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ляционные соотношения между агрегационными свойствами алкилированных моно$
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Растворы поверхностно$активных веществ (ПАВ)
находят широкое применение в современных техноло$
гиях, в том числе в синтезе наночастиц и мезопорис$
тых материалов, диспергировании углеродных нано$
трубок, нефтедобыче, катализе, биодиагностике и
т.д.1—5 Катионные ПАВ (КПАВ) вызывают особый
интерес исследователей по нескольким причинам.
Благодаря наличию гидрофобного фрагмента и
положительно заряженных групп КПАВ способны
встраиваться в липидные бислои, эффективно взаи$
модействовать с внутриклеточными мембранами,
фосфатными группами нуклеиновых кислот и други$
ми отрицательно заряженными биосубстанциями.
Это обусловливает привлекательность КПАВ с точки
зрения разработки невирусных векторов, переносчи$
ков лекарственных и диагностических средств, анти$
микробных препаратов. КПАВ традиционно исполь$
зуются в мицеллярном катализе с целью разложения
фосфорорганических экотоксикантов по механизму
щелочного гидролиза6. Вместе с тем для КПАВ харак$
терно значительное разнообразие химической струк$
туры головных групп, включая варьирование приро$
ды заряженного атома (N, P, S) и строения его замес$
тителей, а также переход к циклическим головным
группам. Это позволяет проводить систематические

исследования гомологических рядов и устанавливать
корреляции структура—свойство. Применение ПАВ
с арильными7 и различными функциональными за$
местителями в головной группе8, а также переход от
гексадецилтриметиламмонийбромида к гексадецил$
пиридинийбромиду9 дают возможность повысить ка$
талитическую активность мицеллярных систем в про$
цессах разложения эфиров кислот фосфора. В ряду
КПАВ примеры использования ПАВ с бицикличес$
кой головной группой в качестве мицеллообразую$
щих каталитических агентов единичны10,11. Вместе
с тем их применение позволяет увеличить комп$
лексообразующую способность ПАВ по отношению
к ионам металлов, а следовательно, усилить катали$
тическую активность систем за счет перехода от обыч$
ных мицелл к металломицеллам10, а также провести
функционализацию ПАВ и перейти от моно$ к ди$
катионному типу ПАВ.11

В данной работе исследована каталитическая и
биологическая активность ряда КПАВ (1—6), содер$
жащих бициклический фрагмент в головной группе,

* Посвящается академику Российской академии наук
В. Н. Чарушину в связи с его 60$летием.

n = 12 (1), 14 (2), 16 (3), 18 (4)
R = H (5), OH (6)
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и проведен анализ полученных результатов с учетом
данных по мицеллообразованию и солюбилизирую$
щим свойствам КПАВ 1—6.

Каталитическая активность изучена на примере
щелочного гидролиза 4$нитрофенилдиэтилфосфа$
та (7) (схема 1) в мицеллярном растворе монокатион$
ного производного 1,4$диазабицикло[2.2.2]октана (3).
Предварительно методом ЯМР с фурье$преобразова$
нием и импульсным градиентом магнитного поля
(ЯМР$ИГМП) исследована агрегация КПАВ 3 в при$
сутствии фосфата 7, что позволило оценить влияние
солюбилизата на агрегационные характеристики и
количественно охарактеризовать его связывание ми$
целлами 3. Кинетика гидролиза фосфата 7 изучена
методами спектроскопии ЯМР 1Н и 31Р, а также
УФ$спектрофотометрии. Кроме того, исследована
биологическая активность моно$ и дикатионных про$
изводных 1,4$диазабицикло[2.2.2]октана 1—6 и ее
взаимосвязь с агрегационными свойствами исследуе$
мых ПАВ.

Схема 1

Экспериментальная часть

Соединения 1—4 получены взаимодействием 1,4$диаза$
бицикло[2.2.2]октана (DABCO) с соответствующими алкил$
бромидами по описанной ранее методике12.

4�Гексадецил�1�этил�1,4�диазониабицикло[2.2.2]октан�
дибромид (5). Раствор смеси 3 г (7.2 ммоля) КПАВ 3 и 7.8 г
(10$кратный избыток) этилбромида в 30 мл ацетонитрила
кипятили 10 ч в колбе с обратным холодильником. По окон$
чании реакции отогнали растворитель и остаток этилбро$
мида. Выпавший солевой продукт растворили в небольшом
количестве этанола, осадили из горячего раствора аце$
тоном, высушили в вакууме. Выход 2.95 г (78%), т.пл.
216—218 °С. ИК$спектр (КBr), ν/см–1: 2960, 2920, 2850, 1464,
1397, 1113, 1058, 855, 806, 724. Спектр ЯМР 1Н (D2О, δ, м.д.):
0.85 (т, 3 Н, N+СН2СН2(СН2)13СН3, J = 6.6 Гц); 1.28—1.40
(м, 26 Н, N+СН2СН2(СН2)13СН3)); 1.44 (т, 3 Н, N+СН2СН3,
J = 7.3 Гц); 1.88 (уш.с, 2 Н, N+СН2СН2(СН2)13СН3); 3.70—3.71
(м, 4 Н, N+СН2СН2(СН2)13СН3+N+CH2CH3); 4.05—4.15
(м, 12 Н, 2 N+(СН2)3).

