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Abstract 

Subject of study. A single InAs quantum dot in a one-dimensional photonic crystal based 

on GaAs is examined. Aim of study. The aim of this study is to develop a method for 

controlling photon emission frequencies from a single quantum dot within a one-

dimensional photonic crystal based on changes in the electromagnetic mass of an 

electron in the photonic crystal medium. Method. The proposed approach leverages the 

effect of changing the electromagnetic mass of an electron in the photonic crystal 

medium, manifesting as corrections to electron energy levels depending on the optical 

density of the medium. To control this density, the injection of free charge carriers and 

the quadratic electro-optic Kerr effect are proposed. Main results. The feasibility of in 

situ control of photon emission frequencies from a quantum dot was demonstrated 

using quantum transitions between the p- and s-states of a hydrogen-like InAs quantum 

dot situated in the air voids of a one-dimensional GaAs photonic crystal. This control is 

achieved through the effect of changing the electromagnetic mass of an electron, as well 

as tuning the refractive index of the photonic crystal via free charge carrier injection 

and the electro-optic Kerr effect. Calculations indicate that the photon energy control 

range available in experiments is limited to several tens of microelectronvolts, 

restricting practical applicability, and the observed displacement effect is smaller than 

experimentally recorded values. However, the energy level displacement, influenced by 

the quantum electrodynamic effect under investigation, exhibits a quadratic dependence 

on the refractive index of the material forming the photonic crystal. Consequently, the 

method is expected to scale significantly with increasing optical density. Such photonic 

crystals could be constructed using metamaterials with a high refractive index. Practical 

significance. The findings of this study, centered on developing a method for controlling 

photon emission frequencies from a single quantum dot in a one-dimensional photonic 

crystal, lay the groundwork for photon-emitter interfaces. These interfaces will 
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incorporate key quantum functionalities, including photonic qubits, single-photon light 

sources, and nonlinear quantum photon-photon gates. 

 

1. INTRODUCTION 

Quantum dots (QDs) are a promising platform for creating essential components of quantum 

computers [1–3], such as efficient single-photon sources [4–8], detectors [9], nanophotonic 

and nanoplasmonic devices [10], photovoltaics [11], and biological applications [12]. These 

applications rely on the unique optical properties of QDs, including a broad absorption 

spectrum, narrow spectral emission line, tunable emission wavelength due to quantum size 

effects, high photostability, and a high fluorescence quantum yield [10]. 

In the past decade, QDs embedded in the periodic structure of photonic crystals (PCs) have 

garnered significant attention [13]. PCs, composed of periodic arrays of optical resonators, 

exhibit sharp peaks in the photon density of states and spatial redistribution of the 

electromagnetic field, leading to a strong coupling effect between quantum emitters and the 

electromagnetic field. These systems are promising for creating photon qubits, microlasers 

[14], single-photon sources with tunable photon frequencies [15], and for observing and 

examining fundamental quantum electrodynamics (QED) effects [3, 16]. The advantage of 

QD-PC systems lies in their extremely small optical mode volume and seamless integration 

with optical waveguides and on-chip electronics [13, 17]. However, modifying the emission 

wavelength of QDs typically requires fabricating new dots with different parameters. 

Therefore, developing methods to control QD spectra in situ is an urgent challenge. This 

paper aims to present a method for controlling photon emission frequencies from a single 

quantum dot in a one-dimensional photonic crystal, based on altering the electromagnetic 

mass of the electron within the photonic crystal medium. 

This study investigates the control of the emission spectrum of a single InAs QD embedded 

in a one-dimensional GaAs PC [17]. The proposed method is based on altering the 

electromagnetic mass of the electron within the PC medium [18]. This alteration results in 

corrections to the electron energy levels, which are influenced by the optical density of the 

medium. To control this density, we propose using charge carrier injection and the quadratic 

electro-optic Kerr effect [19]. 

It is well established [20] that the interaction between an electron in a vacuum cavity of a PC 

and its own radiation field is sensitive to changes in the electromagnetic modes of the 

structure. However, this interaction is typically confined to the Lamb shift [21]. In [18], it 

was demonstrated that this modification also affects the formation mechanism of the 

electromagnetic mass of a free electron. This results in a correction δmpc to the electron’s self-

energy, which cannot be masked by the physical mass of the charged particle. In the context 

of atoms, this effect leads to shifts in energy levels and significant changes in ionization 

energy [22]. Notably, the QED effect being examined is amplified when the PC medium is 

composed of metamaterials with a high refractive index [23, 24]. This is because the 

correction δmpc to the electromagnetic mass depends quadratically on the refractive index of 



the optically dense components of the PC. This correction, which is anisotropic relative to the 

electron’s momentum direction, depends on the state of the charged particle and is several 

orders of magnitude larger than the Lamb shift in a vacuum [22]. 

