MATEC Web of Conferences 161, 03016 (2018) https://doi.org/10.1051/matecconf/201816103016
13" International Scientific-Technical Conference on Electromechanics and Robotics “Zavalishin’s Readings” - 2018

Remote control library and GUI development for Russian crawler

robot Servosila Engineer

Ilya Mavrin', Roman Lavrenov"", Mikhail Svinin®, Sergey Sorokin® and Evgeni Magid'

'Intelligent Robotics Department, Higher School of Information Technology and Information Systems, Kazan Federal University, Russia
?Robot Dynamics and Control Laboratory, College of Information Science and Engineering, Ritsumeikan University, Japan
*Mechanical Engineering Department, Chuvash State University, Russia

Abstract. Recently a large variety of robots are available on the global market for a reasonable price. Often
it turns out that even though a robot has a high-quality hardware and architecture, an original software of the
robot may have a number of drawbacks or lacks some important features, which are required for a particular

application of the robot. In such cases a user may decide to implement new libraries and functionalities
using a provided by a manufacturer application programming interfaces as in most cases code of a
commercial robot system is not an open-source. A number of our ongoing research projects concentrate on
applications of various robots in urban search and rescue operations, and in most of these projects utilize
Russian crawler robot Servosila Engineer. This paper describes the development of a new ROS-based
control software and graphical user interface for Servosila Engineer robot.

1 Introduction

Today robotic applications replace a human in
numerous scenarios that range from social-oriented
human-robot interaction [1] to dangerous for a human
urban search and rescue scenarios [2]. Modern mobile
robots serve in indoor and outdoor environments and
require skillful autonomous navigation within unknown
GPS-denied environments [3], efficiency in dealing
with computa-tionnal complexity of simultaneous
localization and mapping (SLAM) [4], aptitude of
negotiation [5] and collaboration with other robots
within a group [6] and other functionality. Crawler-type
UGVs are typical for urban search and rescue (USAR)
operations, especially in situations where such mission
deals with dangerous environments and high risk
for human rescuers.

In our research, we employ Russian crawler robot
Servosila Engineer as a USAR-oriented platform [7].
Original Servosila Engineer robot does not contain any
operator oriented software. Customers can use only a
client-server system to control the robot in a simple
teleoperation mode that implies usage of 3D vision
goggles (or single camera view on an operator screen)
and joystick. Our goal within this research project is to
create a robot control software for an operator, which
does not need a joystick and the control could be
performed via Robot Operating System (ROS)
framework. Since a large variety of algorithms for path
planning, localization, and SLAM are implemented in
ROS, in order to apply them with our robot our new
library is allowing to receive control commands from
ROS as well and not only from the user interface [8].

3
Corresponding author: Roman Lavrenov, lavrenov(@it.kfu.ru

The rest of this paper is structured as follows.
Section 2 describes robot Servosila Engineer and its
original API. Section 3 presents the developed software,
including a remote control library, a user interface
program and a ROS node. We conclude in Section 4.

2 Servosila Engineer robot

2.1. Hardware and sensors

A crawler-type mobile robot Servosila Engineer (Fig. 1)
is designed and manufactured by Russian company
"Servosila" for operating in difficult terrain conditions
(e.g. pipeline and tunnel inspection or inspection
underneath a static vehicle). The robot is equipped with
radiation-hardened electronics and a sensors pack, which
includes an optical zoom camera, a pair of stereo vision
cameras, back camera and IMU. The robot is tooled with
a headlight for operations in low illumination conditions
and a manipulator for grasping, pushing or pulling
potentially dangerous objects or opening doors with its
gripper in teleoperated mode. In addition to a standard
sensor package, we equipped the robot with an extra laser
range finder Hokuyo UTM-30LX-EW [8].

2.2 Original robot software for teleoperation and
application programming interface

The software provided with the robot consists of a server
and a client. The server starts immediately after booting
the robot, receives commands from the client program
and sends back the robot telemetry to the client. The

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution
License 4.0 (http://creativecommons.org/licenses/by/4.0/).

MATEC Web of Conferences 161, 03016 (2018)

https://doi.org/10.1051/matecconf/201816103016

13" International Scientific-Technical Conference on Electromechanics and Robotics “Zavalishin’s Readings” - 2018

client is an Operator Control Unit (OCU), which is
installed on the user's computer and sends commands to
the server. To control the robot, the client requires an
XBox joystick that should be calibrated before each use.
The client program displays an image from a single
camera and the current schematic image of the robot in
the corner of the window. The operator has an
opportunity to switch between the four cameras of the
robot and to select a particular camera to stream the data
into client GUI window.