1�Гидроксиэтил�4�гексадецил�1,4�диазониабицикло[2.2.2]�
октандибромид (6). Раствор смеси 1 г (2.4 ммоля) КПАВ 3 и
0.359 г (1.2$кратный избыток) 2$бромэтанола в 20 мл ацето$
нитрила кипятили 20 ч в колбе с обратным холодиль$
ником. Выпавший солевой продукт отделили фильтрова$
нием, перекристаллизовали из этанола и высушили в ваку$
уме. Выход 0.82 г (63%), т.пл. 190—192 °С. ИК$спектр
(КBr), ν/см–1: 3346, 2958, 2920, 2851, 1468, 1398, 1378, 1123,

1087, 1056, 865, 722. Спектр ЯМР 1Н (D2О, δ, м.д., J/Гц):
0.86 (т, 3 Н, N+СН2СН2(СН2)13СН3, J = 8.6 Гц); 1.27—1.39
(м, 26 Н, N+СН2СН2(СН2)13СН3); 1.86 (уш.с, 2 Н,
N+СН2СН2(СН2)13СН3); 3.79 (с, 2 Н, СН2СН2ОН); 4.11—4.18
(м, 14 Н, 2 N+(СН2)3+N+СН2СН2ОН).

4$Нитрофенилдиэтилфосфат (7) («Sigma») использовали
без предварительной очистки.

Измерение зависимости коэффициента самодиффузии
(D) молекул ПАВ и солюбилизата (фосфата 7) выполняли
на ЯМР$спектрометре с фурье$преобразованием «Bruker
AVANCE 400» с использованием импульсного градиента G
поляризующего магнитного поля. Спектрометр снабжен
приставкой ИГМП, создающей градиенты до 0.53 Тл•м–1.
Значение D определяли по спаду интегральной интенсив$
ности сигналов стимулированного спинового эха протонов
различных групп алкильного и циклического фрагментов
ПАВ, который вызван изменением градиента поля в серии
последовательности трех 90$градусных импульсов:

, (1)

где γ — гиромагнитное отношение ядра (протона), δ — дли$
тельность градиентного импульса, ∆ — промежуток време$
ни между градиентными импульсами. В зависимости от ве$
личины измеряемых коэффициентов самодиффузии посто$
янные значения времен δ и ∆ изменялись в пределах 5—10 и
50—70 мс соответственно. Эти времена значительно боль$
ше времени обмена молекулами между свободной и мицел$
лярной компонентами раствора. Величины D молекул ПАВ
определяли усреднением значений, полученных по сигна$
лам протонного резонанса их различных фрагментов, а для
молекул солюбилизата 7 — по сигналам ЯМР протонов фе$
нильной группы молекулы. Погрешность измерения D при
больших концентрациях ПАВ составляла ~2%, при малых —
~5%. Температуру образцов поддерживали с помощью тер$
мостатирующей системы спектрометра.

Спектры ЯМР 1H и 31Р регистрировали на приборе
«Bruker AVANCE 400» (162 МГц). Химические сдвиги ли$
ний 31Р определяли относительно внешнего эталона H3PO4.

Кинетику реакций (УФ$спектрофотометрический ме$
тод) изучали путем измерения увеличения оптической плот$
ности полосы поглощения 4$нитрофенолят$аниона при
400 нм на спектрофотометре «Specord UV—Vis» в термоста$
тируемых кюветах. Наблюдаемые константы скорости ре$
акции (kapp/с–1) определяли по уравнению первого поряд$
ка. Концентрация субстрата 7 в начале реакции составляла
5•10–5 моль•л–1.

