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Abstract

The data on temperature, solvent, and high hydrostatic pressure influence on the rate
of the ene reactions of 4-phenyl-1,2.4-triazoline-3,5-dione (1) with 2-carene (2), and
p-pinene (4) have been obtained. Ene reactions 14+2 and 1+4 have high heat effects:
AH,, (14+2) —1584, AH, ,(1+4) —159.2 k] mol~!, 25°C, 1,2-dichloroethane.
The comparison of the activation volume (AV#(14+2) —29.9 cm® mol~!, toluene;
AV#(14+4) —36.0 cm® mol~!, ethyl acetate) and reaction volume values (A V,..,1+2)
—24.0 cm® mol~!, toluene; AV, (1+4) —30.4 cm® mol~!, ethyl acetate) reveals more
compact cyclic transition states in comparison with the acyclic reaction products 3

and 5. In the series of nine solvents, the reaction rate of 142 increases 260-fold and
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1 | INTRODUCTION

4-Phenyl-1,2,4-triazoline-3,5-dione (1) contains a very active
N=N bond and easily enters ene reactions with substrates
containing an allylic hydrogen atom.!= These reactions are
of both synthetic !* and mechanistic interest.>*7 An exten-
sive use of 1 in organic synthesis caused by its ability to
be involved in a large number of easily running quantita-
tive and selective reactions with a wide variety of active and
low-active substrates.'*8-16 Reagent 1 shows increased activ-
ity in [442]-, [24+2]-cycloaddition and ene reactions com-
pared to other dienophiles, including the strongest z-acceptor
dienophile, tetracyanoethylene.>!-2!

It has been proven that 2-carene (2) and f-pinene (4) enter
ene reactions with 1 to form adducts 3 and 5, respectively.??
However, there were no quantitative data dealing with the
kinetics of these reactions.

In this work, we determined the rate constants of the reac-
tions 142 — 3 and 1+4 — 5 in nine solvents at 20, 30, and
40°C as well as the enthalpies of these reactions. We also stud-

144 increases 200-fold, respectively, but not due to the solvent polarity.

activation volume, high pressure, kinetics, reaction heat, reaction volume

ied the pressure influence on these reactions rates, calculated
the values of activation and reaction volumes, and compared
the data obtained with the parameters of a number of other
reactions involving 1.
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2 | EXPERIMENTAL

2.1 | Materials

2-Carene ((1S,6R)-3,7,7-trimethylbicyclo[4.1.0]hept-2-ene)
(2) (Sigma-Aldrich, 97%, Switzerland) and f-pinene (6,6-
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dimethyl-2-methylenebicyclo[3.1.1]heptane) (4) (Sigma-
Aldrich, 99%, USA, MO) were used without further
purification. 4-phenyl-1,2,4-triazoline-3,5-dione  (Sigma-
Aldrich, 97%, USA, MO) was sublimated at 100°C and
100 Pa before the measurements. The m.p. of 1is 165-170°C,
decomp.'® The purity of 1 was tested according to the known
absorption coefficients.'® The 'H and '*C NMR spectra of
the obtained adducts 3 and 5 completely coincide with the
spectra given earlier.?? All solvents were purified by known
methods.?

2.2 | Kinetic measurements at ambient
pressure

The reaction rate was monitored with the UV spectropho-
tometer (Hitachi U-2900, Japan) according to a change in the
absorption of 1 (530-550 nm). The temperature of the work-
ing solution in a quartz cuvette with a ground glass stopper
was maintained with an accuracy of +0.1°C. The stability of
reagent 1 in all the studied solvents was checked by stability
of its absorption during the reaction time. The inaccuracies of
the rate constants were +3%, the enthalpy of activation + 2 kJ
mol~!, and activation entropy +6 J mol~! K~!.

2.3 | Kinetic measurements at elevated
hydrostatic pressure

The pressure effect on the rate of the reactions 1+2 — 3
(toluene) and 1+4 — 5 (ethyl acetate) was studied at 25°C
with the usage of a pressure multiplier (HP-500, Japan), a
quartz cell with the variable volume (PCI-500, Japan) and UV
spectrophotometer (SCINCO S-3100, Korea). The observed
activation volume (A Wexp; Equation 2) of the reactions
142 — 3 and 144 — 5 was calculated on the basis of the rate
constants measured at 1 and 1000 bar, applying the previously
proposed?* relationship 1. Kinetics of the reactions 1+2 — 3
and 14+4 — 5 was studied in various solvents to optimize mon-
itoring conditions:

<dlnk

kp_
=(1.15+0.03)x 1073 . In [ 222190} (1
oP )T,P:l ( * )X n< k M

P=1

AV#

olnk
exp — _RT( oP )r @

Corrected values of activation volumes (AV7_,,) of the
reactions 1+2 — 3 and 1+4 — 5 were determined by Equa-
tion 3, taking into account isothermal compressibility coeffi-
cients of toluene, fit 9.19 X 1075 bar™!, and ethyl acetate, f
1.20 x 10~ bar™!, respectively:>