Gripper (Fingers)

= Gripper (Rotation)

~~_ Neck Joint

Elbow Joint

Shoulder Joint

Waist Joint

Chassis Dribe (Left) _— "\ Chassis Drive (Right)

Flippers Joint
-\

Fig. 1. Servosila Engineer robot (courtesy of the manufacturer).

Table 1. Remote Control Packet.

Field Size Type
Frame type ID 1 byte uint8
Axis #0 2 bytes intl6
Axis #1 2 bytes intl6
Axis #15 2 bytes intl6
Button #0 1 byte uint8
Button #1 1 byte uint8
Button #15 1 byte uint8
Video bit rate 8 bytes double
telemetry
Total size 57 bytes

Five times per second the OCU sends Remote Control
Packets (Table 1), which contain information about
buttons and joysticks of Xbox 360 controller. On the
other side once per second the robot sends to OCU

Telemetry Packets (Table 2) with information about
cameras and servo drives, where each motor provides
information about its state, position, speed, electric
current (in amperes), commands etc. (the details about
motor data are presented in Table 3). This protocol has an
opportunity to send video frames with delay from a single
camera of the robot. While using the robot in teleoperated
mode with the original software, we noted the following
drawbacks of the protocol:
e Strong dependency of the protocol on game
controller. Thus, the protocol allows performing only
those commands (both with the original GUI or any new
GUI of an external developer) that are available for the
game controller.
e The protocol allows to send only speed values to the
servo drives and control by position is implemented on
OCU side.
e The protocol does not allow checking the battery
charging level. For this reason, an operator has to
constantly check battery charging level by connecting
an additional display to the embedded computer of
the robot.
e The protocol prevents a simultaneous rotation of the
waist joint and chassis. Thus it is impossible to rotate the
waist joint while robot is in motion and the robot has to
stop first.
e The protocol does not allow checking the headlight
state. Thus an operator has to check visually (e.g.,
through one of the robot front cameras) whether the
headlight is on or off.
e The protocol does not allow gripper joint rotation.
Due to these restrictions the protocol, our library
could only emulate an interaction with the game
controller. In order to implement all required for a
comfortable teleoperation features, the protocol should be
reviewed and the server side should be re-implemented,
which is a part of our future work.

Table 2. Telemetry Packet.

Field Size Type
Frame type ID 1 byte uint8
Tick number 8 bytes uint64
Number of 1 byte uint8
motors
Motor data #0 24 bytes struct
Motor data #1 24 bytes struct
Motor data #9 24 bytes struct
Not used 25 bytes -
Total size 275 bytes

MATEC Web of Conferences 161, 03016 (2018)
13" International Scientific-Technical Conference on Electromechanics and Robotics “Zavalishin’s Readings” - 2018

https://doi.org/10.1051/matecconf/201816103016

Table 3. Motor data.

Field Size Type
Device ID 1 byte uint8
Device state 1 byte uint8
O};ﬁgﬁon 1 byte uint8
Position 4 bytes uint32
Speed 2 bytes intl6

Electric current

(in amperes) 2 bytes intl6
Status bits 2 bytes intl6
Position 4 bytes uint32
command
Speed 2 bytes int16
command
Electric current
command (in 2 bytes intl6

amperes)

3 Software development

The original GUI provides basic functionality and an
operator could control robot in real time only using Xbox
360 game controller. For this reason, we decided to
develop a new GUI and remote control library with an
extended functionality, which should provide robot
control from the ROS framework and assure a more
comfortable teleoperation process.

Our new software consists of three parts: a remote
control library, a graphical user interface (GUI), and a
ROS node program. The structure of robot control
environment with description of remote control library,
GUI for an operator and a ROS node are illustrated with
in Figure 2.

1 Software H

1

i 1

APl of the , Graphical
—— Library User H

robot H
Interface |,

1

: :

' ROS node |}

H 1

- :

Fig. 2. The scheme of our software.

3.1 Remote control library

Remote control library is a mediator between GUI and ROS
node on one side and the robot (through its API) on the
other. It is used for sending commands to the robot and
receiving information from the cameras and the servo drives.
The library has a set of API functions, which are used for

controlling the robot via Wi-Fi (or radio communication).
The commands are encapsulated by the developed by
Servosila company remote control protocol (Table 1).