Обсуждение полученных результатов

Зависимости величин D молекул ПАВ и солюби$
лизата (фосфат 7) в растворах тяжелой воды от общей
концентрации ПАВ (Сt) показаны на рисунке 1. При
концентрациях ниже критической концентрации ми$
целлообразования (ККМ) величины D молекул ПАВ
и солюбилизата имеют постоянные значения, равные
4.2•10–10 и 6.2•10–10 м2•с–1 соответственно (см. рис. 1,
вставка). Это означает, что молекулы ПАВ и фосфата
при концентрациях ниже ККМ диффундируют в ра$
створе как свободные мономерные частицы. Кроме
того, близость областей перегиба (см. рис. 1, вставка)
указывает на то, что самодиффузия молекул солюби$
лизата связана с самодиффузией молекул ПАВ, обра$
зующих мицеллы.
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Согласно опубликованным данным13 величину
ККМ наиболее точно можно определить с помощью
зависимости Dobs от 1/Сt (рис. 2). Точки излома на
зависимостях 1 и 2 отвечают концентрациям ПАВ
9•10–4 и 1.6•10–3 моль•л–1 соответственно. Более вы$
сокое значение ККМ, определенное на основе зави$
симости 2, может быть обусловлено тем, что сниже$
ние коэффициента самодиффузии ПАВ отражает об$
разование не только мицелл, но и предмицеллярных
агрегатов, имеющих низкие числа агрегации и не спо$
собных к солюбилизации органических субстратов.
Подобное расхождение величин ККМ характерно при
использовании зондов14. Определенное нами ранее
значение ККМ КПАВ 3 в тяжелой воде, не содержа$
щей субстрата, равно 8.5•10–4 моль•л–1,15 т.е. при$
сутствие фосфата практически не влияет на мицелло$
образующие свойства ПАВ.

При анализе экспериментальных результатов ис$
пользовали псевдофазную модель мицеллообразова$
ния, или модель двух состояний13,16,17. В рамках этого

подхода наблюдаемая величина D молекул ПАВ и со$
любилизата при условии быстрого обмена между сво$
бодным и мицеллярным компонентами раствора мо$
жет быть представлена в виде вкладов молекул в сво$
бодном (Df) и мицеллярном (Dm) состояниях:

Dobs = pfDf + pmDm, (2)

где pf и pm — oтносительное содержание в растворе
свободного и мицеллярного компонентов соответ$
ственно,

pf = Cf/Ct, pm = Cm/Ct, pf = 1 – pm. (3)

Уравнения (2) и (3) позволяют перейти к уравне$
нию для выражения концентрации свободного (Сf) и
мицеллярного (Сm) компонентов ПАВ и солюбилизата:

Cf = Ct – Cm = Ct(Dobs – Dm)/(Df – Dm). (4)

Считается, что влияние мицеллобразования на ко$
эффициент самодиффузии молекул ПАВ незначи$
тельно и в области концентраций выше ККМ он мало
отличается от такового в области ККМ (Df,CMC), а для
концентраций выше ККМ вводится незначительная
поправка, учитывающая эффект препятствий со сто$
роны мицелл:

Df = Df,CMC(1 + φ/2)–1,

где φ – объемная фракция мицеллярного ПАВ; φ =
= M(Ct – CMC)/ρ, где M — мольная масса ПАВ,
ρ — его плотность, CMC — критическая концент$
рация мицеллообразования. Мольную массу ПАВ
0.393 кг•моль–1 определяли с учетом степени связы$
вания противоионов Br–, считая ее равной 0.7.18

Мольная масса солюбилизата равна 0.275 кг•моль–1.
Значения D мицелл (Dm) находили с помощью ка$

сательной 3 (см. рис. 1) при больших концентрациях
раствора. Этот подход основан на данных работы15,
полученных при использовании гидрофобного зон$
да гексаметилдисилоксана. Было показано, что
при больших концентрациях 3 (>10–2 моль•л–1)
концентрационная зависимость D солюбилизата (Dm)
сливается с зависимостью для ПАВ (Dobs). В пред$
шествующей области концентраций КПАВ 3
(2•10–3—1•10–2 моль•л–1) концентрационная за$
висимость Dm совпадает с касательной к зависи$
мости Dobs для ПАВ на участке с концентрацией
3 > ~10–2 моль•л–1.15 На основе данных о Dobs, Df и
Dm по формуле (4) удается найти концентрации моле$
кул ПАВ и солюбилизата в свободном состоянии и
в составе мицелл.

Полученные результаты могут быть использованы
для оценки числа молекул ПАВ и солюбилизата (фос$
фата), включенных в мицеллы. Объем мицеллы (Vm)
складывается из объемов, занятых молекулами ПАВ
(VSurf) и солюбилизата (VPh)

Vm = VSurfnSurf + VPhnPh, (5)

где VSurf = MSurf/(ρSurfNA) — объем, занимаемый моле$
кулой ПАВ, VPh = MPh/(ρPhNA) — объем, занимаемый

Рис. 1. Зависимость наблюдаемого коэффициента самодиф$
фузии KПАВ 3 (1) и фосфата 7 (2) от концентрации ПАВ
при 30 °С, С7 = 10–3 моль•л–1; касательная к кривой 1 при
высоких концентрациях ПАВ (3). На вставке — зависимос$
ти 1 и 2 в области низких концентраций ПАВ.

