relative to normal tissue [124,125]. PEN-866/STA-8666 is comprised of an
HSP90-targeting moiety fused via a cleavable carbamate linker to the cytotoxic compound SN-38,
an active metabolite of irenotecan. In a set of preclinical studies, this SMDC exhibited extended
intratumoral drug exposure and superior therapeutic indices over irinotecan therapy due to its
concentration in tumor tissue, where intratumoral cleavage provides high, selective SN-38 exposure for
up to a week [121–123,126]. Benchmarking of STA-8666/PEN-866 against standard first- and second-line
therapies showed superior performance, and exceptional potency, even in SCLC patient-derived
xenografts (PDX) and SCLC cell line models previously exposed to other chemotherapies, including
irenotecan [122]. Coupled with the identification of response biomarkers, these studies provided
significant preclinical support for the development of this agent towards the clinic. Currently, PEN-866
is being evaluated for efficacy in solid tumors, including SCLC, in a phase 1/2 trial (NCT03221400).

Folic acid (folate) conjugates comprise another class of SMDCs assessed in numerous cancer
settings, including lung cancer. Although they have not yet been specifically assessed in SCLC, folate
is likely to be a good targeting agent in this cancer because recent studies demonstrate that folate
receptor-positive circulating tumor cells can serve as a valuable predictive and prognostic biomarker
for patients with SCLC who received first-line chemotherapy [127]. The promise of these agents was
demonstrated in phase 1 studies in folate receptor positive refractory solid tumors, and subsequent
phase 2 studies in ovarian cancers [128,129], suggesting that they may be useful tools for SCLC. SN-38
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has also been expressed as an SMDC with folic acid using a hydrophilic peptide spacer and a releasable
disulfide carbonate linker. This conjugate exhibited high affinity for folate receptor-expressing cells,
and inhibited the proliferation of folate receptor-positive human cervical cancer KB cells with an IC50
within a nanomolar range [130].

In folate-vinca alkaloid SMDCs, the payload is a microtubule-destabilizing agent that inhibits the
assembly of microtubules and causes defects in mitosis. The SMDC drug delivery strategy enhances
selectivity and reduces the toxicity of a group of agents, the vinca alkaloids, that are independently
active in many cancers. A series of folate conjugates to various vinca alkaloids (including vinorelbine,
vindesine, and others) using a common cleavable linker has been extensively studied. Promising
conjugates identified in this study include vintafolide (EC145) and its analogs [131–133]. In a phase
IIb study in NSCLC of EC145 used alone and in combination with docetaxel completed in 2015
(NCT01577654), the combination improved the PFS to 7.1 months and the overall survival to 10.9 months,
reducing the risk of disease worsening or death by 25% (PFS HR 0.75, p = 0.0696, one-sided test).
Based on these initial successes, folate-vinca alkaloid conjugates with second-generation spacers
were developed (EC0489, EC0492). These compounds have further reduced toxicities compared to
first-generation compounds (70% less than EC145) and better elimination, as demonstrated in murine
preclinical studies [131]. A phase I study (NCT00852189) of EC0489 for the treatment of refractory and
metastatic tumors in patients who have exhausted the standard treatment options has been completed,
demonstrating that patients can receive doses of EC0489 equivalent to twice the amount of EC145.

The folic acid biconjugate SMDC EC0225 (Novartis) consists of two drugs—desacetylvinblastine
monohydrazide (DAVLBH), a derivative of vinblastine, and mitomycin C (a potent alkylating
agent)—tethered to a single folate unit. This conjugate demonstrated high potency and specificity against
folate receptor-positive nasopharyngeal, NSCLC, and breast tumors [134]. EC0225 is currently undergoing
phase I clinical trial assessment (NCT00441870) for patients with refractory or metastatic tumors.