The remote control library is implemented as a shared
library (*.so file), which gives an opportunity to use the
library with other applications. For example, pathfinding
algorithms could be implemented for Servosila Engineer
robot using API of the remote control library. The library
consists of the following blocks (Fig. 3):

e Structure RobotConfiguration contains information
about the configuration of the robot, including a set of
maximal velocities of the joints;

e C(Class Robot is a wrap of the class Controller, which
sends joint velocities from RobotConfiguration to
Controller methods;

e Class RobotController starts a thread for UDPClient
and controls the robot by updating the required values in
remote control packet;

e C(lass RobotPositionController extends
RobotController, so it can control particular joints by
position control;

e Struct RobotSI converts commands to SI System
(International System of Units) in order to handle
velocity values in m/s and rad/s;

e Struct RobotPackets contains implementation of the
packets from Servosila’s API protocol;

e Class UDPClient provides data sending service from
the client to the server (on the robot);

Remote Control Library QT
Signals &
Slots
Robots|
Robot

RobotConfiguration

RobotPosition
Controller

RobotPackets —

V=

g

RobotController |[——) UDPClient

I NN NN N NN N RN R N RN R NN RN N SN BN RN BN N BN BN BN SN BN N NN BN BN BN BN RN BN BN A
L L L L L L L L L L L Ty

Wi-Fi

Fig. 3. The remote control library scheme.

The library is built with qmake and g++ using Qt
framework [9]. The library works in its own thread and
connects to GUI and our ROS node (that is currently in
development) using Qt signals and slots mechanism.
While this solution allowed a quick development of the
robot control environment, is has a number of drawbacks.

MATEC Web of Conferences 161, 03016 (2018)
13" International Scientific-Technical Conference on Electromechanics and Robotics “Zavalishin’s Readings” - 2018

https://doi.org/10.1051/matecconf/201816103016

First of all, every application, which plans to use the
library should include Qt libraries to support signals and
slots mechanism. Therefore, the application should
include Qt libraries in its binary (which dramatically
increases size of binary) or dynamically link Qt libraries
(which sets constraints on OCU). For this reason, as a
part of our future work we plan to rewrite library from
scratch without Qt using pure C++, without any libraries,
frameworks and other significant dependencies.

UDP client in library encapsulates static object with
the structure of Remote Control Packet and Qt
implementation of UDP socket. UDP client runs in its
own thread and sends the packet five times a second.
Each packet could be constructed via operations with
GUI or commands from ROS node. Telemetry packets
bring useful information to OCU. A packet contains
information about each motor, including motor state,
motor shaft position and speed, electric current, speed
command etc. (Table 2). Motor shaft position information
is used for position control, but the chassis motor drives
do not have position telemetry information. This issue
may be resulted by absence of encoders in these motors
or by the original API. This way, the only available
approach for travelled distance calculation with robot
odometry turns out to be multiplying travel velocity in
m/s by travel time is seconds, which is significantly less
precise with regard to encoders usage.

The protocol stores values of each servo speed as
integers in the range [-32768, 32767], which correlates
the velocities with positions of control sticks of Xbox 360
game controller. The remote control library should be
able to accept velocity values in m/s, which is necessary
both for a user convenience and for ROS node program.
In order to identify mapping between abstract API
commands and real-world motion with reverse
engineering approach, we performed a set of experiments
for linear and rotational motions of the robot.

The main idea of the experiments is to convert API
numbers to real-world measure units, which requires to
explore tracks rotation velocity depending on API
commands sent to robot. The correlation between these
values should be expressed as a ratio between API
commands numbers and real-world velocity in meters per
second. The experiments were performed as follows:

1. Install the robot in way that nothing influences tracks
rotation velocity (including friction, Fig.4);

2. Measure length of the tracks /;

3. Send constant velocity commands to the robot;

4. Pick a relatively large number N of full rotations of
the tracks;

5. Measure time duration ¢ which is required for full
rotation of the tracks N times;

6. Compute real-world velocity in meters per second
with the equation:

vr = [*N/t)

In order to neglect any external influence on tracks
rotation velocity, the robot was installed on two blocks in
the way that its tracks do not touch the blocks or any
other surface during their movement (Fig. 4). The robot
base and a track were marked with external markers for

rotations count. Every time the two markers match, the
number of rotations is incremented by one. The track
length / is 1.15 m. We set number N to 40, which is large
enough to eliminate random friction influence between
tracks and driving wheels.

