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The Hamiltonian of the magnetic subsystem containing rare-earth ions involves energies of the 
localized 4f-electrons in free ions, energies of interactions of the 4f-electrons with the static crystal 
field in the perfect crystal lattice as well as in the homogeneously deformed lattice, interactions with 
the external magnetic field and lattice vibrations (electron-phonon interaction), magnetic dipolar and 
exchange interactions between the ions. This Hamiltonian is used in calculations of different 
measurable physical parameters versus temperature and the magnetic field strength and direction 
(energy levels of rare earth ions, the magnetization, magnetic dc- and ac-susceptibilities, elastic 
constants, lattice deformations) 

PACS: 31.15.Ne, 75.50.−y, 75.80.+q, 76.30.Kg. 

Keywords: crystalline electric field parameters, magnetostriction, magnetoelastic interaction, electron-phonon 
interaction 

1. Introduction 

The construction of the energy spectrum of the rare earth ion in the crystalline electric field is of actual 
interest for scientists engaged in the study of solid crystalline substances containing rare-earth ions 
[1, 2]. Based on the obtained spectrum one can describe the field, angle and temperature dependences 
of magnetization and susceptibility, the dependence of the energy levels on the external magnetic field 
and temperature, the magnetic field and temperature dependences of the elastic constants, 
deformations of unit cell [3]. The most convenient in this case, is a software package MATLAB. The 
basic principles of such calculations are presented in this article and the results are shown for the case 
of rare earth tetrafluorides [4-8]. 

Double fluorides of rare earths are the subject of intensive 
research over the past three decades, and the study of their 
magnetic properties remains relevant for the further development 
of the theory of magnetoelastic effects in magnetic materials 
containing rare-earth ions [9-14]. The calculation results are used 
to interpret the data of the magnetic properties studies of single 
crystals of the rare earths double fluorides in the frame of 
magnetoelastic and electron-phonon interaction models [4-8]. 

The unit cell of LiLnF4 contains two magnetically equivalent 
lanthanide Ln3+ ions at sites with the S4 point symmetry. The 
crystal lattice of the compounds LiLnF4 is shown in Figure 1 [9].  

Magnetic properties of LiLnF4 are shown in Table 1. LiTbF4 
and LiHoF4 are dipolar Ising-like ferromagnets with magnetic 
moments of the Tb3+ and Ho3+ ions along the crystallographic 
c-axis and Curie temperatures Tc = 2.885 K and 1.53 K, 
respectively [9]. LiDyF4 is antiferromagnet of easy-plane type 
with magnetic moments of the Dy3+ ions normal to the crystal 
                                       
† This paper is prepared on base of invited lecture at XIX International Youth Scientific School "Actual 

problems of magnetic resonance and its application", Kazan, 24 – 28 October 2016 and it is published after 
additional MRSej reviewing. 

 
Figure 1. The crystal lattice of the 

LiLnF4 compounds. 
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symmetry axis, and transition temperatures TN  0.62 K [9]. The LiTmF4 is Van-Vleck para-
magnet [9]. Magnetic dipole-dipole interactions play the dominant role in spontaneous low-
temperature ordering of magnetic moments of Ln3+ ions in these compounds. Quantum phase 
transitions driven by transverse magnetic fields were observed in LiHoF4 at temperatures 
below Tc [15]. LiTmF4 exhibit a giant forced magnetostriction at liquid helium temperatures [16]. 

2. The theoretical background 
The Hamiltonian of magnetic system of rare-earth ions can be written by taking into account an 
interaction with crystallographic lattice and free surface, the ion energy in crystal field, the electron 
Zeeman energy, interaction of rare-earth ion with homogeneous macro- and microdeformations, 
magnetic dipolar and exchange interactions between the ions and electron-phonon energy [9].  

