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Abstract—The aim of the present paper is the clarification of the result of A. Paliathanasis,
K. Krishnakumar, K.M. Tamizhmani and P.G.L. Leach on the symmetry Lie algebra of the Black—
Scholes—Merton equation for European options.
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1. MAIN RESULT

The Black—Scholes—Merton (BSM)[1, 2, 5] model is one of the most important concepts in modern
financial theory. It is used for the valuation of stock options, taking into account the impact of time and
other risk factors.

The classical BSM model is described by a second order PDE

1
U + Easz
In recent years the number of papers is devoted to the determining the Lie algebra of symmetries of
some PDEs that generalize this model. First of all we mention the papers of Gazizov and Ibragimov [4]
and Sinkala, Leach, and O’Hara [7]. The paper of Bozhkov and Dimas [3] solves the problem of group
classification of the generalized BSM equation
1

u + 502x2um + rauy + f(u) =0,

where f(u) is an arbitrary smooth function.

Paliathanasis, Krishnakumar, Tamizhmani, and Leach [6] considered the BSM equation for Euro-
pean options with stochastic volatility for which the premium term depends only upon the return-to-risk
ratio. It has the form

Uge + TTU; — 17U = 0.

p=r
f(y)

where t, x, y are independent variables, u = u(t, z,y) is the value of the option, f(y) is an arbitrary
smooth function, and r, p, m, u, «, B are real parameters with |p| < 1.

11‘2(,9):13%“ + pBrf (y)uzy + %ﬁz’uyy + rrug + (a(m —y)— Bp

5 >uy—ru+ut:0, (1)
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SYMMETRIES OF THE BLACK—SCHOLES—MERTON EQUATION 1257

The authors calculate the Lie algebra of symmetries of this equation in the case when f(y) = const,
and claim that in the case of a non-constant function f(y) this Lie algebra is the direct sum of a
three-dimensional commutative Lie algebra and the infinite dimensional commutative Lie algebra which
corresponds to the solutions on the equation. It should be mentioned that there are some misprints in
their paper.

[n the present paper we add some corrections to this result. We show that this PDE admits additional
symmetries also in the case when

fly) = , k= const.

For this case we denote

=2 (o 20=02)

The computations were performed using the Maple packages DifferentialGeometry and JetCalcu-
lus by .M. Anderson.

Theorem. For arbitrary function f(y) the equation (1) admits the Lie symmetries

0 0 0 0
= Xo=0— Xo=u—. X, = —_

8t’ 2 l‘al” 3 uaua b b(l‘vyvt)auv
where b(x,y,t) is the solution of (1). Moreover, in the case when f = fy = const, it admits three

additional symmetries

3} 0 a0 1 d
_ —at — 2 (2 - 2 _
Xi=e 5y Xs5=f3(p +at)xam+fopﬂay+2a(t(fo 2r)+2lnz)uau,
0 3} 3}
_ 2 ot 2 at _ at _ _
Xo = 20f3pe g + 5 foc' 5 = 26 (afolm —y) + Bolr = w) ug
In the case f(y) = p—— and g # 0 the equation (1) takes the form

1 1 1
§f2(y)x2um + pBaf(y)uzy + §ﬁ2uyy + rou, + ig(m —Yuy —ru+u =0

and admits two additional symmetries

o 1 o 0 )
X5 = e’ <% (pgh +Br) 5z + 59 —m)g-+ 5+ 2—22 (6> (y —m)? + 5(2r — g)) %> :

In the case f(y) =

and g = 0 the equation (1) takes the form

y—m
L. 2 L o
§f (y)x“uge + pBrf(y)uzy + 5,8 Uyy + 2ty —ru+u =0
and admits two additional symmetries
1 0 y—mo 0 0
Xy=— 2 — T+t —
4 2ﬁ(pk+ ﬁrt)xax—l— 5 8y+t§t+rtu8u,
_ xt 8 8 2 8 u 2 2 2 8
X5 = 5 (pk + Brt) 2 +t(y—m) 9 +to o ((y —m)* + B*(2rt* — 1)) o
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2. INVARIANT SOLUTIONS

In this section, we apply the Lie symmetries in order to reduce the equation (1) and to construct
the invariant solutions. To do this, we need to use 2-dimensional Lie subalgebras. As it is mentioned
in [6], solutions in which u does not depend upon some of the independent variables, are not interesting.
Therefore, the reductions are performed with modified symmetry vectors like X7 + k1 X3, Xo + k2 X3 and
some other.