Other microtubule-targeting agents are being investigated as payloads in folate-targeted SMDCs. For
example, folate-taxol conjugates are being assessed in preclinical studies. Folic acid-5-aminofluorescein-
glutamic-paclitaxel demonstrated improved water solubility, loading rate, targeting ability, and antitumor
activity, and toxicity profiles compared to paclitaxel alone in breast, lung, and kidney cancer mouse
models [135]. Tubulysins are also being assessed in preclinical studies as folic acid conjugates (EC0305) [131],
and demonstrated more potent antitumor activity than folate-vinca SMDC EC145 (see above) in two
distinct drug-resistant, folate-receptor-expressing tumor cell lines M109 and 4T1-cl2, both in vitro and
in vivo [136]. Phase 1 evaluation of conjugates of folic acid and tubulysin with second-generation spacers
(EC1456 and EC20) in advanced solid cancers (NCT01999738) has just been completed, demonstrating
good tolerability and efficacy, as suggested by durable stable disease [137]; more detailed study results
are pending.

Phosphatidylserines (PS) are phospholipid components of cell membranes that in normal cells
are tightly regulated to be asymmetrically segregated in the inner leaflet of the cell [138]. However,
PS are expressed on the surface of numerous tumor cell lines and solid tumors, as well as in tumor
vasculatures [139,140]. A study by Sanchez-Rodriguez et al. has suggested that PSs can serve as
a biomarker of SCLC, indicating their relevance to this tumor type [141]. Several studies demonstrated
that radiation results in an up to 5-fold increase in the expression of surface PSs on tumor blood
vessels, and this has been successfully exploited in preclinical studies in murine models of lung cancer
with the PS-targeting antibody bavituximab [142,143], and in clinical trials in numerous solid cancer
malignancies, including NSCLC [144–146], indicating that PS are useful for tumor targeting in the
lungs. Small molecule zinc (II) dipicolylamine (ZnDPA) was initially described as an imaging probe
selectively targeting the surfaces of anionic PS-containing cell membranes [147]. A recent preclinical
study described another promising example of an SMDC based on a ZnDPA-SN-38 conjugate that
has effective PS-targeted delivery properties and a good toxicity profile both in vitro and in vivo. This
work suggests the potential use of SMDCs agents conjugated in the same manner to treat PS-associated
malignancies [148].
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For all the SMDCs discussed above, conjugation to a targeting moiety led to higher potency,
specificity, and better safety profiles due to greater tumor versus normal tissue accumulation than the
payload administered alone. This efficacy, coupled with the easier synthesis and administration relative
to ADCs, suggests that SMDCs are a particularly promising approach for the treatment of SCLC.

4. Polymer Drug Conjugates and BiTE Antibodies for ES-SCLC

Several additional strategies for the targeted delivery of cytotoxic compounds are currently
under investigation in preclinical and clinical studies; although they have not yet been investigated
extensively in SCLC, they are briefly noted here.

Polymer-drug conjugates (PDCs) seek to optimize the targeted delivery of cytotoxic payloads to
the tumors based on an improvement in drug availability. Several compounds have been approved by
the FDA for use in solid tumors. Doxil is a 100 nm PEGylated liposome conjugated with doxorubicin
for the treatment of breast cancer, ovarian cancer, and other solid tumors [149]. Abraxane is a 130 nm
albumin-stabilized paclitaxel nanoparticle, used for the treatment of metastatic breast cancer [150,151].
Onivyde is a nanoliposome conjugated with irinotecan for pancreatic cancer management [152]. These
PDCs typically demonstrate better pharmacokinetics and reduced adverse effects compared to their
payloads alone, because of the enhanced cancer cell permeability and tumor retention achieved due to
the physical and chemical properties of the nanoparticles. Tumor-targeting is also attained through the
incorporation into the polymeric component of PDCs of elements that respond to triggers (such as tumor
pH, which is typically lower, or tumor-concentrated enzymes), or a locally applied stimulus (light or
heat) that can be externally applied to selectively mark tumors [153]. The polymer-conjugated targeting
approach has not yet been extensively investigated in the SCLC setting; however, several studies
support the likely efficacy of this method. First, nanoparticle delivery of TP53 conjugated with poly
(β-amino esters) into SCLC cells, demonstrated activity in controlling cancer cell growth both in vitro
and in vivo [154], implying efficient uptake into tumor tissues. As another example, CRLX101 is a novel
cyclodextrin-containing polymer conjugate of camptothecin that self-assembles into nanoparticles
and delivers sustained levels of active cytotoxic moiety into cancer cells while substantially reducing
systemic exposure [155]. Based on promising preclinical data, CRLX101 is currently being evaluated in
a series of phase 1/2 clinical trials, including in the SCLC setting (NCT02769962), both as a monotherapy
and in combination with the PARP inhibitor olaparib.