The Hamiltonian of magnetic system of rare-earth ions which take an interaction with a 
crystallographic lattice and a free surface into account can be written as: 

 ,

1
( , )exp( ) ( ) ( )k k

L s lat p Ls p
Ls Ls j pk

H H H B s j i O Ls Q j
N

   
q

q qR q . (1) 

Here HL,s is the Hamiltonian of rare earth ion with the radius-vectror RLs from s-sublattice (s  1, 2) in 
cell L in static crystal field, Hlat is energy of crystal lattice in harmonic approximation with normal 
coordinates Q(qj) (q is wave phonon vector with frequency ωqi, j is the number of oscillation spectrum 
branch), the last part in (1) presents electron-phonon energy in linear approximation on ions 
displacements from equilibrium condition, N is cell number, Op

k(L, S) is linear combination of 
spherical tensor operators [9], in force in space of electron states of rare earth ion in Ls, Bk

p(s, qj) are 
interaction parameters, determined by derivatives of corresponding crystal field parameters on ions [8]. 

Considering the second order corrections to rare-earth ion’s energy by electron-phonon interaction 
at low temperature (kBT << ħω, kB is Bolzman constant, 0 is limiting phonon frequency) and taking 
into account only mixing electrons with difference energies  << ħω0, we can write the effective 
Hamiltonian of interaction between Ln3+ ions [17]  

 ' ' '
' ' ' ' '

' ' ' '

1
(1 ) ( ', ) ( ) ( ' ')

2
kk ss k k

LL ss pp LL p p
LL ss pp kk

H ss O Ls O L s       R , (2) 

where '
' ' '

ss
LL Ls L s R R R , and 

 ' ' 2 ' '
' ' ' '

1
( ', ) ( , ) ( ', )exp( )kk ss k k ss

pp LL j p p LL
j

ss B s j B s j i
N

   q
q

R q q qR . (3) 

Double-particle interactions can be considered in self-consistent field approximation, with 

neglecting the second order terms on operator's deviations ( )k
pO Ls  from their average values 

( )k k
p pO Ls O      (the last equation appears if all magnetic ions are equivalent, particularly, for 

Ln3+ ions in LiLnF4). 

The free energy of elastic distorted single crystal in presence of an applied magnetic field B (on the 
elementary cell with volume v) can be written in the following form:  

Table 1. The LiLnF4 compounds magnetic properties. 

LiTmF4 

4f 12 

LiTbF4 

4f 8 

LiHoF4 

4f 10 

LiDyF4 

4f 9 

Van-Vleck  
paramagnet 

Ising-like dipole 
ferromagnet 

Ising-like dipole 
ferromagnet 

Dipole 
antiferromagnet 

- Tc  2.89 K Tc  1.53 K TN  0.62 K 
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 ' '
' '

 ' ' '

[ ' 2 ( ) ( ) ( ) ( , ') ( ')] ,
2 2

k kk k
p pp p

s s s pkp k

v n
F r r r r r r O O F       eC e eb w w a w λ  

 ,ln Tr exp( / ),B eff s B
s

F k T H k T     (4) 

where C' is tensor of "probe" elastic constants, е is the deformation tensor, w(r) is vector of the 
sublattice displacement r, b(r) is the relation's constants tensor of macro- and microdeformations, 

( , ')a r r  is the dynamic matrix of the lattice at the Brillouin zone centre, '
'

kk
pp  is the matrix of the 

relation's constants through phonon field, n is number equivalent magnetic sublattices (n  2 for 
LiLnF4 single crystal), Heff,s is effective single-ion Hamiltonian, defined below: 

 (0) ( )P
effH H H  , (5) 

 (0)
0 cf ZH H H H   , (6) 

 ( ) ' '
' '

, ' '

( ) ( )P kk k k
pp p p

s pkp k

H V e V s w s O O   
 

       . (7) 

The first part in (6) is the Hamiltonian of free ion H0, the second term is the ion energy in crystal 
field, the third term is the electron Zeeman energy ( 2 );Z BH  B L S  here μB is the Bohr magneton. 