Рис. 2. Зависимость наблюдаемого коэффициента самодиф$
фузии КПАВ 3 (1) и фосфата 7 (2) от обратной концентра$
ции ПАВ при 30 °С.
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молекулой солюбилизата в мицелле, MSurf и МPh —
молекулярные массы ПАВ и солюбилизата, ρSurf и ρPh —
плотности ПАВ и солюбилизата, nSurf и nPh — числа
молекул ПАВ и солюбилизата в мицелле, NA — чис$
ло Авагадро. С учетом числа агрегации мицеллы
N = nSurf + nPh уравнение (5) можно привести к следу$
ющему виду:

. (6)

Если в формулу (6) ввести фактор солюбилиза$
ции, определив его как β = nPh/nSurf = Cm,Ph/Cm,Surf,
где Cm,Ph и Cm,Surf — концентрации молекул солюби$
лизата и ПАВ в составе мицелл, то для числа агрега$
ции мицелл получим выражение

N = VmNA(1 + β)/[MSurf/ρSurf + (MPh/ρPh)β]. (7)

Полагая, что мицеллы имеют сферическую фор$
му, можно рассчитать объем мицелл по формуле
Vm = (4/3)πR3, где R — радиус «сухих» мицелл, т.е.
радиус мицелл, свободных от гидратной оболочки.
Если допустить, что гидратная оболочка мицелл со$
стоит из одного слоя гидратированной воды, то ради$
ус «сухих» мицелл может быть оценен как разность
между гидродинамическим радиусом мицелл Rh, оп$
ределенным с учетом соотношения Стокса—Эйнш$
тейна

Rh = kT/(6πηDm),

и диаметром молекул воды d, т.е. R = Rh – d. Коэффи$
циент вязкости мицеллярного раствора можно опре$
делить с помощью формулы Эйнштейна—Симха19

η = η0(1 + 2.5φ),

где η0 = 0.969 сПз — вязкость чистого растворителя
(дейтерированной воды при 30 °C)20. Значения плот$
ности ПАВ и солюбилизата принимали равными
103 кг•м–3. Число молекул солюбилизата в мицеллах
рассчитывали на основе выражения

nPh = N/(1 + 1/β).

Значения экспериментальных и вычисленных па$
раметров представлены в таблице 1. Как видно, уве$
личение концентрации ПАВ в растворе приводит
к возрастанию относительной доли молекул ПАВ,

участвующих в мицеллообразовании, общей концен$
трации молекул фосфата, связанных с мицеллами, ра$
диуса и числа агрегации мицелл, а также к уменьше$
нию числа молекул солюбилизата в мицелле.

Полученные данные позволяют рассчитать коэф$
фициент распределения солюбилизата между мицел$
лярной и водной фазами по соотношению соответ$
ствующих мольных концентраций: СPh/(1 – Cm,Ph),
где СPh — общая концентрация фосфата 7 в раство$
ре18. Как видно из рисунка 3, на начальном участке
зависимости доля фосфата, связанного мицеллами,
линейно увеличивается с ростом концентрации ПАВ
с дальнейшей тенденцией к насыщению. Коэффи$
циент распределения, рассчитанный с учетом накло$
на линейного участка зависимости, составляет 211,
что хорошо согласуется с опубликованными ранее18

данными.
Связывание солюбилизата мицеллами ПАВ влия$

ет не только на количественные характеристики ми$
целлярной системы, но и на его реакционную способ$
ность, что показано на примере щелочного гидролиза
фосфата 7 (см. схему 1).

Методом спектроскопии ЯМР 1H и 31Р установле$
но, что в результате гидролиза фосфата 7 как в отсут$
ствие, так и в присутствии ПАВ образуются продукты
реакции 8 и 9, химические сдвиги сигналов которых
указаны в таблице 2.