Fig. 4. The robot fixed position during the experiments.

Based on the results of the experiments, we concluded
that the integer values, which are sent to the robot, are
linearly proportional to the velocity of linear movement
and rotation. We calculated these two coefficients by
converting integer values to the SI system using least
squares method. The linear motion value was v =
71553.837 and the rotation motion value was Ir =
25171.216. In order to obtain the velocity in m/s and
rad/s we divided the integer values by these constants,
and the resulting values were incorporated into
RobotSI class.

3.2 Graphical User Interface program

Graphical User Interface (GUI) is an application, which
can be used to control the robot in real time. An operator
could set speed (for all joints) and position (for several
joints) values. These values are sent to the Remote
control library using QT signals and slots, which in turn
sends these values to the robot.

The GUI consists of two active windows. The
velocity control window (Fig. 5) contains elements of the
robot control, a connect button, a button for switching to
the maximal velocity window and a checkbox to
enable\disable the robot torch. In addition, there are
switches for flippers and gripper control. In the maximal
velocity window (Fig. 6) an operator could set a maximal
velocity for each joint using an appropriate slider or a
textbox, which will set the upper limit for a
corresponding velocity slider and hotkeys.

GUI offers a variety of ways to control the robot:

e Using keyboard hotkeys;

e Using sliders or textboxes for velocity control of each
joint;

e Using textboxes for position values (only for several
joints);

An operator could use keyboard to control the robot in
real time.

MATEC Web of Conferences 161, 03016 (2018) https://doi.org/10.1051/matecconf/201816103016
13" International Scientific-Technical Conference on Electromechanics and Robotics “Zavalishin’s Readings” - 2018

Table 4. Keyboard layout

Speed | Position
tools Key Movement
Fippers =op w Drive forward
Disconnect ('--"\;.
down " up S Reverse
- A Rotate left
. ripper
Settings
= D Rotate right
close ;\ , open Q Waist rotate left
Torch
E Waist rotate right
Y Shoulder up
Joints
Neck 0 Forward 0 H Shoulder down
—— Rotation |0 F Flippers up
Elbow 0 R
R Flippers down
shoulder |0 e G Grippers close
wait o T Grippers open
— U Elbow up
J Elbow down
. . Space Emergency sto:
Fig. 5. Velocity control window. p geney stop
= = "
3.2.3. Position Values
Plaform Forward Elbow
Platform Rotate Waist The joints, which support position control, include the
= elbow, the neck, the shoulder, the waist (these joints have
Neck Shoulder

the corresponding labels in GUI). An operator can use
position values for these joints by setting values in the
textboxes of the joint position control window (Fig. 7).
The joints will automatically move into a required
position after the operator presses button «Accept». The
contents of telemetry packets that arrive from the robot
@cancel || Fok | | are displayed in the same window. Unfortunately, due to
drawbacks of the existing remote control protocol of the
robot, it is impossible to send position values directly to

Fig. 6. Maximal velocity window.

the robot.
[0 vanwinion |
3.2.1 Keyboard controls —
In this mode an operator should hold the key to move the i
particular joint (Table 4). When he/she releases the key, —
the servo immediately stops. This mode allows to hold rippers -
multiple keys simultaneously. The implementation uses P ownek s s i sms
Qt keypress events. Gripper(rotation) |3 ' o s - 0 s
3. 2.2 Sll‘ders :::::d”ve : : i :9994 -0.0376406 : . l:
An operator could use sliders for controlling all joints of T i et ”
the robot. Once he/she sets the slider, the joint starts
moving. A user can set velocities in textboxes and joints
will move after he/she presses the button «Accept». At
any time, the operator could press an emergency stop Fig. 7. Joint position control window.
button «StopAll» (or press hotkey «Space»), which . -
immediately stops all servo drives. We implemented position values handler on OCU

side. The handler finds motor shaft's position values in
telemetry packets for each required motor and compares

MATEC Web of Conferences 161, 03016 (2018)
13" International Scientific-Technical Conference on Electromechanics and Robotics “Zavalishin’s Readings” - 2018

https://doi.org/10.1051/matecconf/201816103016

these values with required position values for each motor
respectively. It calculates the difference between the
values and sets motor velocities, positive or negative,
depending on current and required motor shaft positions.
Currently its implementation is rather simple: motor
speed doesn't depend on the difference between required
and current values.