The aim of this study is to develop a method for controlling photon emission frequencies 

from a single quantum dot in a one-dimensional photonic crystal based on altering the 

electromagnetic mass of the electron within the photonic crystal medium. 

2. MODIFICATION OF THE INTERACTION BETWEEN THE ELECTRON 

AND ITS OWN RADIATION FIELD IN A ONE-DIMENSIONAL PC 

For a long time, the electromagnetic mass of the electron remained a mystery due to its 

divergent nature, making it impossible to measure experimentally [25]. Later, the 

renormalization principle was introduced as part of solving the Lamb shift problem [26]. 

According to this principle, the physical mass of the electron, me, is expressed as the sum of 

the bare mass m0 and the electromagnetic mass mem: 

add rp70. (1) 

In [18], it was demonstrated that modifying the interaction of an electron in the vacuum 

cavities of a PC with its own radiation field results in a change in the electromagnetic mass of 

the electron. In the effect under investigation, the electromagnetic mass of the electron 

explicitly manifests for the first time. 

Since this new correction is observable, it must correspond to a specific quantum mechanical 

operator. In [18], an expression for this operator was derived for the case of a three-

dimensional PC: 

add rp70, (2) 

where α denotes the fine-structure constant; Îp = p̂/∣p̂∣ denotes the operator of the momentum 

direction of the electron; the eigenvectors Ekn(G) are the amplitudes of Bloch plane waves 

Ekn(r) = ΣGEkn(G)ei(k+G)r, and their corresponding eigenvalues ωkn(k) are the dispersion 

relations [27]. Here, n denotes a band (state) number, and ελ(k) denotes the unit vector of the 

field polarization (λ) in a vacuum. The wave vector k is limited by the first Brillouin zone 

(FBZ), and G denotes the reciprocal lattice vector of the PC (G = N1b1 + N2b2 + N3b3), where 

bi denotes the primitive basis vectors of the reciprocal lattice. The first term on the right-hand 

side of Eq. (2) represents the electromagnetic mass of the electron in the PC medium, while 

the second term represents the electromagnetic mass in a vacuum. 

In this study, we focus on a one-dimensional photonic crystal (PC). Such media are simpler 

and more convenient from both experimental and theoretical perspectives. For example, the 

polarization structure of the electromagnetic field is explicitly defined from the outset: 

add rp70, (3) 

where ε1(kG) and ε2(kG) denote the unit vectors of transverse electric (TE) and transverse 

magnetic (TM) polarization, respectively, and kG = k + Gez. 



The operator for the self-energy correction to the electromagnetic mass of a free electron 

placed in the vacuum cavities of a one-dimensional PC with cylindrical symmetry was 

derived in [22] and is given by: 

add rp70, (4) 

where Îpc denotes the unit vector directed perpendicular to the layers of the one-dimensional 

PC, 

add rp70. 

Here, ωkn1 and ωkn2 represent the dispersion relations for Bloch modes with TE and TM 

polarization, respectively. The eigenstates of the operator [Eq. (4)] are states with a defined 

momentum. For an atomic electron in the state ∣Ψ⟩, we apply first-order perturbation theory, 

where the corresponding correction is the matrix element ⟨Ψ∣δmpc(Îp)∣Ψ⟩. 

3. HAMILTONIAN OF ATOMS IN PHOTONIC CRYSTALS AND THE 

PHOTONIC CORRECTION TO THE ELECTROMAGNETIC MASS OF AN 

ELECTRON IN s- AND p-STATES 

Thus, the Hamiltonian of an atom in a PC medium must be augmented with operators δmpc 

(Îp) for each electron. The effect on the nucleus must also be considered, although it is often 

negligible in atomic physics processes. In the case of a hydrogen atom, the Hamiltonian 

assumes its simplest form: 

add rp71, (5) 

where Ĥ denotes the Hamiltonian of a hydrogen atom in free space (in a vacuum) with 

eigenvalues Ei and eigenvectors ∣Ψi⟩. The atomic states and energies are defined by the 

Schrödinger equation, as follows: 

add rp71. (6) 

In first-order perturbation theory, we will assume that the eigenvectors of the atomic system 

in the PC medium remain unchanged, ∣Ψi,pc
(1)⟩ = ∣Ψi⟩. Thus, the expression for the energy of 

the atom can be written as follows: 

add rp71. (7) 

It should be noted that the correction Ei
(1) − Ei depends only on the orbital quantum number l 

and its magnetic projection ml quantum numbers:  

〈Ψ|δmpc (Îp)| Ψ〉 = 〈l, ml |δmpc (Îp)| l, ml〉 [26]. 

In considering QDs, a one-electron approximation is employed, wherein the multi-electron 

problem is reduced to a one-electron problem, and the influence of all other electrons on the 

electron under consideration is described by a self-consistent periodic field [28]. In this study, 

this approximation is applied to a single InAs QD [29] with a hydrogen-like energy level 

structure. The transitions between the p-state and s-state, which form the conduction and 

valence bands in InAs, respectively, are investigated. 