First and second terms in (7) define linear interaction of rare-earth ion with homogeneous macro- and 
microdeformations, correspondingly. Electronic operators V and V(s) can be presented as linear 
combinations of spherical tensor operators: 

 ,
k k
p p

pk

V B O  , ,( ) ( )k k
p p

pk

V r D r O  . (8) 

Taking into account translational lattice symmetry one can find from equations (2) and (3) the 
following equation for λ matrix elements in last term in (7):  

 
' '
' '' '

' 2 2
'

( ,0 ) ( ',0 ) ( , ) ( ', )1

o o

k k k k
p o p o p pkk ss

pp
ss j jj j

B s j B s j B s j B s j

n N




 

 
  

  
  

q0 q

q q
, (9) 

where the first term includes only optical branches of oscillation spectrum. The single ion contribution 
to the free energy (see equation (4)) can be written with accuracy up to second order terms of lattice 

deformations lattice and deviations of average values operators k
pO  from corresponding equilibrium 

values in absence of magnetic field (for the simplicity equations below 0 0k
pO   B  is supposed). 

Considering operator (7) as perturbation one can rewrite ( ) : ,P k k
p p

pk

H A O A O   and obtain 

 ( )
0 0

1
[ ( ) : : ]

2
PF n F H A q A     B , (10) 

where 0 ( )F B  is the free ion energy with Hamiltonian (0),H  symbol <...>0 means averaging with 

equilibrium density matrix (0) (0)exp( / ) / Tr (exp( / ))B BH k T H k T    . The matrix elements q equal: 

 

' ' '
' 0 ' 0 '

1 ' '
' '

,

1
[ ]

( ) [ ].

kk k k k k
pp p p i p i i p i

iB

k k k k
i j i p j j p i i p j j p i

i j i

q O O O O
k T

O O O O

    

           



     

  




 (11) 

Here i  and i  are eigenvalues and eigenfunctions of (0)H  operator.  

Taking into account thermodynamic equilibrium conditions / 0,k
pF O     / ( ) 0F w r    and 
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symbol of convolution on indexes p and k, introduced above, one can write the free crystal energy as 

 

1 1
0 0 0

'

1 1
0

'

ˆ ˆˆ:[ : (1 : ) ( ) ( , ') ( ')] :
2 2

ˆ ˆ     : (1 : ) :[ ( ) ( , ') ( ')] ,

rr

rr

v n n
F nF O q r r r r O

v

n O q r r r r

 



 

 

        

    





eCe D a D

B b a D e
 (12) 

where 1ˆ ( ) (1 : ) : ( )D r q D r    , 1

'

ˆ ˆ ˆˆ' ( ) ( , ') ( ')
rr

r r r r C C b a b  is the elastic constants tensor. The 

definitions of renormalized values through electron-deformation and electron-phonon interactions: 

 1ˆ ( , ') ( , ') ( ) : : (1 : ) : ( ')
n

a r r a r r D r q q D r
v       , (13) 

 1
, ,

ˆ ( ) ( ) : : (1 : ) : ( )
n

b r b r B q q D r
v         , (14) 

 1ˆ ' ' : : (1 : ) :
n

C C B q q B
v       . (15) 

It should be noted, that temperature and magnetic field dependences of elastic constants can be 
written in following form with accuracy up to second order components of electron-deformation 
interaction's parameters: 

 1ˆ ˆ( , ) ( 0, 0) : : (1 : ) :
n

C T C T B q q B
v        B B , (16) 

where renormalization relation's constants of macro- and micro-deformations equal: 

 1
, , , ,

'

ˆ ( ) ( , ') ( ')k k k
p p p

rr

B B b r a r r D r     


   . (17) 

The relative change of single crystal size induced by magnetic field in the direction defined by unit 

vector with directional cosines n equals /l l n n e  


  , where components of deformation tensor 

define from minimum free energy condition (12): 

 0 0 0
( ) [ : : ]eff eff

n
O O

v 
      

B B
e B SB SB , (18) 

here 1 ' '
, ' ',

' '

ˆ[(1 : ) ] :k kk k
eff p pp p

p k

B q B    , 1S C  is the compliance tensor. 

