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The critical conditions for the Bose–Einstein condensation of quasi equilibrium nuclear magnons in the

easy-plane antiferromagnets CsMnF3 and MnCO3 are theoretically derived. Both systems possess the dynam-

ical frequency shift, the dependence of the precession frequency on the magnetization deflection angle and one

is able to observe the magnetic resonance signals in very non-equilibrium conditions when the frequency of

pumping is higher than precession frequency. The frequency difference in this case can be compensated by the

increasing of deflection angle.
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Bose–Einstein condensation (BEC) is a fabulous

phenomenon of quantum statistical physics. There is a

finite temperature Tc when the chemical potential of the

thermodynamically equilibrium ideal gas of Bose parti-

cles reaches the minimal energy of the energy band and

the particles with this energy form a coherent macro-

scopic quantum state [1, 2]. It was suggested that the

superfluidity of 4He is accompanied by BEC of atoms [3]

but the strong interaction between 4He atoms leads to

the significant decrease of the condensate contribution

even at ultra-low temperatures [4]. Theoretically pre-

dicted in 1924 BEC effect was observed in experiments

with ultra cold atoms about seventy years later, in 1995

[5–7].

Magnons, Bose quasiparticles [8], elementary quan-

tum excitations of magnetoordered systems became at-

tractive candidate to observe BEC phenomenon at the

end of eighties [9–12]. There is, however, a principal

difference between Bose quasiparticles, which have fi-

nite lifetime and completely disappear at zero tem-

perature and real Bose particles, which density is not

changed at any temperature. This means that there

are no conventional thermodynamic conditions for the

Bose–Einstein condensation of magnons. Nevertheless,

it is possible to create quasiequilibrium thermodynamic

states of the higher densities and to compensate relax-

ation of magnons by the external pumping field. The

BEC of magnons is characterized by the ordering and
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coherent oscillation of the macroscopic transverse mag-

netization. The purposeful experiments [13, 14] several

years ago demonstrated BEC of magnons in parametri-

cally pumped YIG film with a specific double-well dipo-

lar spectrum at room temperature.

It should be noted that BEC of elementary magnetic

excitations, nuclear magnons actually was observed for

the first time in an exotic magnetoordered system of

superfluid 3He–B at ultra-low temperatures in 1984

[15, 16]. The quasiequilibrium state of nuclear magnons

was created by RF pumping at the nuclear magnetic

resonance (NMR) frequency and the coherent radiation

from the macroscopic transverse magnetization of nu-

clear magnons with k = 0 was detected. Bose–Einstein

condensation of nuclear magnons in superfluid 3He was

reviewed in Refs. [17–19]. In Ref. [20] it was shown that

the dynamical properties of the magnetic resonance in

some antiferromagnets are similar to that ones of 3He-

A. Later BEC of nuclear magnons with k = 0, but quite

different physical properties than nuclear magnons in
3He, was experimentally observed in the easy-plane an-

tiferromagnets CsMnF3 and MnCO3 at liquid helium

temperature T = 1.5K [21, 22]. In this Letter we focus

theoretically to non-trivial conditions of BEC of nuclear

magnons in the easy-plane antiferromagnets.

Nuclear magnon is a quantum of nuclear spin wave.

The concept of nuclear spin waves, collective mag-

netic excitations which appear in the NMR frequency

range in ferro- and antiferromagnets by means of in-

direct Suhl–Nakamura interaction between paramag-
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netic nuclear spins, was introduced in Refs. [23, 24]. The

physics of these excitations is described, for example, in

Refs. [12, 25, 26]. The dispersion relation for nuclear spin

waves does not depend on the direction of wave vector

k in the easy-plane antiferromagnets and can be written

as

ωn,k = ωn

√

1−
H2

∆ (T )

H(H +HD) +H2
∆(T ) + α2k2

, (1)

where ωn is the non-shifted NMR frequency defined by

the hyperfine field from the ordered electronic spin, H

is the external magnetic field, HD is the Dzyaloshinskii

field, H2
∆(T ) ∝ 1/T is the gap in the electronic spin wave

spectrum defined by the hyperfine field from paramag-

netic nuclear spin, α is the parameter of inhomogeneous

exchange interaction [27]. The difference between non-

shifted NMR frequency ωn and frequency of nuclear-

electron resonance precession ωL = ωn,0 at given tem-

perature and magnetic field is called the parameter of

the dynamical frequency shift (DFS) ωp,0 = ωn−ωL. As

can be seen from Eq. (1), this parameter can be adjusted

by variation of the magnetic field.