A relatively new strategy that is being explored and that is conceptually related to the use of
drug conjugates is the use of bispecific T cell engager (BiTE) antibody constructs, as an alternative to
ICIs [17]. For example, the BiTE AMG757 is designed to transiently connect DLL3-positive SCLC tumor
cells to CD3-positive T cells and induce T cell-mediated cell lysis and concomitant T cell proliferation.
It achieves this by incorporating two single-chain variable fragments (scFv), targeted to DLL3 and CD3,
and fused via a short, flexible glycine-serine linker [156]. In preclinical studies, AMG757 demonstrated
potent killing of SCLC cell lines in vitro and tumor growth suppression in the SHP-77 human SCLC
xenograft model in vivo [17]. This agent is currently undergoing phase 1 trial assessment in patients
with SCLC (NCT03319940) [157].

5. Conclusions

SCLC is a devastating disease, and poses many treatment challenges. Given the frequent diagnosis
of this disease at an advanced stage, and in the absence of common response to targeted agents
and ICIs, it is essential to optimize the response to classic tools of cancer control: chemotherapies
and radiotherapies. Drug conjugates try to address one of the greatest challenges: the inability of
potent cytotoxic compounds to demonstrate full antitumor activity because of systemic toxicities
emerging from the inability to concentrate the drug within the tumor tissue in high concentrations, while
minimizing systemic side effects. The strategies summarized above represent variations on site-selective
drug “trojan horse” delivery strategies, designed to effectively deliver potent chemotherapeutic agents
towards the SCLC and other tumors. At this point, it is difficult to conclude which will be the
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most effective, and whether they will be most useful in frontline settings in combination with other
approaches (such as ICIs), or whether they are more likely to function as salvage agents.

For many, but not all, of the agents discussed, biomarkers for their effective use include the protein
ligand for their targeting moiety; whether other biomarkers might also be developed has not been well
explored. Given that most of the agents include DNA-damaging or antimitotic agents, germline or
somatic mutations in genes governing response to such agents may greatly influence the response (for
instance, BRCA mutations, or other mutations affecting DNA repair or cell cycle checkpoints [158]).
Tumor vascularity is also likely to play a major role in influencing the treatment response with these
agents, and may influence patient selection. For those tumors that are diagnosed at an early stage
(LS-SCLC) and are amenable to radiation therapy, it is possible that the neoadjuvant or concurrent use
of drug conjugates to cytotoxic agents may help in maximizing antitumor response.

Finally, the combination of ADCs with ICIs is worth evaluation, given the fact that the latter
are effective and FDA-approved for a number of cancer types, and since ADCs can independently
elicit immune responses [159]. A caveat to this approach is that, at present, most SCLC patients are
exposed to first-line ICIs; hence, a clinical trial to probe the value of combining an ADC with an ICI
as a second-line treatment, in previously ICI-exposed SCLC patients, may be a useful trial design.
Overall, drug conjugates show considerable promise in controlling or eliminating SCLC tumors, and
may offer new therapeutic options for the clinical management of this disease in the future.
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