Ion’s energy levels and their magnetic moments in external magnetic field are determined by 
effective Hamiltonian, introduced above, where perturbation operator is: 

 ( ) -1 1
0

'

ˆ ˆˆ{ :[ ( ) ( , ') ( ') : (1 : ) ]}:P
eff

rr

n
H O r r r r q O

v
       B e D a D . (19) 

Equations defined above for elastic constants, induced by magnetic field and for effective Hamiltonian 
of paramagnetic ion are used for calculation of single crystal LiLnF4 parameters. 

3. Calculation and programming in the simplified case 
At the first step the Hamiltonian of a single Ln3+ ion can be written in the following form: 

 ' '
0 ' '

, ' '

( ) ( ) [ ( )( 2 ) ].kk k k
cf B j j pp p p

s j pkp k

H H H V e V s w s Q O O   
 

             B M l s  (20) 

Here, the first term is the free ion energy, the second term is the crystal field Hamiltonian:  

 0 0 0 0 4 4 4 4 0 0 4 4 4 4
2 2 4 4 4 4 4 4 6 6 6 6 6 6cfH B O B O B O B O B O B O B O          , (21) 
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determined in the crystallographic system of coordinates by the set of seven crystal field parameters 
Bp

k (Op
k are the Stevens operators). The third and fourth terms correspond to linear interactions of rare-

earth ions with the homogeneous macro- and micro-deformations, respectively, where e is the 
deformation tensor, and w(s) is the vector of the s-sublattice displacement. The electronic operators V′ 
and V′′(s) similar to the crystal field energy can be presented through the linear combinations of 
Stevens operators with the parameters which have been calculated earlier in the framework of the 
exchange charge model (see [18]). 

The fifth term in (20) is the electronic Zeeman energy where μB is the Bohr magneton, lj and sj are 
operators of orbital and spin moments, M is the equilibrium magnetization, the tensor Q defines 
magnetic dipole-dipole interactions between the rare-earth ions, and the sum is taken over 4f electrons. 
The last term corresponds to the energy of interaction between paramagnetic ions via the phonon field, 

parameters '
'

kk
pp  were calculated by making use of the characteristics of the lattice dynamics of the 

LiLnF4 crystal lattices.
  The crystal free energy (per unit cell) is written as: 

 ( ' 2 ) ln Trexp( / ),
2 B B

v
F v nk T H k T          eC e waw ebw O λ O MB  (22) 

where v is the volume of the unit cell, kB is the Boltzman constant, 1'  C C ba b  is the tensor of 
elastic constants, a is the dynamic matrix of the lattice at the Brillouin zone centre, the tensor b 

determines linear coupling between macro- and microdeformations, n  2 is the number of rare-earth 
ions in the unit cell, and angular brackets <…> mean the thermal averaging. From the equilibrium 
conditions for the coupled paramagnetic ions and the elastic crystal lattice 

 / /k
pF O F e       / ( ) / 0F w s F B       , (23) 

self-consistent equations for the magnetization vector and the deformation tensor components can be 
obtained. In particular, the lattice macro-deformation induced by the external magnetic field is 
determined by the expression: 

 0( ) [ ]B

n

v
      e B S V V , (24) 

and the sublattice displacements, which define the internal magnetostriction, equal 

 1 1
0( ) [ " " ] ( )B

n

v
        w B a V V a be B . (25) 

Here S is the compliance tensor of the lattice, and angular brackets <...>B, <...>0 indicate thermal 

averages for B ≠ 0 and B  0, respectively. Operators V in the expression (24) equal to operators V′ 

renormalized due to linear coupling of macro- and micro-deformations ( 1' '' V V ba V ). 

The system of equations (23) was solved using the method of successive approximations at fixed 
values of the temperature and the external magnetic field. The procedure involved the following steps: 

first, the matrix of the Hamiltonian (20) with M  0, e  0, w  0 is diagonalized, and the macro- and 
micro-deformations (e(B) and w(B)), and the magnetization M are calculated. At the next step, the 
obtained values of M, e, w are substituted into the Hamiltonian and the calculations are repeated. 
Considering the power series expansion of the free energy in deformation parameters up to second 
order corrections to the elastic constants depending on the magnetic field and temperature can be 
found. At the last step, the obtained values of M, e, w and C(B) are substituted into the Hamiltonian 
and the values of M are calculated [4-8]. 

