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Lecture 1. Electrostatics

Discrete Charge and the Electrostatic Field

In nature we can readily observe electromagnetic forces.
Electromagnetic forces bind electrons to atomic nuclei, bond atoms together to form molecules,
mediate the interactions between molecules that allow them to change and organize and,
eventually, live.
The energy that is used to support life processes is electromagnetic energy.

The directed observation and study of electricity is quite ancient.
It was studied, and written about, at least 3000 years ago, and
artifacts that may have been primitive electrical batteries have
been discovered in the Middle East that date back to perhaps 250
BCE.

One of the first recorded observations of electrical force was the
static electrical force created between amber, charged by rubbing
it with wool, and small bits of wool or hair.

However, it took until the Enlightenment (roughly 1600) and the invention of physics and
calculus for the scientific method to develop to where systematic studies of the
phenomenon could occur, and it wasn’t until the middle 1700s that the correct model for
electrical charge was proposed



Discrete Charge and the Electrostatic Field

Charge is the fundamental quantity that permits objects to “couple” – affect one another – via the
electromagnetic interaction.

Experimentally, objects can carry a (net) charge q when “electrified” various ways (for example by
rubbing materials together).

Charge comes in two flavors, + and -, but most matter is approximately charge-neutral most of
the time. Consequently, as Benjamin Franklin observed, most charged objects end up that way by
adding or taking away charge from this neutral base.

Like charges exert a long range (action at a distance) repulsive force on one another. Unlike
charges attract.

The force varies with the inverse square of the distance between the charges and acts along a
line connecting them.

The “elementary” charge (associated with these elementary particles that are the building blocks
of all matter) has experimentally turned out to be discrete and essentially indivisible. Indeed, we
characterize elementary particles by a unique signature consisting of their (rest) mass, their
charge, and other measurable properties.

The SI unit of charge is called the Coulomb (C).
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Discrete Charge and the Electrostatic Field

Nearly all matter is made up of atoms and hence nothing but protons, neutrons, and electrons.

Nearly all the mobile charge in solid matter is made up of electrons. In semiconductors the mobile
charge can also be electron “holes” – de facto positive charge carriers consisting of regions of
electron deficit that move against an otherwise stationary electronic background.

Franklin, unfortunately, thought that the flavor of mobile charge in ordinary conductors was
positive. In fact, as noted, it is negative – associated with moving electrons.

By choosing some volume ΔV small enough that we can treat it like a volume differential but
large enough that it contains a lot of charge, we can define a charge density.

Similarly, we can associate charge densities with two dimensional sheets of matter (for example,
a charged piece of paper or metal plate) or one dimensional lines of matter (for example, a wire
or piece of fishing line). We summarize this (and define the symbols most often used to represent
charge) as:

𝜌𝜌 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝜎𝜎 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝜆𝜆 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
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Insulators.

The charge in the atoms and molecules from which an insulating material is built tends to not be
mobile – electrons tend to stick to their associated molecules tightly enough that ordinary
electric fields cannot remove them. Surplus charge placed on an insulator tends to remain where
you put it. Vacuum is an insulator, as is air, although neither is a perfect insulator.

Conductors.

For many materials, notably metals but also ionic solutions, at least one electron per atom or
molecules is only weakly bound to its parent and can easily be pushed from one molecule to the
next by small electric fields. We say that these conduction electrons are free to move in response
to applied field and that the material conducts electricity.

Semiconductors.

These are materials that can be shifted between being a conductor or an insulator depending on
the potential difference at the interfaces between different “kinds” of semiconducting materials.

Discrete Charge and the Electrostatic Field
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Coulomb’s Law

If one charges various objects (for example, two conducting balls suspended from an insulating
string so that they are near to one another but not touching) and measures the deflection of the
string when the balls are in force equilibrium, one can verify that:

• The force between the charges is proportional to each charge separately. The force is bilinear
in the charge.