It can be seen from Fig. 1 that there are two do-

mains of nuclear spin behaviour in k-space. At low k we

Fig. 1. The spectrum of nuclear spin waves (Eq. (1)) in an-

tiferromagnet CsMnF3 (HD = 0, H2
∆(T ) = 6.4/T kOe2,

α = 0.95 · 10−5 kOe · cm)

have the collective nuclear-electronic spin oscillations

with spatial dispersion, while at high k these oscilla-

tions degenerate into a paramagnetic level. The inter-

face k∗(T ) between two domains is determined by con-

dition that the mean free path of nuclear spin wave is

equal to its wavelength [28], e.g., for the case of CsMnF3

k∗ ∼ 106 cm−1. Other words, calculating critical densi-

ties,
∫

nk d3k/ (2π)
3
, we should limit the integral at k∗

because the excitations of higher k belong to paramag-

netic states. It is important to point out that the tem-

perature and magnetization of nuclear spin systems are

mainly determined by these paramagnetic states due to

their highest volume in the phase space.

The analysis of interactions in the nuclear system

shows that process of scattering on paramagnetic fluc-

tuations and four-quasiparticle process are effective at

T ≤ 2 K [26] and therefore conserve the total number

of nuclear magnons. In addition, these processes lead

to a quasiequilibrium in the externally excited nuclear

magnon system with the effective chemical potential µ

and effective temperature, which is assumed to have a

negligible deviation from the thermal bath temperature

T . Thus, the Bose–Einstein occupation number nk does

not have any violation and can be expressed as

nk =

[

exp

(

~ωn,k − µ

kBT

)

− 1

]−1

, (2)

where ~ωn,k is the magnon energy. For the case of ther-

mal nuclear magnon density we have µ = 0. The relation

n0 → ∞ defines the condition BEC when the total den-

sity of thermal and pumped nuclear magnons become

critical and the effective chemical potential reaches the

bottom of nuclear magnon band: µc = ~ωn,0. The for-

mula for the density of nuclear magnons with the effec-

tive chemical potential µ has the form

N (µ, T )

V
≃

∫ k∗

0

[

exp

(

~ωn,k − µ

kBT

)

− 1

]−1
4πk2dk

(2π)3
.

(3)

Here N (µ, T ) is the total number of thermal and

pumped nuclear magnons and V is the volume of the

sample.

So far as a typical nuclear magnon “temperature”

Tn = ~ωn/kB ∼ 10−2 K is small, the occupation num-

ber (2) in the temperature range 10−2 K ≪ T ≤ 2K can

be written in the form
[

exp

(

~ωn,k − µ

kBT

)

− 1

]−1

≃
kBT

~ωn,k − µ
. (4)

Note that this high-temperature approximation for dis-

tribution function is valid for all nuclear magnons in

their phase space k < k∗ and effective chemical potential

0 ≤ µ < ~ωn,0. This is one more unique physical prop-

erty of nuclear magnons. In contrast, all other systems

of Bose particles and quasiparticles demonstrate high-

temperature distribution just in the visinity of point of

BEC and the occupation numbers in the major part of

their phase space are exponentially small.

Let us estimate the density of nuclear magnons with

the effective chemical potential µ:

N(µ, T )

V
≃

∫ k∗

0

kBT

~ωn,k − µ

4πk2dk

(2π)3
. (5)
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Notice that the ratio 1/(~ωn,k − µ) is pretty bounded

and smooth function. For the highest phase weight in

the vicinity of k∗ it is equal to 1/(~ωn − µ). Therefore

one can rewrite Eq. (5) in the form

N(µ, T )

V
≃

kBT

~ωn − µ

∫ k∗

0

4πk2dk

(2π)3
=

kBT

~ωn − µ

k3∗(T )

6π2
.

(6)

This expression is valid for all chemical potentials µ ≤

≤ ~ωn, including the point of Bose–Einstein condensa-

tion µc = ~ωn,0 (there is no singularity at k = 0 in

Eq. (5)).

Now we are able to find the critical density of

pumped nuclear magnons Np,c/V , the important pa-

rameter, which characterizes BEC in the quasi equilib-

rium Bose system (in contrast to Tc in the system of

real Bose particles). It is defined as a difference between

the density N(µc, T )/V of all nuclear magnons minus

the initial density of thermal magnons N(0, T )/V :

Np,c

V
=

N(µc, T )

V
−

N(0, T )

V
≃

≃
k3∗(T )

6π2

kBT

~ (ωn − ωn,0)

ωn,0

ωn

. (7)

Taking into account that k3∗(T ) ∝ T−2 [28], we see

that the critical density of pumped nuclear magnons

Np,c/V ∝ 1/T decreases with increasing of tempera-

ture T .