The simple example of calculation’s program is presented here. At the first step Stevens matrix 
operators should be entered to the code (on MATLAB software): 
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O20=zeros(16,16); 

O20(1,1)=35; 

O20(2,2)=21; 

O20(3,3)=9; 

O20(4,4)=-1; 

O20(5,5)=-9; 

O20(6,6)=-15; 

O20(7,7)=-19; 

O20(8,8)=-21; 

for i=9:16 

   O20(i,i)=O20(17-i,17-i); 

end;  

In the next step the matrix elements of angular momentum operator J  15/2 (as an example) is input: 

Jz=zeros(16,16); 

for i=1:16 

   Jz(i,i)=17/2-i; 

end; 

The Hamiltonian of the crystal field has a following form in code: 

H0=B20*O20+B40*O40+B44*O44+B44m*O44m+B60*O60+B64*O64+B64m*O64m; 

The strength of external magnetic field (in Oe) is input: 

H1=10000; 

The Zeeman Hamiltonian (magnetic field is directed along x- or z-axes): 

HZ=g0*m*H1*Jx; 

HZ=g0*m*H1*Jz; 

Hfull=H0+HZ; 

The diagonalization of the total Hamiltonian define eigenstates and eigenfunction of presented 
Hamiltonian: 

[V, D]=eig(Hfull); 

d=eig(Hfull); 

4. Discussion and result 

A large array of experimental data can be self-consistently described using this calculation method. 
Each compound has its own set of the crystal field parameters, the electron-deformation interaction 
parameters, elastic constants and constants of the electron-phonon interaction. Some results are 
presented in the following figures (2-9).  

The experimental dependence of the elastic constants of the temperature is well described in the 
model and the energy of the deformed lattice can be estimated. The results are shown in Figure 2 [8].  

The field and temperature dependences of the energy levels splitting are well described in the 
framework of this approach. The example of the results is shown in Figure 3.  

The relative change in size of the crystal along the direction of the field is equal to: 

 2 1 21
/ ( ) cos2 ( ) sin 2 ( )

2g g gl l e A e B e B     . (26) 
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The obtained deformation tensor components values are satisfactory agree with measurements of 
the longitudinal magnetostriction in LiTmF4 single crystal (Figure 3) [8], LiDyF4 single crystal 
(Figure 4) [7]. 

The results of calculations predict that the magnetostriction strongly anisotropic and reaches giant 
values of the order of 103 in a magnetic field about 1 T at T  4.2 K (Figure 5). 

The results of calculation and comparison with experimental data angle (Figure 6), temperature and 
field dependences (Figure 7a,b) of the magnetization for various compounds are shown below. 

The described method of calculations allows to select and adjust the parameters of the crystal field. 
An example is shown in Figure 8 for the single crystal LiTbF4 [4, 5]. 

The calculations show the strong anisotropy of the magnetization as a function of the direction of the 
applied magnetic field relative to the crystal lattice axes. The results of calculation are shown in Figure 9 [7]. 

     
Figure 2. Measured [19] (symbols) and calculated [8] (curves) the temperature dependence of the elastic

constants C16 (a), C66 (b) and C11  C12 (c) LiTmF4 single crystal. 
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Figure 7. Field (a) and temperature (b) dependences of the magnetization along the axis of a single crystal of

LiHoF4. Solid lines are theoretical results, symbols are experimental data [6]. 
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5. Conclusion 
The presented method makes it possible to solve the following tasks: 

1) The determination of the parameters of the crystal field. 

2) The calculation of the magnetoelastic interaction contribution to the magnetization. 

3) The calculation of the contribution of the interaction between the rare-earth ions via phonon field. 

4) The determination of the field, temperature and angular dependences of the magnetization, 
magnetostriction and the energy levels spectrum of the rare earth ion. 