AV o = AVZ ., + BrRT (3)

2.4 | Reaction volumes

The reaction volume of the reaction 142 — 3 was determined
by the kinetic method.?® This method uses the dependence of
the reaction mixture density on the concentration of the adduct
(Equation 4):

1 1 Cadairy * AV
1000 * d(z:O)

dgy =0 @
Here d, - () and d, are the densities of solution at the begin-
ning and during reaction; C,qq4 (, is the current concentration
of adduct, calculated from kinetic data. The density of reac-
tion mixtures was determined using a precision (+2 X 107 g
cm‘3) densitometer (DSA 5000 M, Anton Paar, Austria) at 25
+ 0.002°C.

The volume of the reaction 14+4 — 5 was determined in two
ways: by the kinetic method 2° and from the difference of the
partial molar volumes (Equation 5):

AV, =Vs=Vyi=W )

Here V;, V4, and V5 are the partial molar volumes of
compounds 1, 4, and 5, respectively.

2.5 | Calorimetric measurements

The enthalpies of the reactions 142 — 3 and 14+4 — 5 were
determined in 1,2-dichloroethane at 25°C with the employ-
ment of the differential calorimeter. The protocol of measure-
ment was described earlier.'®!7 A sample of the crystals 1
was introduced into each of the solutions of bicyclic monoter-
penes, 2 or 4 taken in excess. Three consecutive measurements
were made for each reaction, 142 — 3 and 1+4 — 5. The val-
ues of reaction enthalpy were calculated taking into account
the heat of solution of crystals 1 in 1,2-dichloroethane, 21.9 kJ
mol~!.

3 | RESULTS AND DISCUSSION

The kinetic data and the activation parameters obtained of the
reactions 1+2 — 3 and 1+4 — 5 in nine solvents are collected
in Table 1.

It should be noted that the rates of the reactions 142 — 3
and 1+4 — 5 in such polar solvents as dimethylformamide
and acetonitrile is noticeably less than in low polar solvents.
The activation entropy of the reactions 142 — 3 and 144 — §
closely corresponds to the activation entropy of other reac-
tions of ene synthesis as well as the [44+2]-, [27+20+20]-,
[27427+27]-cycloaddition, but is significantly less in mag-
nitude than that of the [2z+42x]-cycloaddition reaction
(Table 2).

In the reaction 149 the C=C bond shifting to the nodal
atom of bicycle 9 is forbidden by the Bredt rule. However, the
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TABLE 1 The rate constants (k,/L mol~!' s!) of the reactions 1+2 — 3 and 1+4 — 5 in the temperature range 20-40°C in a series of solvents
with different permittivity (¢), enthalpy (AH#/kJ mol~'), entropy (AS#/J mol~! K~!), and Gibbs free energy (AG#/kJ mol~') of activation
1+2 -3 1+4 -5
k, k, k, AG* k, k, k, AG*
Solvent £(25°C)® (20°C) (30°C) (40°C) AH7 —-AS* (20°C) (20°C) (30°C) (40°C) AH* -AS* (20°C)
N,N-Dimethylformamide 36.7 0.0172  0.0337 0.0623 46.7 119 81.6 0.0347 0.0667 0.1226 457 117 80.0
2-Propanone 20.6 0.0247 0.0477 0.0827 433 128 80.8 0.0506 0.0912 0.153  39.8 134 79.1
Ethyl acetate 6.0 0.0215 0.0407 0.0690 42.1 133 8l.1 0.0518 0.0941 0.156 39.6 134 78.9
1,4-Dioxane 2.2 0.0438 0.0744 0.121 38.8 139 79.5 0.0990 0.177 0.266 353 144 775
Acetonitrile 359 0.172 0.296 0.432 32.6 148 76.0 0.256 0.423 0.637 324 146 752
Toluene 2.4 0.162 0.276 0.405 324 149 76.1 0.374 0.606 0.945 329 141 742
Benzene 2.3 0.238 0.388 0.574 312 151 755 0.563 0.917 1.36 313 143 732
1,2-Dichloroethane 10.4 1.39 1.93 2.58 21.5 170 713 2.44 3.38 4.64 222 161 694
Chloroform 4.6 4.45 - - - - 68.0 7.55 10.0 - 20.7 157 66.7

2The values of permittivity are taken from Ref. 23.