Результаты измерения кинетики гидролиза фос$
фата 7 методом спектроскопии ЯМР 1H представле$
ны на рисунке 4. Как в отсутствие (см. рис. 4, a), так и
в присутствии ПАВ (см. рис. 4, b) в процессе реакции
(см. схему 1) происходит одновременное уменьшение
интенсивности сигнала фосфата 7 (протоны Нα и Нβ)
и увеличение интенсивности сигналов продуктов 8
(протоны OCH2) и 9 (протоны Нα и Нβ). Наблюдаемая
константа скорости гидролиза составляет 2.5•10–4 и

Таблица 1. Параметры, характеризующие систему КПАВ
3—фосфат 7—D2O при 30 °С*

Сt•103 Сm,Surf•103 Сm,Ph•104 Dm•1011 R β N nPh

моль•л–1 /м2•с–1 /Å

3 2.2 2.9 7.6 28.3 0.134 151 18
5 4.3 4.5 7.0 30.3 0.095 183 16
10 9.5 6.3 6.6 32.5 0.066 224 14
20 19.5 8.0 6.2 34.3 0.040 261 10
48 47.0 8.5 5.2 37.5 0.018 338 6

* С7 = 10–3 моль•л–1.

Рис. 3. Зависимость соотношения мольных концентраций
фосфата 7 в мицеллярной и водной фазах от концентрации
КПАВ 3 в составе мицелл.
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9.1•10–4 с–1 в отсутствие и в присутствии 0.02 М ПАВ
соответственно, т.е. в мицеллярном растворе КПАВ 3
реакция ускоряется в 3.6 раза.

Благоприятное влияние мицелл 3 на гидролиз фос$
фата 7 было подтверждено также при исследовании
кинетики процесса УФ$спектрофотометрическим ме$
тодом. Зависимость наблюдаемой константы скорос$
ти реакции гидролиза фосфата 7 от концентрации
ПАВ представлена на рисунке 5, она имеет явно вы$
раженный максимум. Подобный вид зависимости яв$
ляется типичным для катализируемых мицеллами
процессов18 и свидетельствует о связывании фосфата

агрегатами ПАВ, т.е. об образовании комплекса ми$
целла—субстрат. Кинетические данные (см. рис. 5)
проанализированы с помощью уравнения псевдофаз$
ной модели мицеллярного катализа18:

, (8)

где k2,app (л•моль–1•с–1) — наблюдаемая констан$
та скорости второго порядка, полученная при де$
лении kapp на концентрацию нуклеофила, k2,0 и
k2,m (л•моль–1•с–1) — константы скорости второго
порядка в массе растворителя и мицеллярной псевдо$
фазе соответственно, V (л•моль–1) — мольный объем
ПАВ, KPh и KNu (л•моль–1) — константы связывания
фосфата и нуклеофила с мицеллами.

Рассчитанные по уравнению (8) параметры ката$
лизируемого мицеллами процесса гидролиза фосфата 7
в присутствии ПАВ 3 при 25 °С, CNaOH = 10–3 моль•л–1

и C7 = 5•10–5 моль•л–1 приведены ниже

k2,m KPh KNu (kapp•k0
–1)max

a Fm Fc
/л•моль–1•с–1

л•моль–1

0.0012 3800 70 23 0.125 180

a k0 — наблюдаемая константа скорости гидролиза фос$
фата 7 в отсутствие ПАВ.

Эти данные свидетельствуют о высокой константе
связывания фосфата с мицеллами (KPh) и о том, что
скорость гидролиза фосфата 7 в присутствии ПАВ
увеличивается до 23 раз. В рамках псевдофазной мо$
дели максимальное ускорение процесса описывается
уравнением

~ , (9)

где первый сомножитель в правой части отражает
фактор смены микроокружения реагентов при их пе$
реходе из растворителя в мицеллярную фазу (Fm),
а второй — эффект концентрирования реагентов в ми$
целлярной фазе (Fc).

Таблица 2. Химические сдвиги (δ, м.д.) сигналов ЯМР 1H и
31Р соединений 7—9 в растворах КПАВ 3 (0.02 моль•л–1)
при 35 °С

Соеди$ δP δН
a

нение
Нα Нβ OCH2 CH3

7 –1.59 7.41; 7.42b 8.31; 8.31b 4.29; 4.30b 1.33b

8 –2.29 — — 3.88; 3.89b 1.22b

9 — 6.40; 6.49b 7.95; 8.04b — —

a Обозначения протонов приведены на схеме 1. b Хими$
ческий сдвиг в отсутствие ПАВ.

Рис. 4. Изменение интегральной интенсивности сигналов
ЯМР 1Н субстрата 7 (1, 1´) и продуктов реакции 8 (2, 2´),
9 (3) в ходе гидролиза фосфата 7 в отсутствие (a) и в при$
сутствии КПАВ 3 (b) при 35 °С (С7 = 10–3 моль•л–1,
С3 = 0.02 моль•л–1, СNaOH = 0.02 моль•л–1).
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Рис. 5. Зависимость наблюдаемой константы скорости
гидролиза фосфата 7 от концентрации КПАВ 3 при 25 °С,
СNaOH = 10–3 моль•л–1.