The wavefunctions of the electron in momentum representation Ψl,ml(p) for the s-state (l = 0, 

ml = 0) and p-states [p0(l = 1, ml = 0) and p±1(l = 1, ml = ±1)] are expressed as follows: 

add rp71, (8) 

add rp71, (9) 

add rp71, (10) 

where p denotes the absolute value of the electron momentum, and Θ and Φ denote the zenith 

and azimuthal angles, respectively [28]. Using Eq. (4), the matrix elements of the operator of 

the photonic crystal correction to the electromagnetic mass of the electron for its various 

states [Eqs. (8)–(10)] were calculated. 

add rp71, (11) 

add rp71, (12) 

add rp71. (13) 

Equations (11)–(13), as presented above, still contain ultraviolet divergences. This issue 

arises because the fundamental theory used to calculate the mode composition of the photonic 

crystal (PC) focuses solely on the optical frequency range, often neglecting material 

dispersion [27]. However, at higher frequencies, all materials exhibit transparency, which 

ensures the convergence of the integrals mentioned above. Convergence can be achieved 

either by introducing a cutoff parameter specifically selected for a particular medium [18] or 

by segmenting the frequency range into decreasing intervals with a constant refractive index 

[22]. 

The energy shift of the spectral line emitted by an atom or QD is determined by the difference 

in the corrections provided above: 

add rp72, (14) 

add rp72. (15) 

4. CONTROL OF THE EMISSION SPECTRUM OF A SINGLE QD IN A ONE-

DIMENSIONAL PC 

The quadratic dependence on the refractive index of the PC layers (Fig. 1) is a significant 

characteristic of the self-energy correction δmpc. This sensitivity allows for controlling the 

spectral lines of QDs without the need to synthesize new samples.  

Ultrafast optical tuning of the PC medium on femtosecond and picosecond timescales has 

been actively investigated in recent years. This technology has potential applications in novel 

devices, such as optical switches or signal processing systems. Among the most promising 

methods for ultrafast tuning are optically induced changes in the refractive index of one or 

both PC layers through the injection of free charge carriers, the optical Kerr effect, or the 

optical Stark effect [19, 31–34]. The change in refractive index due to the injection of free 

charge carriers involves three main contributions: the Burstein–Moss shift of interband 



transitions (related to band filling), Drude contributions, and the renormalization of the 

bandgap (its shrinkage) [19]. We consider the Drude contributions associated with charge 

carriers excited by one-photon and multiphoton processes, as well as the contribution of the 

optical Kerr effect to altering the refractive index of the optically dense layer of the one-

dimensional PC based on gallium arsenide. 
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Fig. 1. Quadratic dependence of the self-energy correction 〈δmpc〉 on the refractive index nh 

of the substance, composed of one-dimensional PC layers with voids, for various states of the 

bound electron in a QD: s-state (l = 0, ml = 0) (curve 2), p0-state (l = 1, ml = 0) (curve 3) and 

p±1-state (l = 1, ml = ±1) (curve 1). PC parameters: the thickness of the vacuum layers 

dl/T = 1/3 and the material layers dh/T = 2/3, where T = 750 nm is the PC period, and the 

cutoff parameter ωkn
max = 10.65 eV. 

The first contributions occur when the pump beam energy (ħΩ ≈ 1.55 eV) slightly exceeds 

the energy of the GaAs electronic bandgap (Eg = 1.42 eV at T = 295 K) [19]. The contribution 

of the electro-optic Kerr effect is observed when the pump energy is below Eg/2. In this study, 

a droplet-shaped single quantum dot (QD) made of indium arsenide (InAs), located on the 

surface of GaAs, was examined. Since the bandgap of InAs is smaller than that of GaAs, the 

QD forms a three-dimensional potential well for electrons and holes [35]. This study does not 

consider electron-phonon interactions, which typically occur at cryogenic temperatures. In 

[19], it was shown that thermally induced changes in the refractive index of GaAs are 

approximately two to three orders of magnitude smaller than those caused by band filling and 

Drude contributions. Therefore, thermal effects can be neglected. 



We will examine the Drude contributions and the electro-optical Kerr effect on the refractive 

index of gallium arsenide in more detail. Based on data from [19], we assume that the 

injection of free charge carriers, which occurs under the action of an optical pulse with a 

wavelength of λ = 880 nm and an intensity of IΩ ≈ 0.4 GW/cm2, results in a change in the 

refractive index of GaAs, Δn, equal to 0.01. The refractive index n of undisturbed GaAs at a 

wavelength of λ = 880 nm (≈ 1.55 eV) is 3.666 (Fig. 2) [36, 37]. 