reaction of the [2z+2x]-cycloaddition has turned out to be
less advantageous in comparison with the Wagner-Meerwein
rearrangement.'*2 The increased activity of 1, even with
regard to tetracyanoethylene, as well as the increased stabil-
ity of adducts in all reactions with 1 (Table 2) allowed us
to carry out the [442]-cycloaddition reaction of 1 with 9,10-
diphenylanthracene (13), where the active 9,10-reaction cen-
ters of 13 are sterically inaccessible. Nevertheless, the reac-
tion 1413 easily proceeds on the available 1,4-diene atoms of
13.30,31

The energy balance between breaking and formation of the
bonds reflected in the reaction enthalpy is minimal in the reac-
tions 1410 and 1413 and is maximal for the reaction with
nonconjugated norbornadiene, 148, and also for the reac-
tion involving two cyclopropane rings of quadricyclane, 14-7.
However, according to the data presented (Table 2), it follows
that the high exothermicity of the reaction rarely determines
the reaction rate.

The enthalpies of the reactions 1+2 — 3 and 1+4 — 5 were
determined in 1,2-dichloroethane at 25°C from the data of
three consistent dissolutions of crystals 1 in the solutions of
2 and 4, respectively. Taking into account the heat of dissolu-
tion of 1 in 1,2-dichloroethane (21.9 kJ mol~') for the reac-
tion 1+2 — 3, the value of AH,_, is —158.4 + 0.9 kJ mol !
(—157.3, —159.7, and —158.2 kJ mol_l), and for the reaction
of 1+4 — 5 this value is —159.1 + 1.1 kJ mol™! (—=157.5,
—160.5, and —159.4 kJ mol~!). High exothermicity of these
1+2 — 3 and 1+4 — 5 reactions allows us to consider them
practically irreversible. It can be noted that these values of
enthalpies of the 1+2 — 3 and 144 — 5 reactions are very
close to that of the reaction of 1 with cyclohexene (AH,.,
—155.9 + 0.4 kJ mol~', toluene, 25°C [Ref. 13]).

The activation volume for the reaction 1+2 — 3 has been
determined in toluene at 25°C according to the data on the

reaction rate at atmospheric (1 bar) and elevated (1000 bar)
pressure (Equations 1-3). From the obtained ratio kp _ 1ggo/kp
-1 equal to 3.10, the observed value AVﬂxp = -322 +
1.0 cm® mol~! has been calculated. Taking into account
the change in the reagents concentration due to the solvent
compressibility, the corrected activation volume (AV*_.)
is —29.9 + 1.0 cm® mol™' (f;RT = 2.3 cm’® mol™!). The
activation volume (AV7_.,) for the reaction 1+4 — 5 in
ethyl acetate is equaled —36.0 + 1.5 cm® mol™" (kp _ ;00!
kp -1 =392, AVﬂxp_ =-39.0 + 1.0 cm® mol~!, frRT = 3.0
cm?® mol™!). The difference in the values of the activation
volume of these reactions (AAV = 6.1 cm® mol™!) can
be explained by the solvent influence: For the reaction of
bisadamantylidene 10 with 1, the activation volume AV, *
is =50.8 + 1.4 c¢cm?® mol™! in toluene, and —55.8 + 1.5
cm’ mol~! in ethyl acetate, that is the difference in activa-
tion volumes is equal to 5.0 cm® mol~'.?° It can be noted
that the activation volumes of the reactions of 1+2 — 3
(AVZ o = =29.9 + 1.0 cm® mol~!, toluene) and of 1 with
cyclohexene (AV# .. = —29.1 + 0.5 cm?® mol~!, toluene,
25°C [Ref. 13]) coincide within the limits of measurement
inaccuracies. To determine the reaction volume (AV,,) of
1+2 — 3, two cycles of measurements (Equations 6 and 7)
were carried out. The volume of reaction 1+4 — 5 was deter-
mined by the kinetic method (Equations 8 and 9) and by the
difference of the partial molar volumes of the adduct and
reagents in ethyl acetate (Equation 10):

d™! = = (0.0278995 + 0.000126) - c3
+(1.1594608 + 0.0000004); R = 0.9996

AVy 53 = —24.1 cm’mol™!; ¢y = 5.06 x 10> mol L7,

cop = 5.50 x 107> mol L~! (6)
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d~!' = —(0.0277264 + 0.000180) - c;
+(1.1593645 + 0.0000006); R> = 0.9992
AVy,p 3= =239 cm’ mol™';¢j; = 5.06 X 10> mol L™,
o1 =5.50 x 107> mol L~!.

AVy,p,3=-240+0.1 cm® mol™! 7

d~!' = —(0.0346118 + 0.00039) - c5
+ (1.1178038 + 0.00000087) ; R> = 0.9979
AV 4.5 =-309 = 0.5cm> mol™';

o1 = Coq = 5.00 x 10> mol L™! (8)

d~!' = —(0.0331679 + 0.000279) - c5
+ (1.1177995 + 0.00000066) ; R> = 0.9985
AVy 45 =—29.8+0.3 cm’ mol™';
o1 = Coo = 5.00 x 10> mol L.