2.1. The Case f = fo = const

In this subsection we repeat the results of A. Paliathanasis et al. with minor corrections. The Lie
Brackets of the Lie algebra are given in the table:

(X, X;] X1 Xo X3 Xy X5 Xe
Xl 0 0 0 —OzX4 ngéXQ + o <%fg — 7’> X3 OéXﬁ
X2 0 0 0 0 OéXg 0
X3 0 0 0 0 0 0
X4 OzX4 O O O O 2af0X3
X5 —fgan -« <%f§ — r> X3 —aX3 0 0 0 0
X6 —aX6 0 0 —20éf0X3 0 0

Throughout this subsection we denote Y7 = X1 + k1 X3, Yo = Xo + ko X3.

1) Algebra {Y1,Y5}. The invariant solution has the form w(z,y,t) = e¥'*az*2w(y), where w(y)
satisfies the equation

B2 fow” + 2(pBfeks + a(m —y) fo + Bp(r — p))w' + (ke — 1) (fZke + 2r) + 2k1)w = 0.
[ts solution is expressed via Kummer functions M, U, so finally we get
u(z,y,t) = ekltku(ClM(’y, %, z) + CyU (v, %, z)),
where

(kepBf§ + Bp(r — p) — afoly —m))? k(1 — ko) f§ +2r(1 — ko) — 2kt

aB?fe 7 4oy

2) Algebra {Y, X4 + kX3}. The invariant solution has the form u(z,y,t) = exp(ke®'y)z*2w(t),
where w(t) satisfies the equation

2 fow + <,B2k:2 foe*t + 2kBp <k2 e+ O‘Z;f 0 (- r)> e 4 (ky — 1) fo(kafa + 27’)) w=0.
Its solution is
2)2 k
w(t) = Cexp <—ﬁ4—a620‘t — aifgeo‘t <f§k:2 + Oégopm —u+ r> — %t(k‘g — 1)(fgk:2 + 2r)> )

3) Algebra {Y5, X¢ + kX3}. The invariant solution has the form
—at _ 2
u(m,y,t) = exp <%y2 - <2af0m—|—k:e + 2[)(7“ M+f0k2)> y> ku,w(t)’

B2 fo B fo
where w(t) satisfies the equation
26% fgw' + (f§ B (20 + (ko = 1)(fgha +21))
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+ 2k (k2B 5 p + afom + Bp(r — p))e " + k2e 7 )w = 0.

Its solution is
1

0B f§
— 200 [ (20 + (ks = 1)(f3ks +2r)) ).

w(t) = Cexp( (ke 20" 4 dk(kaBf3p + afom + Bp(r — p))e

4) Algebra { X5, X4 + kX3}. The invariant solution has the form

In?
Ly, t) = k O‘t+a7> Y (t),
u(z,y,t) exp(ye 227+ ol x¥Ww(t)
where

_ 2kBpfoe™ + (2r — [t
2f5(p* + at) '

The function w(t) is the solution of the linear first order ODE
8127 + at)u! + (462K [3B2 (028 + 2 — )
+ 4e (k foo® (Bf3p + 2foam — 2pBu)t> + kap® fo(Bf3p + dofom + 2Bp(r — 2u))t
+ (2kfamp® —2kBp% fo(p* (e — ) +7) — 1))
— (@ 2r + )28 + 2a(fgp” + 2f5(2rp® — @) + 4r?p? )t + 4 f5p* (2rp” — a)))w = 0.