0.01 0.02 Ct•103/моль•л–1

kapp•104/c–1

2.0

1.5

1.0

0.5



115ISSN 0002�3353 Известия Академии наук. Серия химическая, 2012,  № 1

Таблица 3. Бактериостатическая и фунгистатическая активность моно$ и дикатионных производных 1,4$ди$
азабицикло[2.2.2]октана

ПАВ Бактериостатическая и фунгистатическая активность/мкг•мл–1

St. aureus E. coli B. cereus Ps. aeruginosa Tr. gipseum Asp. niger C. alb.

1 12.5 250 31.3 >500 >500 >500 125
2 3.1 62.5 7.8 >500 500 >500 62.5
3 0.3 6.3 1.9 500 62.5 500 3.1
4 0.3 6.3 1.9 500 15.6 125 0.78
5 0.5 7.8 1.9 500 250 >500 31.3
6 0.5 6.3 1.9 500 62.5 500 3.1
10 0.25 0.5 0.25 0.5 — – –
11 — — — — – 20 –
12 0.5 6.3 3.1 250 31.3 62.5 3.1

Из приведенных данных видно, что главной при$
чиной ускорения реакции является фактор концент$
рирования, превышающий два порядка. Фактор микро$
окружения в данном случае меньше 1, т.е. оказывает
негативное воздействие на скорость реакции. Неко$
торое расхождение в количественных параметрах, по$
лученных методами спектроскопии ЯМР и спектро$
фотометрии, вполне объяснимо. Специфика каждого
метода требует особого алгоритма и индивидуальных
условий эксперимента, в том числе концентраций ре$
агентов и продолжительности реакции. Несколько
более высокие константы скорости, определенные
методом ЯМР, обусловлены более высоким значени$
ем рН раствора. Высокая константа связывания фос$
фата, рассчитанная по данным спектрофотометрии
(см. выше), в отличие от данных спектроскопии ЯМР,
может быть обусловлена присутствием щелочи, ин$
дуцирующим эффект высаливания органического
субстрата из водной фазы в мицеллярную. Вместе
с тем установленные тенденции хорошо согласуются
и дополняют друг друга. Например, рассчитанные вы$
сокие значения констант связывания и распределе$
ния фосфата позволяют наглядно объяснить ме$
ханизм каталитического действия мицелл как след$
ствие концентрирования реагентов, а снижение кон$
станты скорости реакции с ростом концентрации
ПАВ (см. рис. 5) — как следствие разбавления реаген$
тов в мицеллярной фазе (см. табл. 1, снижение коли$
чества молекул фосфата, приходящихся на одну ми$
целлу). Таким образом, мицеллообразование моно$
катионного производного 1,4$диазабицикло[2.2.2]ок$
тана существенным образом влияет на наблюдаемые
константы скорости щелочного гидролиза солюбили$
зированного мицеллами фосфата.

Одним из направлений наших исследований яв$
ляется создание полифункциональных наносистем21,
обладающих комплексом практически полезных ха$
рактеристик, включая солюбилизационную, катали$
тическую или ингибирующую активность, антикор$
розионные и антимикробные свойства. Такие систе$
мы могут быть востребованы, например, в условиях
эксплуатации нефтепромыслового оборудования22.
В этом случае критерием оценки является не дости$
жение высоких показателей по отдельным парамет$

рам, а создание систем с набором свойств, сопоста$
вимых с таковыми для известных аналогов. В рам$
ках рассмотренного подхода нами изучена биоло$
гическая активность алкилированных производных
DABCO и проведен количественный анализ соотно$
шения антимикробных свойств и агрегационных ха$
рактеристик.

Известно, что поверхностно$активные четвертич$
ные аммониевые соли проявляют антимикробную ак$
тивность, которая обусловлена наличием положи$
тельно заряженного центра и алкильного радикала,
обеспечивающих вклад электростатических и гидро$
фобных взаимодействий с клеточными мембрана$
ми23. Длина алкильного радикала оказывает суще$
ственное влияние на антимикробные свойства ПАВ,
и в гомологических рядах наблюдается усиление ак$
тивности с увеличением числа углеродных атомов (n)
до 12—16.24 Однако до настоящего времени вопрос
о взаимосвязи антимикробных свойств и агрегацион$
ной способности остается дискуссионным. В данной
работе проведена оценка бактериостатической, фун$
гистатической, бактерицидной и фунгицидной актив$
ности кватернизованных производных DABCO с ис$
пользованием коллекции индикаторных тест$штам$
мов микроорганизмов (Staphylococcus aureus$209 P
(St. aureus), Escherichia coli F50 (E. coli), Bacillus
cereus 8035 (B. cereus), Pseudomonas aeruginosa 9027
(Ps. aeruginosa), Trichophyton gipseum (Tr. gipseum),
Aspergillus niger (Asp. niger), Candida albicans (C. alb.)),
а также изучена корреляция антимикробных и ми$
целлообразующих свойств для указанного гомологи$
ческого ряда. Эталоном сравнения служили препа$
раты антибактериального (ципрофлоксацин (10))
и антигрибкового (амфотерицин В (11)) действия,
а также близкое по структуре к исследуемому ряду
соединений КПАВ гексадецилтриметиламмоний$
бромид (12). Полученные результаты представлены
в таблицах 3 и 4.