AV), 45 = =304+ 0.5 cm® mol ™! )

AV, 4s=Vs—V,—V,=2572—-129.0 - 158.8

= —30.6 + 1.0 cm> mol™! (10)

Both methods give identical values of the reaction volume
of 1+4 — 5. The ratio of activation and reaction volumes
(AV7.,/AV,.,) for the reaction of 1+2 — 3 is 1.25, and for
1+4 — Sis 1.18. Note that for all ene reactions under the study
the ratio AV7 . ./AV,, is always more than one.'3~!7 Sol-
vent electrostriction for the activated complex can be excluded
from consideration due to small and irregular solvent effect on
the reaction rates. These ratios can be explained by the cyclic
and, therefore, more compact form of the activated complex as
compared with the acyclic form of the reaction adduct. This
conclusion agrees with the results of the study of ene reac-
tions of alkenes with enophiles containing C=0 and C=C
reaction centers,’>73* where the value of AV# _/AV,  was
in the range 1.1-1.3.

In the series of solvents (Table 1), the reaction rates of the
1+2 — 3 and 1+4 — 5 differ by two orders of magnitude;
however, these changes take place not due to the solvent polar-
ity. Similar activation of dienophiles in H-donor solvents is
well known for other types of reactions. Previously, the sol-
vent effect on the rate of the number of reactions involving
dienophile 1 has been considered, which makes it possible to
compare the solvent effect on the rate of the studied ene reac-

corr

tions 142 — 3 and 14+4 — 5 with regard to the [27+20+20]-
cycloaddition reaction of 1 with quadricyclane (7),%’ ene reac-
tion with 2-methylbutene-2 (14),% [2z+427]-cycloaddition
reaction of 1 with 2-chloroethylvinyl ether (15),¢ ene reaction
between 1 and norbornene (9) 1420 with Wagner-Meerwein
rearrangement, ene reaction of 1 with trans-hexene-3 (16),2!
[47+27]-cycloaddition reaction of 1 with anthracene (17),!”
and [27+2x]-cycloaddition reaction of 1 with bisadamantyli-
dene (10)%° (Equations 11-18):

Ink (1+42) = (1.04 +0.03) - Ink (1 + 4) — (0.65 +0.07);

R?>=0.9939,N =9 (11)

Ink(1+7)=(0.82+0.14) - Ink (1 +4) + (0.13 + 0.29);

R>=0.8515,N =38 (12)

Ink (1 + 15) = (0.52 + 0.03) - Ink (1 + 4) + (2.65 + 0.08) ;

R?>=0.9869,N =5 (13)

Ink (1 +9) = (0.46 + 0.01) - Ink (1 +4) — (6.73 £ 0.01);

R>=0.9995,N =4 (14)

Ink (1+16) = (0.88 +0.18) - Ink (1 + 4) — (2.55 + 0.35) ;

R>=0.9588, N =3 (15)

Ink (1 +17) = (0.88 +0.04) - Ink (1 +4) — (0.20 + 0.06) ;

R>=0.9919,N =7 (16)

Ink (1 + 10) = (1.0730 + 0.2603) - Ink (1 + 4)
—(2.2136 + 0.5648) ; R = 0.7081, N =9

A7)

Ink (1 + 14) = (0.99 + 0.03) - Ink (1 + 4) + (0.67 + 0.06) ;

R>=0.9912,N =9 (18)

For the ene reactions (142), (1+4), and (1+14), as well as
the Diels-Alder reaction (1+17), a high proportionality of the
solvent effect on the reaction rate with the angular coefficient
close to one has been observed. The close solvent effect on
the rate of different reactions presupposes a slight difference
in the solvent effect on the energy level of the transition state.
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4 | CONCLUSIONS

Ene reactions of structurally similar bicyclic 2 and 4 monoter-
penes with 1 go with nearly the same energy and volume
parameters: enthalpy, entropy, Gibbs free energy of activa-
tion, reaction enthalpy, activation volume, and reaction vol-
ume. A high proportionality in the solvent effect on the reac-
tion rate of the reactions 1+2 — 3 and 14+4 — 5 is observed.
In a series of nine solvents, the rate of these reactions changes
by two orders of magnitude but not due to the solvent polar-
ity, which is similar to other reactions of ene synthesis as well
as cycloaddition reactions. The ratio of activation volume to
reaction volume (AV#_ . /AV, ) for the reaction 1+2 — 3 is
1.25, and for the 1+4 — 5 AV#_ . /AV,  is 1.18. Low solvent
polarity effect on the reaction rates suggests that there is no
solvent electrostriction. Such ratio of volume parameters can
be explained by the cyclic and, therefore, more compact form
of the transition state in comparison with the acyclic form of
the reaction adduct.
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