MAPPING CONNECTING CRITIAL VALUES
 OF RATIONAL FUNCTIONS
 TO THEIR CRITICAL POINTS AND POLES
 S. R. Nasyrov, Kazan (Volga Region) Federal University, Kazan, Russia

Every rational function R in the complex plane \mathbb{C} can be represented in the form

$$
\begin{equation*}
R(z)=C_{0} \int_{z_{0}}^{z} \frac{\prod_{k=1}^{M}\left(\zeta-a_{k}\right)^{m_{k}-1} d \zeta}{\prod_{j=1}^{N}\left(\zeta-b_{j}\right)^{n_{j}+1}}+C_{1} . \tag{1}
\end{equation*}
$$

Here a_{k} be its critical points of order m_{k} and b_{j} be poles of order n_{j}. Denote by $A_{k}=R\left(a_{k}\right)$ critical values of R. It is well known that R defines a Riemann surface S, i.e., branched covering of the Riemann sphere non-ramified over $\mathbb{C} \backslash\left\{A_{1}, \ldots, A_{M}\right\}$. Given S, an important problem is to determine a rational function R uniformizing S. In essence, it is equivalent to the problem of finding parameters a_{k} and b_{j} in (1). Without loss of generality we can assume that $C_{0}=1, z_{0}=a_{1}, C_{1}=A_{1}$, and

$$
\begin{equation*}
\sum_{k=1}^{M}\left(m_{k}-1\right) a_{k}-\sum_{j=1}^{N}\left(n_{j}+1\right) b_{j}=0 . \tag{2}
\end{equation*}
$$

Consider the set \mathfrak{P} in \mathbb{C}^{M+N} consisting of all $\left(a_{1}, \ldots, a_{M}, b_{1}, \ldots, b_{N}\right)$ satisfying (2) and the conditions

$$
\operatorname{res}_{z=b_{l}} \frac{\prod_{k=1}^{M}\left(\zeta-a_{k}\right)^{m_{k}-1}}{\prod_{j=1}^{N}\left(\zeta-b_{j}\right)^{n_{j}+1}}=0, \quad 1 \leq l \leq N
$$

and the mapping $f: \mathfrak{P} \rightarrow \mathbb{C}^{M}$ defined by

$$
\left(a_{1}, \ldots, a_{M}, b_{1}, \ldots, b_{N}\right) \mapsto\left(A_{1}, \ldots, A_{M}\right) .
$$

Theorem. The set \mathfrak{P} is an M-dimensional submanifold in \mathbb{C}^{M+N}. The mapping f is non-degenerate at every point of \mathfrak{P} and the differential of the locally inverse mapping is given by the formulas:
$d a_{l}=\frac{H_{l}^{\left(m_{l}-1\right)}\left(a_{l}\right)}{\left(m_{l}-1\right)!} d A_{l}+\sum_{k=1, k \neq l}^{M} \frac{G_{k l}^{\left(m_{k}-2\right)}\left(a_{k}\right)}{\left(m_{k}-2\right)!} d A_{k}, d b_{j}=\sum_{k=1}^{M} \frac{I_{k j}^{\left(m_{k}-2\right)}\left(a_{k}\right)}{\left(m_{k}-2\right)!} d A_{k}$,
where

$$
H_{l}(x)=\frac{\prod_{j=1}^{N}\left(x-b_{j}\right)^{n_{j}+1}}{\prod_{k=1, k \neq l}^{M}\left(x-a_{k}\right)^{m_{k}-1}}, \quad G_{k l}(x)=\frac{H_{k}(x)}{x-a_{l}}, \quad I_{k j}(x)=\frac{H_{k}(x)}{x-b_{j}} .
$$

The theorem allows us to find approximately rational functions uniformizing given Riemann surface over the Riemann sphere (see [1] for the case of simple critical points).

This research was supported by the Russian Foundation for Basic Research, project No 01-14-00351.

References

[1] Nasyrov S.R. Uniformization of simply connected compact Riemann surfaces by rational functions // Proc. of VIII Petrozavodsk Int. Conf. 'Complex Analysis and Appls'. Petrozavodsk, Petr. Univ., 2016. P. 54-56.