Acknowledgments 
This work was performed according to the Russian Government Program of Competitive Growth of 
Kazan federal university and partially supported by RFBR grant №15-02-06990_а. 

References 
1. Abdulsabirov R.Yu., Kazantsev A.A., . Korableva S.L., Malkin B.Z., Nikitin S.I., StolovA.L. 

J. Lumin. 117, 225 (2006) 
2. Abdulsabirov R.Yu., Kazantsev A.A., . Korableva S.L., Malkin B.Z., Nikitin S.I., Stolov A.L., 

Tayurskii D.A., van Tol J. SPIE Proceedings 4766, 59 (2006) 
3. Abubakirov D.I., Kuzmin V.V., Suzuki H., Tagirov M.S., Tayurskii D.A., J. Phys.: Conf. Ser. 51, 

135 (2006) 
4. Romanova I.V., Malkin B.Z., Mukhamedshin I.R., Suzuki H., Tagirov M.S. Phys. Solid State 44, 

1544 (2002) (Fizika Tverdogo Tela 44, 1475 (2002), in Russian) 
5. Romanova I.V., Egorov A.V., Korableva S.L., Malkin B.Z., Tagirov M.S. J. Phys.: Conf. Ser. 

324, 012034 (2011) 
6. Romanova I.V., Klochkov A.V., Korableva S.L., Kuzmin V.V., Malkin B.Z., Mukhamedshin I.R., 

Suzuki H., Tagirov M.S. Magn. Reson. Solids 14, 12203 (2012) 
7. Romanova I.V., Korableva S.L., Krotov V.I., Malkin B.Z., Mukhamedshin I.R., Suzuki H., 

Tagirov M.S. J. Phys.: Conf. Ser. 478, 012026 (2013) 
8. Romanova I.V., Malkin B.Z., Tagirov M.S. Opt. Spectrosc. 116, 897 (2014) (Optika i 

Spektroskopiya 116, 973 (2014), in Russian) 
9. Aminov L.K., Malkin B.Z., Teplov M.A. Handbook on the Physics and Chemistry of the Rare-

Earths 22 ed. K.A. Gschneider and LeRoy Eyring (North-Holland, Amsterdam, 1996) 
10. Klekovkina V.V., Zakirov A.R., Malkin B.Z., Kasatkina L.A. J. Phys.: Conf. Ser. 324, 012036 

(2011) 
11. Kazei Z.A., Snegirev V.V., Abdulsabirov R.Yu., Korableva S.L., Broto J.M., Rakoto H. JETP 

115, 1029 (2012) 
12. Dunn J.L., Stahl C., Macdonald A.J., Liu K., Reshitnyk Y., Sim W., Hill R. W. Phys. Rev. B. 86, 

094428 (2012) 
13. Kovachevich I., Babkevich P., Jeong M., Piatek J.O., Boero G., Rønnow H.M. 

arXiv:1607.00124v2 [cond-mat.str-el] (2016) 
14. Aminov L.K., Ershova A.A., Korableva S.L., Kurkin I.N., Malkin B.Z., Rodionov A.A. Phys. 

Solid State 53, 2240 (2011) 
15. Rosenbaum T.F., Wu W., Ellman B., Yang J., Aeppli G., Reich D.H. J. Appl. Phys. 70, 5946 

(1991) 
16. Al'tshuler S.A., Krotov V.I., Malkin B.Z. Pis'ma ZhETF 32, 232 (1980) (in Russian) 
17. Elliott R.J., Harley R.T., Hayes W., Smith S.R.P. Proc. Roy. Soc. Lond. A. 328, 217 (1972) 
18. Aminov L.K., Malkin B.Z., Dynamics and Kinetics of Electronic and Spin Excitations in 

Paramagnetic Crystals, Kazan State University, Kazan (2008) (in Russian) 
19. Al'tshuler S.A., Malkin B.Z., Teplov M.A., Terpilovskii D.N. Sov. Sci. Rev.: Sect. A 6, 61 (1985) 




