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Abstract. Recently a large variety of robots are available on the global market for a reasonable price. Often 
it turns out that even though a robot has a high-quality hardware and architecture, an original software of the 
robot may have a number of drawbacks or lacks some important features, which are required for a particular 
application of the robot. In such cases a user may decide to implement new libraries and functionalities 
using a provided by a manufacturer application programming interfaces as in most cases code of a 
commercial robot system is not an open-source. A number of our ongoing research projects concentrate on 
applications of various robots in urban search and rescue operations, and in most of these projects utilize 
Russian crawler robot Servosila Engineer.  This paper describes the development of a new ROS-based 
control software and graphical user interface for Servosila Engineer robot. 

1 Introduction  
Today robotic applications replace a human in 
numerous scenarios that range from social-oriented 
human-robot interaction [1] to dangerous for a human 
urban search and rescue scenarios [2]. Modern mobile 
robots serve in indoor and outdoor environments and 
require skillful autonomous navigation within unknown 
GPS-denied environments [3], efficiency in dealing 
with computa-tionnal complexity of simultaneous 
localization and mapping (SLAM) [4], aptitude of 
negotiation [5] and collaboration with other robots 
within a group [6] and other functionality. Crawler-type 
UGVs are typical for urban search and rescue (USAR) 
operations, especially in situations where such mission 
deals with dangerous environments and high risk 
for human rescuers. 

In our research, we employ Russian crawler robot 
Servosila Engineer as a USAR-oriented platform [7]. 
Original Servosila Engineer robot does not contain any 
operator oriented software. Customers can use only a 
client-server system to control the robot in a simple 
teleoperation mode that implies usage of 3D vision 
goggles (or single camera view on an operator screen) 
and joystick. Our goal within this research project is to 
create a robot control software for an operator, which 
does not need a joystick and the control could be 
performed via Robot Operating System (ROS) 
framework. Since a large variety of algorithms for path 
planning, localization, and SLAM are implemented in 
ROS, in order to apply them with our robot our new 
library is allowing to receive control commands from 
ROS as well and not only from the user interface [8]. 

The rest of this paper is structured as follows. 
Section 2 describes robot Servosila Engineer and its 
original API. Section 3 presents the developed software, 
including a remote control library, a user interface 
program and a ROS node. We conclude in Section 4. 

2 Servosila Engineer robot  

2.1. Hardware and sensors  

A crawler-type mobile robot Servosila Engineer (Fig. 1) 
is designed and manufactured by Russian company 
"Servosila" for operating in difficult terrain conditions 
(e.g. pipeline and tunnel inspection or inspection 
underneath a static vehicle). The robot is equipped with 
radiation-hardened electronics and a sensors pack, which 
includes an optical zoom camera, a pair of stereo vision 
cameras, back camera and IMU. The robot is tooled with 
a headlight for operations in low illumination conditions 
and a manipulator for grasping, pushing or pulling 
potentially dangerous objects or opening doors with its 
gripper in teleoperated mode. In addition to a standard 
sensor package, we equipped the robot with an extra laser 
range finder Hokuyo UTM-30LX-EW [8]. 

2.2 Original robot software for teleoperation and 
application programming interface  

The software provided with the robot consists of a server 
and a client. The server starts immediately after booting 
the robot, receives commands from the client program 
and sends back the robot telemetry to the client. The 
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client is an Operator Control Unit (OCU), which is 
installed on the user's computer and sends commands to 
the server. To control the robot, the client requires an 
XBox joystick that should be calibrated before each use. 
The client program displays an image from a single 
camera and the current schematic image of the robot in 
the corner of the window. The operator has an 
opportunity to switch between the four cameras of the 
robot and to select a particular camera to stream the data 
into client GUI window.  

 
Fig. 1. Servosila Engineer robot (courtesy of the manufacturer). 

Table 1. Remote Control Packet. 