Установлено, что острая токсичность (ЛД50) со$
единений 1, 2 и 3 при внутрибрюшинном способе вве$
дения лабораторным мышам составляет 61.1, 50.9 и
61.1 мг•кг–1 соответственно. С учетом классифи$
кации токсичности25 изученные вещества могут быть
отнесены к умеренно токсичным (III класс токсич$
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Таблица 4. Бактерицидная и фунгицидная активность моно$ и дикатионных производных 1,4$диазаби$
цикло[2.2.2]октана

ПАВ Бактерицидная и фунгицидная активность/мкг•мл–1

St. aureus E. coli B. cereus Ps. aeruginosa Tr. gipseum Asp. niger C. alb.

1 >500 >500 >500 >500 >500 >500 >500
2 500 >500 >500 >500 >500 >500 500
3 5 >500 500 >500 500 >500 50
4 5 >500 500 >500 31.3 500 5
5 50 >500 500 >500 >500 >500 125
6 50 >500 500 >500 500 >500 50
10 0.25 0.5 0.25 0.5 — – —
11 — — — — 31.3 20 0.39
12 50 >500 500 >500 500 >500 50

ности); они в ∼2.5 раза менее токсичны, чем ПАВ 12
(ЛД50 = 24.0).

Согласно полученным данным исследованные
ПАВ проявляют антимикробную активность, причем
часто сопоставимый с эталонными препаратами уро$
вень свойств достигается одновременно для штаммов
бактерий и грибов. В тех случаях, когда в исследован$
ном гомологическом ряду наблюдается дифференци$
рованный эффект, антимикробные свойства сущест$
венно зависят от длины углеводородного радикала,
достигая максимальных показателей при n = 18. Эта
закономерность характерна практически для всей се$
рии исследуемых штаммов и особенно ярко проявля$
ется в случае показателей статической активности.
Иногда соединения исследованной серии демонстри$
руют более высокую антимикробную активность, чем
соединение 12. Влияние природы головной группы
наглядно прослеживается на штамме St. aureus: заме$
на структуры головной группы в молекуле 12 на би$
циклическую (КПАВ 3) обеспечивает повышение
бактерицидного эффекта на порядок (см. табл. 4).
Можно также отметить существенно более высокую
антигрибковую активность соединения 4 по сравне$
нию с 12 и 3 в отношении Tr. gipseum и C. alb. Фунги$
статическая активность октадецильного гомолога
в отношении этих штаммов выше соответственно
в 2—4 и 4 раза (см. табл. 3), а фунгицидная актив$
ность — в 16 и 10 раз (см. табл. 4).

Введение второго заряженного центра оказывает
негативное влияние на антигрибковую активность:
переход от соединения 3 к 5 в 4 раза снижает анти$
грибковую активность в отношении Tr. gipseum и
в 10 раз — в отношении C. alb. При этом антимикроб$
ная активность в отношении B. cereus, E. coli и
St. aureus практически не изменяется.

Таким образом, полученные данные позволяют
сделать вывод, что введение в структуру КПАВ би$
циклического фрагмента представляет интерес с точ$
ки зрения создания малотоксичных для млекопи$
тающих антимикробных (особенно антигрибковых)
средств и наилучший эффект может быть получен при
увеличении длины алкильной цепи этого типа ПАВ и
достижении оптимального соотношения липофиль$
но$гидрофильных свойств.

