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Abstract—We establish some generalizations of the classical inequalities by Polya–Szego and
Makai about torsional rigidity of convex domains. The main idea of the proof is in using an
exact isoperimetric inequality for Euclidean moments of domains. This inequality has a wide
class of extremal regions and is of independent interest.
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INTRODUCTION

The initial mathematical interest to the torsional rigidity of homogeneous rods with fixed cross
sections was related with the problem of measurement accuracy of torsion balance. In addition to
physical characteristics of the material of a homogeneous rod, its length and twisting angle, the
value of the applied force also depends on the form of its cross section.

One of the first results concerning finding the torsional rigidity P of a homogeneous rod with a
circular cross section was the formula P = πr4/2 (here r is the radius of the cross section), suggested
by Coulomb in the XIX century [1]. We note that this formula expresses explicitly the dependence
of the torsional rigidity from the geometry of domain. However, it turned out that finding exact
formulas for torsional rigidity of a rod with a given form of cross section is not a simple problem.
On the other side, development of mathematical apparatus allows us to construct new estimations
of the torsional rigidity, and these inequalities covered more wide classes of domains. Such estimates
include the classical inequalities by Cauchy, St. Venant, Polya, Szego, Payne and many others [1]–[4].

Now we recall some definitions which we will need below. Let G be a simply connected domain
on the plane. One of important characteristics of domains in mathematical physics is the functional

P(G) := 2

∫

G

u(x,G) dA.

In the theory of elasticity it is called torsional rigidity, and in hydrodynamics it is named flow (see,
e. g., [1, 5]). Here u(x,G) is the stress function which satisfies the equation △u = −2 in G and the
boundary condition u |∂G = 0; here by dA we denote the differential area element on the plane.

One of well-known inequalities for torsional rigidity is the St. Venant–Polya inequality

P(G) ≤
A(G)2

2π
(1)
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where A(G) is the area of G. On one side, it is the simplest inequality and one of the most important
in the theory of twisting. On the other side, inequality (1) is an example of one-sided inequality for
P(G), i. e., (1) can not be reversed by multiplying its right-hand side by an absolute constant, even
for the class of convex domains.

An essential progress in the problem of obtaining a two-sided estimation of the functional P(G)
was defining and using new characteristics of domains [6]. Denote by ρ(x,G) the function of the
distance from point x to the boundary of G. The geometric functional

Ip(G) =

∫

G

ρ(x,G)p dA

is called the Euclidean moment of the domain with respect to its boundary of order p > −1.

F.G. Avkhadiev [7, 8] showed that, in the class of simply connected domains, for p = 2 the
torsional rigidity and the Euclidean moment are comparable values. Moreover, the two-sided
estimation is valid:

I2(G) ≤ P(G) ≤ 64 I2(G). (2)

Then the left inequality in (2) was improved [9]; it was showed that

3

2
I2(G) < P(G). (3)

As we know, the constants 64 and 3/2 in (2) and (3) are not sharp.

In [10] it was shown that inequality (3) is a partial case of the inequality

(p+ 1)Ip(G)

2ρ(G)p−2
+

π(p− 2)ρ(G)

4(p + 2)
≤ P(G), (4)

where p ≥ 2, and ρ(G) is the radius of the biggest disk containing in G. On the other side, in [11]
it was established that in the class of convex domains the inequality

P(G) <
4(p + 1)

3
Ip(G)ρ(G)2−p −

2πρ(G)4(2− p)

3(p + 2)
, (5)

holds, where −1 ≤ p ≤ 2. Putting p = 2 in (5), we obtain Makai’s inequality [12]

P(G) <
4

3
A(G)ρ(G)2.

We note that in (4) and (5) the parameter p changes at different intervals. In the class of
convex domains, in [11] two-sided inequalities between Euclidean moments of different orders were
established and the following estimation for the torsional rigidity was obtained

(p+ 1)Ip(G)

2ρ(G)p−2
+

pπρ(G)4

2(p + 2)
≤ P(G) ≤

2

3

(

(p+ 1)(p + 2)

ρ(G)p−2
Ip(G) − pl(ρ(G))ρ(G)3

)

,

where p ≥ 0, and l(ρ(G)) is defined below, see formula (6). The left inequality for p = 0 coincides
with the known inequality by Polya and Szego [1] and is its generalization. The right inequality for
p = 0 belongs to Makai [12].

In this paper, we suggest one more method to construct such estimations in the class of convex
domains.

1. MAIN RESULTS

We will call a convex domain G a stretching of a convex domain G0, if G0 can be obtained
from G by cutting off some its rectangular fragment and then combining the rest parts so that
ρ(G0) = ρ(G). On the other side, it is naturally to call G0 a contraction of G. For example, a
square is a contraction of a rectangle, and square is non-contractible. Stretching and contraction
of a domain are defined not by a unique way. We can stretch it up to infinity and contract up to
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touching its side of the maximal inscribed circle. But not all domains can be stretchable. Actually,
it is easy to see that triangles and polygonal domains with odd number of sides are non-stretchable.
If G is not stretchable, then we put G0 ≡ G.

Denote by Γ the subset of the set of convex domains which contains polygons, described near
circles, and circular polygons obtained from described polygons by replacement of some their sides
or parts of sides with arcs of the inscribed circle. At last, we add to Γ domains which are stretching
of elements of Γ.