Field Size Type 

Frame type ID 1 byte uint8 

Axis #0 2 bytes int16 

Axis #1 2 bytes int16 

… … … 

Axis #15 2 bytes int16 

Button #0 1 byte uint8 

Button #1 1 byte uint8 

… … … 

Button #15 1 byte uint8 

Video bit rate 
telemetry 8 bytes double 

Total size 57 bytes 

Five times per second the OCU sends Remote Control 
Packets (Table 1), which contain information about 
buttons and joysticks of Xbox 360 controller. On the 
other side onсe per second the robot sends to OCU 

Telemetry Packets (Table 2) with information about 
cameras and servo drives, where each motor provides 
information about its state, position, speed, electric 
current (in amperes), commands etc. (the details about 
motor data are presented in Table 3). This protocol has an 
opportunity to send video frames with delay from a single 
camera of the robot. While using the robot in teleoperated 
mode with the original software, we noted the following 
drawbacks of the protocol:  
• Strong dependency of the protocol on game 
controller. Thus, the protocol allows performing only 
those commands (both with the original GUI or any new 
GUI of an external developer) that are available for the 
game controller. 
• The protocol allows to send only speed values to the 
servo drives and control by position is implemented on 
OCU side. 
• The protocol does not allow checking the battery 
charging level. For this reason, an operator has to 
constantly check battery charging level by connecting 
an additional display to the embedded computer of 
the robot. 
• The protocol prevents a simultaneous rotation of the 
waist joint and chassis. Thus it is impossible to rotate the 
waist joint while robot is in motion and the robot has to 
stop first.  
• The protocol does not allow checking the headlight 
state. Thus an operator has to check visually (e.g., 
through one of the robot front cameras) whether the 
headlight is on or off. 
• The protocol does not allow gripper joint rotation. 

Due to these restrictions the protocol, our library 
could only emulate an interaction with the game 
controller. In order to implement all required for a 
comfortable teleoperation features, the protocol should be 
reviewed and the server side should be re-implemented, 
which is a part of our future work. 

Table 2. Telemetry Packet. 

Field Size Type 

Frame type ID 1 byte uint8 

Tick number 8 bytes uint64 

Number of 
motors 1 byte uint8 

Motor data #0 24 bytes struct 

Motor data #1 24 bytes struct 

… … … 

Motor data #9 24 bytes struct 

Not used 25 bytes - 

Total size 275 bytes 
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Table 3. Motor data. 

Field Size Type 

Device ID 1 byte uint8 

Device state 1 byte uint8 

Operation 
mode 1 byte uint8 

Position 4 bytes uint32 

Speed 2 bytes int16 

Electric current 
(in amperes) 2 bytes int16 

Status bits 2 bytes int16 

Position 
command 4 bytes uint32 

Speed 
command 2 bytes int16 

Electric current 
command (in 

amperes) 
2 bytes int16 

3 Software development  
The original GUI provides basic functionality and an 
operator could control robot in real time only using Xbox 
360 game controller. For this reason, we decided to 
develop a new GUI and remote control library with an 
extended functionality, which should provide robot 
control from the ROS framework and assure a more 
comfortable teleoperation process.  

Our new software consists of three parts: a remote 
control library, a graphical user interface (GUI), and a 
ROS node program. The structure of robot control 
environment with description of remote control library, 
GUI for an operator and a ROS node are illustrated with 
in Figure 2. 

 
Fig. 2. The schemе of our software. 

3.1 Remote control library  

Remote control library is a mediator between GUI and ROS 
node on one side and the robot (through its API) on the 
other. It is used for sending commands to the robot and 
receiving information from the cameras and the servo drives. 
The library has a set of API functions, which are used for 

controlling the robot via Wi-Fi (or radio communication). 
The commands are encapsulated by the developed by 
Servosila company remote control protocol (Table 1). 

The remote control library is implemented as a shared 
library (*.so file), which gives an opportunity to use the 
library with other applications. For example, pathfinding 
algorithms could be implemented for Servosila Engineer 
robot using API of the remote control library. The library 
consists of the following blocks (Fig. 3):  
• Structure RobotConfiguration contains information 
about the configuration of the robot, including a set of 
maximal velocities of the joints; 
• Class Robot is a wrap of the class Controller, which 
sends joint velocities from RobotConfiguration to 
Controller methods; 
• Class RobotController starts a thread for UDPClient 
and controls the robot by updating the required values in 
remote control packet; 
• Class RobotPositionController extends 
RobotController, so it can control particular joints by 
position control;  
• Struct RobotSI converts commands to SI System 
(International System of Units) in order to handle 
velocity values in m/s and rad/s; 
• Struct RobotPackets contains implementation of the 
packets from Servosila’s API protocol; 

• Class UDPClient provides data sending service from 
the client to the server (on the robot);  

 
Fig. 3. The remote control library scheme. 