3.3 ROS node program

Since Servosila Engineer robot uses some of the existing
in ROS algorithms for autonomous localization, mapping
and path mapping, a ROS node is required. In ROS
framework nodes generate motion commands in
\geometry msgs\Twist format, which contains linear (for
all axes) and angular velocities (for all axes) being
measured in meters and radians respectively. Therefore, a
velocity conversion function, which is a part of our
remote control library, is required.

Our remote control library is included into ROS node,
which sends ROS commands from ROS node
\move_base to the robot via Wi-Fi connection. In order to
do that, library was statically compiled and its headers
were included into ROS node source file.

ROS node is a console program. The node workflow,

which runs in a loop, works as follows:
1) Wait for messages on the
(e.g\emd vel\).
2) When a new message arrives, it is split in two parts:
linear and angular. If the linear (angular) part exceeds or
equal to 0.2 m/s (0.2 rad/s) then, it is sent to the robot. If
the linear (angular) part is positive, but does not exceed
0.2 m/s (0.2 rad/s) then, the value of 0.2 m/s (0.2 rad/s) is
sent to the robot. The values of 0.2 m/s (0.2 rad/s) were
selected experimentally as these are the lowest velocities
that are required by robot servos to start moving.

Before the node shuts down, it sends zeros to angular
and linear velocities in order to stop the robot and prevent
any uncontrolled motion.

specified topic

4 Conclusions and future work

Often robot original software lacks some important
features, which are required by a user for a particular
application. These forces a user to implement new
functionalities using a provided by a manufacturer API.

A number of our ongoing research projects utilize
Russian crawler robot Servosila Engineer, and this paper
describes the development of a new ROS-based control
software and graphical user interface for Servosila
Engineer robot. With our new software and GUI a user
can operate the robot without using a joystick, which was
the only control possibility with the original GUIL
Moreover, because our software is based on robot
operating system ROS, it broadens practical applications
functionality due to capability of incorporating different
existing and open-source ROS-based standard useful
algorithms and functions into the robot control system.

Currently, we further improve the GUI by allowing to
simultaneously displaying data from all four robot
cameras in real time instead of the original single camera

data display that allows only a sequential switching
between the cameras. As a part of our future work, we
plan to add new features into the GUI, including position
control for all joints and visual displaying of a current
robot configuration with a 3D schematic model. Next, we
will add several automatic functions including a pilot
advisory system that considers static and dynamic
balance of the robot while selecting a suitable path [10].

This work was partially supported by the Russian
Foundation for Basic Research (RFBR) and Ministry of Science
Technology & Space State of Israel (joint project ID 15-57-
06010). Part of the work was performed according to the
Russian Government Program of Competitive Growth of Kazan
Federal University.

References

1. V.Y. Budkov, M.V. Prischepa, A.L. Ronzhin, A.A.
Karpov, Int. Congress Ultra Modern Telecommunications,
485-488 (2010)

2. A. Birk, S. Schwertfeger, and K. Pathak, IEEE Wireless
Communications, 16.1, 6-13 (2009)

3. K. Yakovlev, V. Khithov, M. Loginov, A. Petrov, IEEE
Int. Conf. on Intelligent Systems, Springer Int. Publishing,
49-56 (2015)

4. A. Buyval, 1. Afanasyev, E. Magid, Int. Conf. on Machine
Vision, 103411K (2016)

5. B. Li, S. Ma, T. Liu, J. Liu, IEEE Int. Symp. on Safety,
Security and Rescue Robotics, 53—57 (2008).

6. N. Michael et al. Journal of Field Robotics, 832-841
(2012)

7. M. Sokolov, R. Lavrenov, A. Gabdullin, I. Afanasyev, E.
Magid, Int. Conf. on Control, Mechatronics and
Automation, 61-65 (2016)

8. N. Alishev, R. Lavrenov, Y. Gerasimov, Int. Conf. on
Artificial Life and Robotics, 204-207 (2018)
9. Qt framework, Available at: https://www.qt.io/

10. E. Magid, T. Tsubouchi, E. Koyanagi, T. Yoshida, Int.
Conf. on Intelligent Robots and Systems, 349-356 (2010)