P(t) =

The final form of w is too cumbersome to give it here.
5) Algebra { X5, Xg}. The invariant solution has the form
u(@,y,t) = 2 exp(p(e, y, )w(t),
where we denoted

(t(r—3/3)8 = 2pfo(m —y))a + 28p* (. — )
fe(p? —at)p ’

P(t) =

o(z,y,t) = af®In’*z — 2y fo((p* + at)(2m — y)afo + aBp(f§ — 20t + 20°B(r — ).

The function w(t) has the form

o (=)

D) Y

w(t) = T

where

&(t) = é(aﬁQ(at — ) (2 + £3)* = 8f5) + p* (Bo(f§ — 4p + 2r) + 4afom)2)-

2.2 The Case f = L,Q#O
y—m

For convenience we will use g = 2 <a + W) instead of a. The Lie Brackets of the Lie

algebra are given in the table:
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(X, X]] X, X, X; Xy X5
X1 0 0 0 —9Xy 9X5
Xy 0 0 0 0 0
X3 0 0 0 0 0
X4 9X4 0 0 0 X
Xs —9X5 0 0 -X 0

where we denoted
X =2¢9X; + (927;)]{: + 2T)X2 - %g(g —4r)Xs.

1) Algebra {X; + aX3, X5 +bX3}. The invariant solution has the form u(z, y, ) = e®*zbw(y), where
w(y) satisfies the second order ODE

B2y —m)*w” + (2Bpbk — gy — m)*)(y — m)w' + (2(a + (b — 1))(y — m)® + k*b(b — 1))w = 0.
[ts solution can be expressed via Whittaker functions My, Wi,

3 gly—m)>\ gy —m)? gy —m)? _ 1 kbp

wty) = exp (L) (= (g (L) o, (00— B

and

o BE2bp)g+4Blatrb=1) L A — R = .
495 4p
2) Algebra { X7 4+ aX3, X4}. The invariant solution has the form
u(@,y,t) = e"e " w(h(t,y),  h(t,y) =29y —m)>".
The function w(h) satisfies the second order Euler equation
r2(46%% + ¢*k* + ArkgpB)h*w"
—r(k*g(2a — g(r + 1)) + 4rpBla — g(r + 1))k — 2r25%(2r — 1))hw’ + ak*(a — r)w = 0.
3) Algebra { X5 4+ bX3, X4 }. The invariant solution has the form

2r(b—1
o) =y — b)), Aty) = ey - m)? g = 2,
The function w(h) satisfies the second order Euler equation
46%g*h*w"” + 29B(g(2bkp + B) + 4rB(b — 1)) h!
+ (b(k*g* + 4128 + 4kgrpB) — 2r3%(2r 4 g))w = 0.
4) Algebra {Xo 4+ bX3, X5 + pX3}. The invariant solution has the form
U(ZL‘, Y, t) = xb(y - m)’y eXp(@(t y))UJ(h(t, y))7
where we denoted
_ 2y(2m — y) + 2pBPe~ 9 — 2r +2rb)B + 2bpk
hit,y) = (y - m)%e %, olt,y) = 2 ot 2yg),62 e T 2 gﬂ)ﬂ =

The function w(h) satisfies the second order ODE
4g*B2h*w" — 2Bg(gB + 2bpkg + 46r(b — 1))hw’ + (2pg*h + 69B8%rb — 832r%b + 45%r2b* — 695%r
+ k%% — k2bg? 4 4b% pBkgr + 2¢° 3% + 45°%r% + 4¢* Bbpk — 4bpPrkg)w = 0.
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Its solution is

= (e () s ().

where

4 -1 2 1
o= W= D)+ 39)5 % hop -, _ L E TR — 4K@B — B)b T B
498 28
and J,, Y, are the Bessel functions.

5) Algebra { X3 + aX1, X4}. The invariant solution has the form
u(z,y,t) = (y — m)—27"/gw(h(m,y,t)), h(z,y,t) = egtm—ag(y _ m)2(1—m~)_

The function w(h) satisfies the second order Euler equation
9 ((48%r% + dkgrpB + k*g*)a® — 48(gkp + 28r)a + 48°)h*w" + g(g(48°r* + 4kgrpB + k*g%)a®
+ (l<:2g2 + 83212 + dkgrpp — 6grB% — 4k:g2p,6’)a + 29,6’2)hw’ + 27’52(27’ + g)w = 0.
6) Algebra { X2 + aX1, X5}. The invariant solution has the form
-2
teant) = (o= m) e (L2 a1,
where

(y —m)7eht

h(z,y.t) = 25— 7 = 2lagkp +arf = f).