• The force acts along the line connecting the two charges.

• The force is repulsive if the charges have the same sign, attractive if they have different signs.

• The force is inversely proportional to the square of the distance between them.

These four experimental observations are summarized as Coulomb’s Law.
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We can formulate them algebraically. We therefore write the force acting on charge 1 due to
charge 2 as:

�⃗�𝐹12 = 𝑘𝑘𝑒𝑒𝑑𝑑1𝑑𝑑2
(𝑟𝑟1 − 𝑟𝑟2)
𝑟𝑟1 − 𝑟𝑟2 3

Note that it acts on a line from charge 2 to charge 1, is proportional to both charges, is inversely
proportional to the distance that separates them squared, and is repulsive if both charges have
the same sign.

The constant:

𝑘𝑘𝑒𝑒 =
1

4𝜋𝜋𝜖𝜖0
= 9 × 109

𝑁𝑁 − 𝑚𝑚2

𝐶𝐶2

effectively defines the “size” of the unit of charge in terms of the already known SI units of force
and length, and obviously will vary if we change to a different set of units

Coulomb’s Law

We note that Coulomb’s law describes action at a distance. We’d like
there to be a cause for the observed force that is present where the
force is exerted, and lacking anything better to do we’ll invent the
cause and call it the electrostatic field just as we similarly defined the
gravitational field.
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Electrostatic Field
The electrostatic field is the supposed cause of the electrostatic force between two charged objects.

Each charged object produces a field that emanates from the charge and is the cause of the force the other
charge experiences at any given point in space. This field is supposed to be present everywhere in space
whether or not we measure it.

The fundamental definition of electrostatic field produced by a charge q at position 𝑟𝑟 is that it is the
electrostatic force per unit charge on a small test charge q0 placed at each point in space 𝑟𝑟0 in the limit that
the test charge vanishes:

𝐸𝐸 = lim
𝑞𝑞0→0

𝐹𝐹
𝑑𝑑0

or

𝐸𝐸 𝑟𝑟0 = 𝑘𝑘𝑑𝑑
(𝑟𝑟0 − 𝑟𝑟)
𝑟𝑟0 − 𝑟𝑟 3

If we locate the charge q at the origin and relabel 𝑟𝑟0 →𝑟𝑟, we obtain the following simple expression for the
electrostatic field of a point charge:

𝐸𝐸 𝑟𝑟 =
𝑘𝑘𝑑𝑑
𝑟𝑟2
�̂�𝑟
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Electrostatic Field

In general, we’ll work the other way around. First we’ll be given a distribution of charges, from
which we must determine the field. With the field known, we can then evaluate the force these
charges will exert on another (e.g. test) charge placed placed on the field by means of the
following rule:

�⃗�𝐹 = 𝑑𝑑𝐸𝐸

We need a way of finding the total field produced by many charges, not just one. Furthermore,
that way needs to work for charges counted “one at a time” (when there are only a few and they
are enumerable) and it also needs to be useful in the limit of so many charges that a coarse-
grained average yields an approximately continuous charge distribution in bulk matter.

Fortunately for all concerned, the fields of many charges simply add right up! This too is a
principle of nature (and is related to the linearity of the underlying equations that are the laws of
nature). We call it the Superposition Principle.
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Electrostatic Field

Given a collection of charges located at various points in space, the total electric field at a point is
the sum of the electric fields of the individual charges:

𝐸𝐸 𝑟𝑟 = �
𝑖𝑖

𝑘𝑘𝑑𝑑𝑖𝑖(𝑟𝑟 − 𝑟𝑟𝑖𝑖)
𝑟𝑟 − 𝑟𝑟𝑖𝑖 3

Charge, while discrete, comes in very tiny packages of magnitude e such that matter contains
order of 1027 charges per kilogram, with roughly equal amounts of positive and negative charge
so that most matter is approximately electrically neutral most of the time. When we consider
macroscopic objects – ones composed of these enormous numbers of atoms and charges – it
therefore makes sense to treat the distribution and motion of charge as if it is continuously
distributed.