Возможны различные механизмы подавления син$
тетическими ПАВ активности бактерий и грибов, они
включают вклад нескольких составляющих. Очевид$
но, что наличие положительного заряда головных
групп обеспечивает на первом этапе электростатичес$
кое взаимодействие как с клеточными мембранами,
так и с пептидогликановым слоем, заряженным отри$
цательно за счет свободных карбоксильных групп.
Стенка клетки грамположительных бактерий содер$
жит почти на порядок больше (90%) пептидогликано$
вой составляющей по сравнению с грамотрицатель$
ными бактериями (~10%), что может обусловливать
разный уровень активности КПАВ в отношении бак$
терий этого типа (см. табл. 3). Влияние ПАВ на цело$
стность мембранной структуры любой клетки зави$
сит от его способности встраиваться в липидные би$
слои, поэтому определяется липофильной природой
соединений. Не исключено, что специфику анти$
микробного действия данной гомологической серии
в значительной степени определяет бициклический
фрагмент. При встраивании ПАВ в липидные мемб$
раны жесткость структуры бицикла может приводить
к необратимым изменениям в упаковке биоамфифи$
лов. Кроме того, вследствие структурных особеннос$
тей плотность заряда головных групп бициклическо$
го ПАВ может существенно отличаться от типичных
для КПАВ, что также будет влиять на его активность.

Тот факт, что антимикробные свойства КПАВ
проявляются при концентрациях, значительно мень$
ших ККМ, указывает на участие индивидуальных мо$
лекул ПАВ. Однако величина ККМ значительно по$
нижается в присутствии органических субстратов и
при повышении ионной силы раствора26. Поэтому
нельзя исключить вероятность вклада агрегирован$
ных молекул ПАВ в антимикробные эффекты. Кроме
того, процесс взаимодействия ПАВ с биоамфифила$
ми в любом случае предполагает формирование ло$
кальных смешанных структур и должен коррелиро$
вать с агрегационной активностью индивидуальных
компонентов. В рамках данной работы изучена кор$
реляция антимикробных свойств и мицеллообразую$
щей способности в гомологической серии и выведе$
ны количественные зависимости для ее описания.
С этой целью проведен регрессионный анализ полу$
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ченных данных. Ранее12 тензиометрическим методом
нами было показано, что в воде величины ККМ
ПАВ 1, 2, 3 и 4 при 25 °С равны 0.011, 0.004, 0.001 и
0.00012 моль•л–1 соответственно. Установлено, что
для соединений 1—4 зависимость бактериостатичес$
кой активности (Cbac/моль•л–1) от величины lgCMC
описывается параболической моделью:

St. aureus: lg(Cbac
–1) =

= –2.88 + 5.10(–lgCMC) – 0.711(–lgCMC)2 (R = 0.989),

E. coli: lg(Cbac
–1) =

= –4.07 + 5.02(–lgCMC) – 0.700(–lgCMC)2 (R = 0.989),

B. cereus: lg(Cbac
–1) =

= –1.81 + 4.14(–lgCMC) – 0.589(–lgCMC)2 (R = 0.999),

где R — коэффициент корреляции.
Для линейной модели значения R оказались более

низкими: 0.900 (St. aureus), 0.900 (E. coli), 0.888
(B. cereus).

При описании зависимости фунгистатической ак$
тивности (Cfun/моль•л–1) от величины lgCMC пара$
болической и линейной моделями были получены
практически равные коэффициенты корреляции:

C. alb.: lg(Cfun
–1) =

= –1.44 + 3.02(–lgCMC) – 0.300(–lgCMC)2 (R = 0.980),

lg(Cfun
–1) = 1.03 + 1.24(–lgCMC) (R = 0.971).

Зависимость бактериостатической и фунгистати$
ческой активности от числа атомов углерода в ради$
кале ПАВ лучше всего описывается параболической
моделью:

St. aureus: lg(Cbac
–1) = –7.57 + 1.45n – 0.0382n2 (R = 0.976),

E. coli: lg(Cbac
–1) = –8.67 + 1.43n – 0.0375n2 (R = 0.976),

B. cereus: lg(Cbac
–1) = –6.92 + 1.37n – 0.038n2 (R = 0.992),

C. alb.: lg(Cfun
–1) = 2.40 – 0.139n – 0.0183n2 (R = 0.979).

Таким образом, алкилированные производные
1,4$диазабицикло[2.2.2]октана, являющиеся КПАВ
с головной группой бициклического строения, спо$
собны образовывать в воде мицеллярные агрегаты
с высокой солюбилизирующей способностью по от$
ношению к аналогу фосфорорганических экотокси$
кантов — 4$нитрофениловому эфиру диэтилфосфор$
ной кислоты, оказывают значительное каталитичес$
кое воздействие на реакцию щелочного гидролиза
последнего и превосходят по ряду показателей ан$
тимикробной активности аналоги с ациклической
головной группой. Установлены корреляционные
соотношения между агрегационными и антимикроб$

ными свойствами. Полученные результаты позво$
ляют рассматривать алкилированные производные
1,4$диазабицикло[2.2.2]октана как соединения, об$
ладающие одновременно рядом полезных свойств,
что открывает новые возможности при созда$
нии наноструктурированных систем комплексного
действия.
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