The function w(h) satisfies the second order Euler equation
g'8%(a®(4r* B + drgkBp + kg?) — 4aB(gkp + 267) + 46%)h*w" + g° B(4g(ar — 1)
+ 2(ar — 1)(2ag%kp + 41 — 39) 5% + agk(akg® + 4p(r — 9))B + k2 g?a)hw’ + (g — ) (g — 2r)w = 0.
k

23 TheCasef = —,9g=0
y—m

The Lie Brackets of the Lie algebra are given in the table:

(X5, X/ X, X, X5 X, X5
Xi 0 0 0 X1 +rXo+rX; —%X3+2X4
X5 0 0 0 0 0
X3 0 0 0 0 0
Xy X1 —rXe —rX;3 0 0 0 X5
X5 %Xg —2Xy 0 0 - X5 0

1) Algebra {X; + aX3, X5 +bX3}. The invariant solution has the form u(z, y, ) = e®zbw(y), where
w(y) satisfies the second order ODE

B2y — m)*w"” + 2Bpbk(y — m)w' + (2(a +r(b—1))(y — m)* + k*b(b — 1))w = 0.
[ts solution can be expressed via Whittaker functions

wly) = (y —m) /8 (C My, (2) + CoWo (2)),
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where

L 2,1/(2 = 2b)r — 2a(y — m) L V4b(1 — b + bp2)k2 + B(B — 4bkp)
B ’ 2p ’
2) Algebra { X2 4+ 0 X3, X4 }. The invariant solution has the form

u(z,y,t) = 2"(y — m)7 exp((t, y))w(h(t,y)),

where we denoted

Wt y) = r(b—1)(2m — y)ty bpk

) ta = ’ =T L
G—mp PV (y —m)? T8
The function w(h) satisfies the second order ODE

46202 + 2(4rm?B% (b — 1)h? + 33%h + 1)uw'

+ (4m*?B% (b — 1)%h? + 6rm?B%(b — 1)h + (k*b + 2m*r)(b — 1) + bkp(B — bkp))w = 0.

[ts solution can be expressed via Kummer functions

_ —m?hr(b—1)p—y l 1 1 L
w(h) =e h <01M<’y,2’y+2,252h>+ClU <’y,2’y+2,2ﬁ2h )

where

B+ /4(p? — 1)k202 + 4k(k — 4pB)b + (2
v = 13 :

3) Algebra { X 4+ b X3, X5}. The invariant solution has the form

u(z,y,t) = a(y — m)7 exp(p(t, y))w(h(t,y)),

where we denoted

_ _yly—m) r(b— Dy _ 1 bpk
h(t,y)——y_m, p(t,y) = 251 om0 T2

The function w(h) satisfies the second order ODE
44 n " — 4B%R* (28%rm(b — 1)h? — 38%h + m)w' + (48*r*m?(b — 1)*h* — 128%rm(b — 1)k
+ B2(4kb(k(b — 1) — kbp® — pB) + 4m>r(b — 1) + 3*)h* — 28*mh + m?*)w = 0.

Its solution is

2(1 2
w(h) = (Clh)\l + CQh)Q)eXp <m(27“6 (ZI)Bth)h 1)) 7

where A1, Ay are the roots of the quadratic equation
1
M 42) + W(m — pH)b?k? + 387 — 4k + 4bkSp) = 0.

4) Algebra { X4, X5}. The invariant solution has the form

u = xVrtexp <7(y2_ﬁ;7;)2> (y — m)_l_kp/ﬁw(h),

where h(t,x,y) = kpln(y — m) + B(rt — Inx), and the function w(h) satisfies the second order ODE
with the constant coefficients

K B2(1 = p*)w” + kB(k + Bp — 2kp*)w' + (B + kp)(28 — kp)w = 0.
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