The library is built with qmake and g++ using Qt 
framework [9]. The library works in its own thread and 
connects to GUI and our ROS node (that is currently in 
development) using Qt signals and slots mechanism. 
While this solution allowed a quick development of the 
robot control environment, is has a number of drawbacks. 
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First of all, every application, which plans to use the 
library should include Qt libraries to support signals and 
slots mechanism. Therefore, the application should 
include Qt libraries in its binary (which dramatically 
increases size of binary) or dynamically link Qt libraries 
(which sets constraints on OCU). For this reason, as a 
part of our future work we plan to rewrite library from 
scratch without Qt using pure C++, without any libraries, 
frameworks and other significant dependencies. 

UDP client in library encapsulates static object with 
the structure of Remote Control Packet and Qt 
implementation of UDP socket. UDP client runs in its 
own thread and sends the packet five times a second. 
Each packet could be constructed via operations with 
GUI or commands from ROS node. Telemetry packets 
bring useful information to OCU. A packet contains 
information about each motor, including motor state, 
motor shaft position and speed, electric current, speed 
command etc. (Table 2). Motor shaft position information 
is used for position control, but the chassis motor drives 
do not have position telemetry information. This issue 
may be resulted by absence of encoders in these motors 
or by the original API. This way, the only available 
approach for travelled distance calculation with robot 
odometry turns out to be multiplying travel velocity in 
m/s by travel time is seconds, which is significantly less 
precise with regard to encoders usage.   

The protocol stores values of each servo speed as 
integers in the range [-32768, 32767], which correlates 
the velocities with positions of control sticks of Xbox 360 
game controller. The remote control library should be 
able to accept velocity values in m/s, which is necessary 
both for a user convenience and for ROS node program. 
In order to identify mapping between abstract API 
commands and real-world motion with reverse 
engineering approach, we performed a set of experiments 
for linear and rotational motions of the robot. 

The main idea of the experiments is to convert API 
numbers to real-world measure units, which requires to 
explore tracks rotation velocity depending on API 
commands sent to robot. The correlation between these 
values should be expressed as a ratio between API 
commands numbers and real-world velocity in meters per 
second. The experiments were performed as follows:  
1. Install the robot in way that nothing influences tracks 
rotation velocity (including friction, Fig.4); 
2. Measure length of the tracks l; 
3. Send constant velocity commands to the robot; 
4. Pick a relatively large number N of full rotations of 
the tracks; 
5. Measure time duration t which is required for full 
rotation of the tracks N times; 
6. Compute real-world velocity in meters per second 
with the equation: 

vr = l*N/t (1) 

In order to neglect any external influence on tracks 
rotation velocity, the robot was installed on two blocks in 
the way that its tracks do not touch the blocks or any 
other surface during their movement (Fig. 4). The robot 
base and a track were marked with external markers for 

rotations count. Every time the two markers match, the 
number of rotations is incremented by one. The track 
length l is 1.15 m. We set number N to 40, which is large 
enough to eliminate random friction influence between 
tracks and driving wheels. 

 

Fig. 4. The robot fixed position during the experiments. 

Based on the results of the experiments, we concluded 
that the integer values, which are sent to the robot, are 
linearly proportional to the velocity of linear movement 
and rotation. We calculated these two coefficients by 
converting integer values to the SI system using least 
squares method. The linear motion value was lv = 
71553.837 and the rotation motion value was lr = 
25171.216. In order to obtain the velocity in m/s and 
rad/s we divided the integer values by these constants, 
and the resulting values were incorporated into 
RobotSI class. 

3.2 Graphical User Interface program  

Graphical User Interface (GUI) is an application, which 
can be used to control the robot in real time. An operator 
could set speed (for all joints) and position (for several 
joints) values. These values are sent to the Remote 
control library using QT signals and slots, which in turn 
sends these values to the robot. 

The GUI consists of two active windows. The 
velocity control window (Fig. 5) contains elements of the 
robot control, a connect button, a button for switching to 
the maximal velocity window and a checkbox to 
enable\disable the robot torch. In addition, there are 
switches for flippers and gripper control. In the maximal 
velocity window (Fig. 6) an operator could set a maximal 
velocity for each joint using an appropriate slider or a 
textbox, which will set the upper limit for a 
corresponding velocity slider and hotkeys. 
GUI offers a variety of ways to control the robot: 
•  Using keyboard hotkeys; 
•  Using sliders or textboxes for velocity control of each 
joint; 
•  Using textboxes for position values (only for several 
joints); 
An operator could use keyboard to control the robot in 
real time. 
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Fig. 5. Velocity control window. 

 
Fig. 6. Maximal velocity window. 