Geometry needed to evaluate the field of many charges.
Only the field of the third charge 𝐸𝐸3 is shown explicitly.
Note well the magnitude and direction of the vector 𝑟𝑟 − 𝑟𝑟3
– head at 𝑟𝑟, tail at 𝑟𝑟3. This is a vector from the position of
the charge q3 to the point of observation P at 𝑟𝑟.

Lecture 1. Electrostatics



Electrostatic Field

In order to find the electrostatic field produced by a charge density distribution, we use the
superposition principle in integral form.

The geometry needed to evaluate the field of a
general continuous charge distribution. Note well the
similarity to the geometry for a collection of charges,
except that the many “point charges” are all chunks of
differential volume with charge dq and the “sum” is
now an integral.

𝑑𝑑𝐸𝐸 𝑟𝑟 =
𝑘𝑘𝑒𝑒𝑑𝑑𝑑𝑑(𝑟𝑟 − 𝑟𝑟0)

𝑟𝑟 − 𝑟𝑟0 3

We then use one of the definitions of charge density
to convert dq into e.g. 𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝑑𝑑0 = 𝜌𝜌 𝑟𝑟0 𝑑𝑑3𝑟𝑟0:

𝑑𝑑𝐸𝐸 𝑟𝑟 =
𝑘𝑘𝑒𝑒𝜌𝜌 𝑟𝑟0 𝑟𝑟 − 𝑟𝑟0 𝑑𝑑3𝑟𝑟0

𝑟𝑟 − 𝑟𝑟0 3

Finally, we integrate both sides of this equation over the entire volume V where ρ 𝑟𝑟0 is
supported.
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Electrostatic Field

The resulting integral form is:

𝐸𝐸 𝑟𝑟 = 𝑘𝑘𝑒𝑒 ∫𝑉𝑉
𝜌𝜌 𝑟𝑟0 𝑟𝑟−𝑟𝑟0 𝑑𝑑𝑉𝑉0

𝑟𝑟−𝑟𝑟0 3 for a 3-dimensional (volume) charge distribution,

𝐸𝐸 𝑟𝑟 = 𝑘𝑘𝑒𝑒 ∫𝑆𝑆
𝜎𝜎 𝑟𝑟0 𝑟𝑟−𝑟𝑟0 𝑑𝑑𝑆𝑆0

𝑟𝑟−𝑟𝑟0 3 for a surface charge distribution on a surface S, and

𝐸𝐸 𝑟𝑟 = 𝑘𝑘𝑒𝑒 ∫𝐿𝐿
𝜆𝜆 𝑟𝑟0 𝑟𝑟−𝑟𝑟0 𝑑𝑑𝐿𝐿0

𝑟𝑟−𝑟𝑟0 3 for a linear charge distribution on a particular line L.
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Example: Field of Two Point Charges

Two charges ±q on the y-axis produce a field that is easy to evaluate at points on the x
and y-axis (and not terribly difficult to approximately evaluate at all points in space that
are “far” from the origin relative to a). This arrangement of charges is called an electric
dipole.

Suppose two point charges of magnitude −q and +q are located on the y-axis at y = −a
and y = +a, respectively. Find the electric field at an arbitrary point on the x and y axis.

The y-axis is quite simple. The field due to the positive charge points directly away from
it, hence in the positive y direction at a point y > a and is equal to:

𝐸𝐸+ 0,𝑦𝑦 =
𝑘𝑘𝑒𝑒𝑑𝑑
𝑦𝑦 − 𝑎𝑎 2 �𝑦𝑦

The field of the negative charge points towards it and is equal to:

𝐸𝐸− 0,𝑦𝑦 = −
𝑘𝑘𝑒𝑒𝑑𝑑
𝑦𝑦 + 𝑎𝑎 2 �𝑦𝑦

Hence the total field on the y axis is just:

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 0,𝑦𝑦 = 𝑘𝑘𝑒𝑒𝑑𝑑
1

𝑦𝑦 − 𝑎𝑎 2 −
1

𝑦𝑦 + 𝑎𝑎 2 �𝑦𝑦
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Example: Field of Two Point Charges

The field on the x-axis is a tiny bit more difficult. Here the field produced by
each charge has both components. To find the vector field, we must first find
the magnitude of the field, then use the geometry of the picture to find its x
and y components.