The calculated values of the energy transitions in a single InAs QD located on a GaAs layer 

in a one-dimensional PC, through the mechanism of free charge carrier injection, are shown 

in Table 1. 

Table 1. Corrections to the transition energies of a single InAs QD on a layer of one-

dimensional GaAs PC caused by the effect of a change in the electromagnetic mass of an 

electron. The values of the corrections (Column 2) for GaAs layers undisturbed by the 

external field, as well as the values of the corrections (Column 3) for the altered 

refractive index of GaAs layers due to Drude contributions, are shown. 

Corrections 
Undisturbed GaAs 

(n ≈ 3.666), MeV 

GaAs with Drude 

Contributions 

(n ≈ 3.676), MeV 

Difference, µeV 

Δz1 1.524 1.473 –51.5 

Δz2 –0.762 0.736 25.7 

 

Russian Text English Text 
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Fig. 2. Dispersion function nh(ω) for GaAs [36, 37]. 

The change in the refractive index of gallium arsenide through the Kerr effect is achieved by 

a probe beam at frequency ω in the presence of a pump beam at frequency Ω. This is 

expressed as follows:  



add rp73, (16) 

where χ(3) denotes the third-order optical susceptibility, and n2 denotes the nonlinear 

refractive index. The nonlinear refractive index n2 for GaAs is 3 × 10–4 cm2/GW–1 [19]. To 

assess the Kerr effect, we considered the propagation of picosecond pulses with a wavelength 

of λ = 1900 nm and an intensity of IΩ ≈ 40.4 GW/cm2, based on the parameters from [31]. 

Under the influence of this non-resonant excitation of the one-dimensional GaAs PC medium 

and a single InAs QD, the change in the refractive index of the optically dense PC layer Δn 

was 0.024. The value of n for undisturbed GaAs at a wavelength of λ = 1900 nm (≈ 0.63 eV) 

was 3.342 (Fig. 2) [36, 37]. This study considers only the real part of the refractive index 

Re(nh) of gallium arsenide, as the imaginary part leads to broadening of the spectral lines. 

The calculated values of the energy transitions in a single InAs QD, located on a GaAs layer 

in a one-dimensional PC, through the Kerr effect are shown in Table 2. 

Table 2. Corrections to the transition energies of a single InAs QD on a layer of one-

dimensional GaAs PC caused by the effect of a change in the electromagnetic mass of an 

electron. The values of the corrections (Column 2) for GaAs layers undisturbed by the 

external field, as well as the values of the corrections (Column 3) for the altered 

refractive index of GaAs layers using the electro-optic Kerr effect, are shown. 

Corrections 
Undisturbed GaAs 

(n ≈ 3.342), MeV 

GaAs with Kerr 

Effect (n ≈ 3.366), 

MeV 

Difference, µeV 

Δz1 1.710 1.674 –35.2 

Δz2 –0.855 0.837 17.6 

The calculated values of corrections to the transition energies between the p- and s-states of 

the electron in an indium arsenide QD situated in a one-dimensional PC made of gallium 

arsenide and vacuum layers, in the undisturbed case, amounted to units of MeV meV. In 

contrast, the range of energy changes induced by the injection of free charge carriers and the 

electro-optic Kerr effect was two orders of magnitude smaller. Due to the quadratic 

dependence of the self-energy correction 〈δmpc〉 on the refractive index nh of the optically 

dense GaAs PC layer, the shift of the transition energies can be greater. This requires a 

change in nh, which can be achieved through the injection of free charge carriers and the 

electro-optic Kerr effect. In these cases, the additional correction shifts to the transition 

energies of the electron in the indium arsenide QD within the one-dimensional PC medium of 

gallium arsenide and vacuum layers amounted to tens of µeV. The studied QED effect is 

enhanced when the PC consists of layers with high optical contrast, as well as a large 

nonlinear refractive index n2. 

5. CONCLUSION 

Using the example of quantum transitions between the p- and s-states of a hydrogen-like InAs 

QD placed in the cavities of a one-dimensional GaAs PC, the fundamental possibility of in 

situ control of the photon frequencies emitted by the QD has been demonstrated. This is 

achievable through the effect of changing the electromagnetic mass of the electron and by 



tuning the refractive index of the PC via the injection of free charge carriers and the electro-

optic Kerr effect.  

Calculations conducted under the described conditions have shown that the current range of 

photon energy control available in the experiment is too small for practical applications, and 

the magnitude of the shift is smaller than what has been observed experimentally in prior 

studies [38–40]. However, it is important to note that the energy level shift due to the studied 

QED effect depends quadratically on the refractive index of the material from which the PC 

is constructed. Therefore, it is expected that this method will be significantly scalable as the 

optical density of the material increases. Such PCs can be fabricated using metamaterials with 

a high refractive index [23, 24]. 
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