3.2.1 Keyboard controls 

In this mode an operator should hold the key to move the 
particular joint (Table 4). When he/she releases the key, 
the servo immediately stops. This mode allows to hold 
multiple keys simultaneously. The implementation uses 
Qt keypress events. 

3.2.2 Sliders 

An operator could use sliders for controlling all joints of 
the robot. Once he/she sets the slider, the joint starts 
moving. A user can set velocities in textboxes and joints 
will move after he/she presses the button «Accept».  At 
any time, the operator could press an emergency stop 
button «StopAll» (or press hotkey «Space»), which 
immediately stops all servo drives.  
 
 

Table 4. Keyboard layout. 

Key Movement 

W Drive forward 

S Reverse 

A Rotate left 

D Rotate right 

Q Waist rotate left 

E Waist rotate right 

Y Shoulder up 

H Shoulder down 

F Flippers up 

R Flippers down 

G Grippers close 

T Grippers open 

U Elbow up 

J Elbow down 

Space Emergency stop 

3.2.3. Position Values 

The joints, which support position control, include the 
elbow, the neck, the shoulder, the waist (these joints have 
the corresponding labels in GUI). An operator can use 
position values for these joints by setting values in the 
textboxes of the joint position control window (Fig. 7). 
The joints will automatically move into a required 
position after the operator presses button «Accept». The 
contents of telemetry packets that arrive from the robot 
are displayed in the same window. Unfortunately, due to 
drawbacks of the existing remote control protocol of the 
robot, it is impossible to send position values directly to 
the robot.  

 
Fig. 7. Joint position control window. 

We implemented position values handler on OCU 
side. The handler finds motor shaft`s position values in 
telemetry packets for each required motor and compares 
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these values with required position values for each motor 
respectively. It calculates the difference between the 
values and sets motor velocities, positive or negative, 
depending on current and required motor shaft positions. 
Currently its implementation is rather simple: motor 
speed doesn`t depend on the difference between required 
and current values.  

3.3 ROS node program  

Since Servosila Engineer robot uses some of the existing 
in ROS algorithms for autonomous localization, mapping 
and path mapping, a ROS node is required. In ROS 
framework nodes generate motion commands in 
\geometry_msgs\Twist format, which contains linear (for 
all axes) and angular velocities (for all axes) being 
measured in meters and radians respectively. Therefore, a 
velocity conversion function, which is a part of our 
remote control library, is required. 

Our remote control library is included into ROS node, 
which sends ROS commands from ROS node 
\move_base to the robot via Wi-Fi connection. In order to 
do that, library was statically compiled and its headers 
were included into ROS node source file. 

ROS node is a console program. The node workflow, 
which runs in a loop, works as follows: 
1) Wait for messages on the specified topic 
(e.g.\cmd_vel\).  
2) When a new message arrives, it is split in two parts: 
linear and angular. If the linear (angular) part exceeds or 
equal to 0.2 m/s (0.2 rad/s) then, it is sent to the robot. If 
the linear (angular) part is positive, but does not exceed 
0.2 m/s (0.2 rad/s) then, the value of 0.2 m/s (0.2 rad/s) is 
sent to the robot. The values of 0.2 m/s (0.2 rad/s) were 
selected experimentally as these are the lowest velocities 
that are required by robot servos to start moving.  

Before the node shuts down, it sends zeros to angular 
and linear velocities in order to stop the robot and prevent 
any uncontrolled motion. 

4 Conclusions and future work 
Often robot original software lacks some important 
features, which are required by a user for a particular 
application. These forces a user to implement new 
functionalities using a provided by a manufacturer API.  

A number of our ongoing research projects utilize 
Russian crawler robot Servosila Engineer, and this paper 
describes the development of a new ROS-based control 
software and graphical user interface for Servosila 
Engineer robot. With our new software and GUI a user 
can operate the robot without using a joystick, which was 
the only control possibility with the original GUI. 
Moreover, because our software is based on robot 
operating system ROS, it broadens practical applications 
functionality due to capability of incorporating different 
existing and open-source ROS-based standard useful 
algorithms and functions into the robot control system.    

Currently, we further improve the GUI by allowing to 
simultaneously displaying data from all four robot 
cameras in real time instead of the original single camera 

data display that allows only a sequential switching 
between the cameras. As a part of our future work, we 
plan to add new features into the GUI, including position 
control for all joints and visual displaying of a current 
robot configuration with a 3D schematic model. Next, we 
will add several automatic functions including a pilot 
advisory system that considers static and dynamic 
balance of the robot while selecting a suitable path [10].  
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