Let µ ≥ 0. Denote

G(µ) := {x ∈ G | ρ(x,G) > µ}, a(µ) := A(G(µ)) :=

∫

G(µ)

dA;

they are the level set of the distance function ρ(x,G) and the area of the level set G(µ).

We will denote by L(G) the length of the boundary of G. Let

l(µ) := L(G(µ)), l(ρ(G)) := lim
µ→ρ(G)

l(µ). (6)

In [11] the following statements are established.

Lemma 1. Let G be a convex domain and 0 ≤ µ ≤ ρ(G). Then G(µ) is also a convex domain

and the set G(ρ(G)) := {x ∈ G : ρ(x,G) = ρ(G)} is either a single-point set or a segment of

length l(ρ(G))/2.

Lemma 2. Let G be a convex domain and A(G) < +∞. then

a(µ) ≥ A(G)

(

1−
µ

ρ(G)

)2

+ l(ρ(G))µ

(

1−
µ

ρ(G)

)

, (7)

where 0 ≤ µ ≤ ρ(G(µ)). The equality for all such µ is attained if and only if G ∈ Γ.

We note that in [11] the cases of equality in (7) are not completely described.

Let G be a convex domain. We juxtapose to G any domain G♦ ∈ Γ which has the same area,
radius of maximal inscribed disc and the functional l(ρ(G♦)) = l(ρ(G)). We note that such domain

G♦ is not unique.

Theorem 1. Let G be a convex domain of finite area. Let P (t) be a nonconstant absolutely

continuous function on (0,ρ(G)) and dP (t) ≥ 0. Then
∫

G

P (ρ(x,G))dA ≥

∫

G♦

P (ρ(x,G♦)) dA,

where G♦ ∈ Γ corresponds to G. The equality is attained for all domains from the class Γ.

Proof is based on the lemmas above and symmetrization methods.

Following [10], for p > 0 we define the functional

ip(µ) := p

∫

ρ(G)

µ

tp−1
a(t) dt, (8)

0 ≤ µ ≤ ρ(G). We note that in the class of convex domains there is no need for additional restriction
on the parameter p, in contrast to the case considered in [10]. If µ = 0, then (8) coincides with the
Euclidean moment of domain G with respect to its boundary, i. e., ip(0) = Ip(G).

The following auxiliary statement is valid; in some sense, it is inverse to the similar lemma
from [10].
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Lemma 3. Let G be a convex domain on the plane of finite area. Then for 0 ≤ µ ≤ ρ(G) we have

iq(µ) ≥
Iq(G) yq(µ)

2ρ(G)q+2
+

q l(ρ(G))µq(ρ(G)− µ)2

2ρ(G)
, (9)

where q ≥ 0 and

yq(µ) = q(q + 1)(q + 2)

ρ(G)
∫

µ

tq−1(ρ(G)− t)2 dt.

The equality in (9) for all admissible µ takes place only for domains from the class Γ.

Theorem 2. Let G be a convex domain on the plane of finite area and 0 ≤ q ≤ 2. Then for p ≥ q
the inequality

P(G) ≤
4

3(q + 2)

[

(p + 1)(p + 2)

ρ(G)p−2
Ip(G)− (p− q)l(ρ(G))ρ(G)3

]

−
2π(2 − q)ρ(G)4

3(q + 1)(q + 2)
(10)

holds. The multiplicative constants of the functionals Ip(G) and l(ρ(G)) on the right-hand side

of (10) are sharp.

For q = 2 the statement of Theorem 2 coincides with a theorem proved in [11].

Theorem 3. Let G be a convex domain on the plane of finite area and let q > 0. Then for 0 ≤ p ≤ q
the inequality

P(G) ≥
1

2(q + 2)

[

(p+ 1)(p + 2)

ρ(G)p−2
Ip(G) + (q − p)l(ρ(G))ρ(G)3

]

+
πqρ(G)4

2(q + 2)
(11)

holds where the equality is attained only for a disc.

We note that, in both the theorems, the expressions in the brackets consist of two summands
every of which is comparable with the torsional rigidity in the sense of Polya and Szego [1], but
the rest of functionals on the right-hand sides of (10) and (11) are values of a higher order of
smallness. Therefore, the functionals in the brackets, are examples of more complicated geometric
characteristics of domains, comparable with the torsional rigidity.

In proving of the presented statements, the following theorem plays a key role; it is obtained by
application of Lemma 3 and has an independent interest.

Theorem 4. Let G be a convex domain on the plane with finite area. Then for 0 ≤ q ≤ p < ∞ the
inequality

Ip(G) ≥
ρ(G)p−q

(p+ 1)(p + 2)

[

(q + 1)(q + 2)Iq(G) + (p− q)l(ρ(G))ρ(G)q+1
]

is valid. The equality holds if and only if G ∈ Γ.

In conclusion, we note that the variety of inequalities of the considered form for the torsional
rigidity is connected with the fact that in the class of convex domains

L(G) < +∞ ⇔ A(G) < +∞ ⇔ Ip(G) < +∞ (−1 < p < +∞) ⇔ P(G) < +∞

(see [4, 9, 11]).
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