Note that the distance from the charge to the point of observation drawn
above is r = (x2+a2)1/2. Then the magnitude of the electric field vector of either
charge is just:

𝐸𝐸(𝑑𝑑, 0) =
𝑘𝑘𝑒𝑒𝑑𝑑

(𝑑𝑑2 + 𝑎𝑎2)

Look at the right triangle formed by x, a and r. By definition:

cos𝜃𝜃 =
𝑑𝑑
𝑟𝑟

=
𝑑𝑑

𝑑𝑑2 + 𝑎𝑎2 1/2

sin𝜃𝜃 =
𝑎𝑎
𝑟𝑟

=
𝑎𝑎

𝑑𝑑2 + 𝑎𝑎2 1/2
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Example: Field of Two Point Charges

Now we can find the components:

𝐸𝐸𝑥𝑥 = 𝐸𝐸 cos𝜃𝜃 =
𝑘𝑘𝑒𝑒𝑑𝑑

(𝑑𝑑2 + 𝑎𝑎2)
�

𝑑𝑑

𝑑𝑑2 + 𝑎𝑎2
1
2

=
𝑘𝑘𝑒𝑒𝑑𝑑𝑑𝑑

𝑑𝑑2 + 𝑎𝑎2
3
2

and

𝐸𝐸𝑦𝑦 = − 𝐸𝐸 sin 𝜃𝜃 = −
𝑘𝑘𝑒𝑒𝑑𝑑

𝑑𝑑2 + 𝑎𝑎2
�

𝑎𝑎

𝑑𝑑2 + 𝑎𝑎2
1
2

= −
𝑘𝑘𝑒𝑒𝑑𝑑𝑎𝑎

𝑑𝑑2 + 𝑎𝑎2
3
2

This is for a single charge (+q). The other charge has components that are the same magnitude but its Ex
obviously cancels while its Ey obviously adds. The total field is thus:

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑, 0 = −
𝑘𝑘𝑒𝑒𝑑𝑑𝑎𝑎

𝑑𝑑2 + 𝑎𝑎2 3/2 �𝑦𝑦

In terms of the electric dipole moment for this arrangement of charges:
�⃗�𝑝 = 2𝑑𝑑𝑎𝑎 �𝑦𝑦

the field can be expressed as:

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑, 0 = −
𝑘𝑘𝑒𝑒 �⃗�𝑝

𝑑𝑑2 + 𝑎𝑎2 3/2 �𝑦𝑦

It is worthwhile to look at the general shape of the dipole field. In many cases, the physical dimensions of the
dipole (2a in this case) will be small compared to x, the distance of the point of observation to the dipole. In
this limit, the field or potential produced is that of an ideal dipole, or a point dipole.
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Example: Field of Two Point Charges

The electric field of a classic electric dipole in the vicinity
of the charges. Bear in mind that this figure is a plane
cross-section of a three-dimensional, cylindrically
symmetric field! The dashed lines are the projections into
the plane of the equipotential surfaces of this arrangment
of charges.
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The Field of Continuous Charge Distributions
In natural matter, charges are very, very small compared to the length scales we can directly
perceive. If we want to evaluate the electric field produced by a macroscopic piece of matter,
we’re going to have to do something other than just sum over the 𝐸𝐸𝑖𝑖 fields produced by all of
these charges. Let’s define the average charge density of the object:

𝜌𝜌 =
∆𝑄𝑄
∆𝑑𝑑

We can then compute the field using the superposition
principle at the point P (position 𝑟𝑟) as:

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟 = �
𝑖𝑖

𝑘𝑘∆𝑄𝑄𝑖𝑖
𝑟𝑟 − 𝑟𝑟𝑖𝑖 2

�𝑟𝑟 − 𝑟𝑟𝑖𝑖

As there are too many chunks in the blob for us to sum
over. So we pretend that the charge is continuously
distributed according to:

𝜌𝜌 = lim
∆𝑉𝑉→0

∆𝑄𝑄
∆𝑑𝑑

=
𝑑𝑑𝑄𝑄
𝑑𝑑𝑑𝑑

and turn the summation into an integral:

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟 = �
𝑖𝑖

𝑘𝑘∆𝑄𝑄𝑖𝑖
𝑟𝑟 − 𝑟𝑟𝑖𝑖 2

�𝑟𝑟 − 𝑟𝑟𝑖𝑖 = �
𝑉𝑉

𝑘𝑘𝑑𝑑 𝑟𝑟′ 𝑑𝑑𝑑𝑑′
𝑟𝑟 − 𝑟𝑟′ 2

�𝑟𝑟 − 𝑟𝑟′
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The Field of Continuous Charge Distributions

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟 = �
𝑖𝑖

𝑘𝑘∆𝑄𝑄𝑖𝑖
𝑟𝑟 − 𝑟𝑟𝑖𝑖 2

�𝑟𝑟 − 𝑟𝑟𝑖𝑖 = �
𝑉𝑉

𝑘𝑘𝑑𝑑 𝑟𝑟′ 𝑑𝑑𝑑𝑑′
𝑟𝑟 − 𝑟𝑟′ 2

�𝑟𝑟 − 𝑟𝑟′

where we’ve used dQ = ρdV
Just as we found the electric field by using the field of a single point charge in its simplest form
and then
putting it into suitable coordinates, we’ll find it the exact same way, but the point charge in
question will be dq and not q. That is:

𝐸𝐸 =
𝑘𝑘𝑑𝑑
𝑟𝑟2
�̂�𝑟⇔𝑑𝑑𝐸𝐸 =

𝑘𝑘𝑑𝑑𝑑𝑑
𝑟𝑟2

�̂�𝑟

We also define all of the charge densities we might need to handle these cases as:

𝜌𝜌 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

⇔𝑑𝑑𝑑𝑑 = 𝜌𝜌𝑑𝑑𝑑𝑑

𝜎𝜎 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

⇔𝑑𝑑𝑑𝑑 = 𝜌𝜌𝑑𝑑𝑑𝑑

𝜆𝜆 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑙𝑙
⇔𝑑𝑑𝑑𝑑 = 𝜌𝜌𝑑𝑑𝑙𝑙

the charge per unit volume, per unit area, and per unit length respectively.
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The Field of Continuous Charge Distributions

There are thus three steps associated with solving an actual problem:

a) Draw a picture, add a suitable coordinate system, identify the right differential chunk (one you
can integrate over) and draw in the vectors needed to express 𝑑𝑑𝐸𝐸 as given above.

b) Put down an expression for 𝑑𝑑𝐸𝐸 (or rather, usually |𝑑𝑑𝐸𝐸|) in terms of the coordinates, and find its
vector components in terms of those same coordinates, using symmetry to eliminate unnecessary
work.

c) Do the integral(s), find the field 𝐸𝐸 at the desired point.
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Gauss’s Law for the Electrostatic Field

Let’s considering the flux of the electrostatic vector field through a small rectangular patch of
surface ΔS. To compute this, we first must understand what the flux of an arbitrary vector field �⃗�𝐹
through a surface S is. Mathematically, the flux of a vector field through some surface is defined
to be:

𝜙𝜙 = �
Δ𝑆𝑆
�⃗�𝐹 � �𝑛𝑛𝑑𝑑𝑑𝑑

Note that the word flux means flow, and this integral measures the flow of the field through the
surface. It’s mathematical purpose is to detect the conservation of flow in the vector field.
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Gauss’s Law for the Electrostatic Field

Consider figure, where we show electric field lines
flowing through a small S = ab at right angles to the
field lines (so that a unit vector �𝑛𝑛 normal to the surface
is parallel to the electric field). ΔS is small enough that
the continuous field is approximately uniform across it

Since the field is uniform and at right angles to the
field, the flux through just this little chunk is easy to
evaluate. It is just:

∆𝜙𝜙𝑒𝑒 = 𝐸𝐸 Δ𝑑𝑑 = 𝐸𝐸 𝑎𝑎𝑎𝑎

Gauss’s Law for the Electric Field:

�
𝑆𝑆/𝑉𝑉

𝐸𝐸 � �𝑛𝑛𝑑𝑑𝑑𝑑 = 4𝜋𝜋𝑘𝑘𝑒𝑒 �
𝑉𝑉
𝜌𝜌𝑑𝑑𝑑𝑑 =

𝑄𝑄𝑖𝑖𝑖𝑖𝑑𝑑
𝜖𝜖0

or in words, the flux of the electric field through a
closed surface S equals the total charge inside S
divided by 𝜖𝜖0, the permittivity of the electric field.
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Using Gauss’s Law to Evaluate the Electric Field

a) Draw a closed Gaussian Surface that has the symmetry of the charge distribution. The
various pieces that make up the closed surface should either be perpendicular to the field
(which should also be constant on those pieces) or parallel to the field (which may then vary
but which produces no flux through the surface).

b) Evaluate the flux through this surface. The flux integral will have exactly the same form for
every problem with each given symmetry, so we will do this once and for all for each surface
type and be done with it!

c) Compute the total charge inside this surface. This is the only part of the solution that is
“work”, or that might be different from problem to problem. Sometimes it will be easy, adding
it up on fingers and toes. Sometimes it will be fairly easy, multiplying a constant charge per
unit volume times a volume to obtain the charge, say. At worst it will be a problem in
integration if the associated density of charge is a function of position.

d) Set the (once and for all) flux integral equal to the (computed per problem) charge inside
the surface and solve for |𝐸𝐸 |.
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Gauss’s Law and Conductors

Properties of Conductors

A conductor is a material that contains many “free”
charges that are bound to the material so that they
cannot easily jump from the conductor into a
surrounding insulating material (where a vacuum is
considered an insulator for the time being, as is air)
but free to move within the material itself if any e.g.
electrical field exerts a force on them.

An arbitrary chunk of conducting material in
electrostatic equilibrium can have no field inside, or
else it wouldn’t be in equilibrium. It can have no field
tangent to its surface, or it wouldn’t be in
equilibrium. From these facts we can deduce several
useful things about conductors in electrostatic
equilibrium using Gauss’s Law
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Summary

• The electrical charge is a a physical quantity that characterizes the properties
of the particles or bodies to engage in the electromagnetic force interactions.

• Objects can carry a (net) charge q when “electrified” various ways. This charge
comes in two flavors, + and -.

• Like charges exert a long range (action at a distance) repulsive force on one
another. Unlike charges attract. The SI unit of charge is called the Coulomb (C).

• Charge Conservation: Net charge is a conserved quantity in nature.

q1 + q2 + q3 + ... +qn = const

• From a modern point of view, the charge carriers are elementary particles. All
objects are composed of atoms, which contain positively charged protons,
negatively charged electrons and neutral particles - neutrons. Protons and
neutrons are part of the atomic nuclei, electrons form the electron shell of
atoms.

• The electric charges of the proton and electron in absolute value are exactly
the same and equal to the elementary charge e.

e = 1,602177·10–19 C ≈ 1,6·10–19 C
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Summary

• Coulomb’s Law:

From performing many careful experiments directly measuring the forces between static charges
and from the consistent observations of many other things such as the electric structure of atoms,
the conductivity of metals, the motion of charged particles, and much, much more, we infer that for
any two stationary charges, the experimentally verified electrostatic force acting on charge 1 due to
charge 2 is:

�⃗�𝐹12 = 𝑘𝑘𝑒𝑒
𝑑𝑑1 𝑑𝑑2
𝑟𝑟2

Note that it acts on a line from charge 2 to charge 1, is proportional to both charges, is inversely
proportional to the distance that separates them squared, and is repulsive if both charges have the
same sign.

The constant:

𝑘𝑘𝑒𝑒 =
1

4𝜋𝜋𝜖𝜖0
= 9 × 109

𝑁𝑁 − 𝑚𝑚2

𝐶𝐶2

effectively defines the “size” of the unit of charge in terms of the already known SI units of force and
length, and obviously will vary if we change to a different set of units
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• Electrostatic Field

The fundamental definition of electrostatic field produced by a charge q at position 𝑟𝑟 is that it is the
electrostatic force per unit charge on a small test charge q0 placed at each point in space 𝑟𝑟0 in the
limit that the test charge vanishes:

𝐸𝐸 =
�⃗�𝐹
𝑑𝑑

𝐸𝐸 =
1

4𝜋𝜋𝜀𝜀0
�
𝑄𝑄
𝑟𝑟2

• Superposition Principle

Given a collection of charges located at various points in space, the total electric field at a point is
the sum of the electric fields of the individual charges:

𝐸𝐸 = 𝐸𝐸1 + 𝐸𝐸2 + 𝐸𝐸3 + ⋯

Summary

http://hyperphysics.phy-astr.gsu.edu/hbase/electric/elefie.html#c1
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The electric flux through an area is defined as the electric field multiplied by the area of the surface
projected in a plane perpendicular to the field. Electric flux is proportional to the number of electric
field lines going through a normally perpendicular surface. If the electric field is uniform, the
electric flux passing through a surface of vector area S is

Gauss's law

∆𝜙𝜙 = 𝐸𝐸 Δ𝑑𝑑 cos𝜃𝜃 = 𝐸𝐸𝑖𝑖 Δ𝑑𝑑

Gauss's law:

The total of the electric flux out of a closed surface is equal to
the charge enclosed divided by the permittivity.

𝜙𝜙 =
1
𝜀𝜀0
�𝑑𝑑𝑖𝑖

http://hyperphysics.phy-astr.gsu.edu/hbase/electric/gaulaw.html
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Potential energy can be defined as the capacity for doing work which arises from position or configuration. In the
electrical case, a charge will exert a force on any other charge and potential energy arises from any collection of
charges. For example, if a positive charge Q is fixed at some point in space, any other positive charge which is
brought close to it will experience a repulsive force and will therefore have potential energy. The potential energy
of a test charge q in the vicinity of this source charge will be:

𝑈𝑈 =
𝑘𝑘𝑄𝑄𝑑𝑑
𝑟𝑟

where k is Coulomb's constant.

In electricity, it is usually more convenient to use the electric potential energy per unit charge, just called electric
potential or voltage.

Voltage is electric potential energy per unit charge, measured in joules per coulomb ( = volts). It is often referred
to as "electric potential", which then must be distinguished from electric potential energy by noting that the
"potential" is a "per-unit-charge" quantity. Like mechanical potential energy, the zero of potential can be chosen at
any point, so the difference in voltage is the quantity which is physically meaningful. The difference in voltage
measured when moving from point A to point B is equal to the work which would have to be done, per unit
charge, against the electric field to move the charge from A to B. When a voltage is generated, it is sometimes
called an "electromotive force" or emf.

Electric Potential Energy

http://hyperphysics.phy-astr.gsu.edu/hbase/electric/elewor.html
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