It is convenient to write the ratio for the critical den-

sity of all quasi equilibrium nuclear magnons compared

to the density of thermal nuclear magnons

N (µc, T )

N (0, T )
=

ωn

ωn − ωn,0
(8)

and the ratio for the critical density of pumped nuclear

magnons compared to the density of thermal magnons

Np,c

N (0, T )
=

ωn,0

ωn − ωn,0
. (9)

We see that the critical number of pumped nuclear

magnons should be greater than the number of thermal

magnons if ωn,0 > ωn/2 and smaller if ωn,0 < ωn/2.

The results of the numerical calculations by Eq. (3)

as well as by analytical Eq. (6) at different parameter of

DFS are shown in Fig. 2. It can be seen that the approxi-

mations using for obtaining Eq. (6) are in a good agree-

ment with the direct numerical calculations. One can

see in Fig. 2 that at small DFS parameters (≤ 200 MHz)

the density of condensed magnons mostly results from

the pumping and the initial thermal magnons contribute

less than 10% to the critical density.

Fig. 2. (Color online) Critical density of magnons for their

BEC formation, thermal magnon density and the critical

density of pumped magnons as a function of parameter

of DFS at temperature of 1.5 K in CsMnF3. Solid curves

show the dependence obtained by using Eq. (6), dots show

the results of direct numerical calculations by Eq. (3)

Macroscopically the BEC state manifests itself

by coherently precessing transverse magnetization

with frequency equals to the bottom of the spectrum

min(~ωn,k) = ωL (Fig. 1) and with amplitude

M⊥ = M0 sinβ, (10)

where M0 is the equilibrium nuclear magnetization,

β – the magnetization deflection angle. The equilibrium

magnetization is defined by the temperature and the

hyperfine field as [29]

M0 =
nµ2

nHn

3kBT
, (11)

where n is the density of nuclei, µn – nuclear magnetic

moment, Hn – hyperfine magnetic field.

From experimental point of view it is more conve-

niently to deal with deflection angles than with magnon

densities, particularly when applying theory of Bose–

Einstein condensation because at the energy minimum

in rotating frame there is direct correspondence be-

tween pumping frequency ωRF and the deflection angle

[30, 31]:

ωRF = ωn − ωp,0 cosβ. (12)

Let us make the estimation of the critical deflection

angles βc for magnon BEC formation. The condensation

of Nc non-equilibrium coherent magnons to the state

with k = 0 leads to the decreasing of the longitudinal

magnetization by ~γNc:

M‖ = M0 cosβc = M0 − ~γNc. (13)
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Fig. 3. (Color online) The critical deflection angle of the magnetization of the quasi-nuclear branch in CsMnF3 (left panel)

and in MnCO3 (right panel) in dependence on the parameter of the dynamical frequency shift at different temperatures.

Solid curves show the dependence obtained by using Eq. (6), dots show the results of direct numerical calculations by Eq. (3)

Eq. (13) describes the relation between the number of

condensed to the k = 0 magnons and the magnetization

deflection angle. It can be rewritten as:

Nc =
M0 −M‖

~γ
=

M0

~γ
(1− cosβc) . (14)

Thus, by using Eq. (3) or analytical approximation

(6) at µ = µc and (14) one can estimate the critical

angle βc of the magnetization deflection when BEC of

nuclear magnons becomes possible. This estimation is

important for choosing the optimal initial experimental

conditions in further experiments with BEC of magnons.

In Fig. 3 the calculations of the critical deflection angle

dependence on the parameter of DFS are shown for the

cases of CsMnF3 (left panel) and MnCO3 (right panel).

It can be seen that at small values of the parameter of

the dynamical frequency shift ωp,0 < 30MHz the crit-

ical angle is more than 10 degrees. In this case even

cooling the sample down to 700 mK does not lead to

the notable decreasing of the critical angle and the for-

mation of magnon BEC is suppressed. The increasing

of the parameter of DFS, that from the experimental

point of view corresponds to the decreasing of the ex-

ternal magnetic field (see Eq. (1)), leads to the signifi-

cant reduction of the critical angle. The experimental

estimations of the deflection angles at magnon BEC

formation were done in [32]. In those experiments the

magnon BEC was formed at slow sweeping the mag-

netic field down (at slow increasing of the parameter

of DFS). The RF pumping frequency was constant and

equal to ωRF /2π = 560.6MHz which corresponds to

ωp,0/2π = 105.4MHz. The temperature of the sam-

ple was 1.5K. The experimental results were well de-

scribed by theory of magnon BEC at deflection angles

more than ∼ 7 deg. It corresponds well to our calcula-

tions (Fig. 3, left panel) which show that at lower angles

(when the magnon number is less than its critical value)

BEC can not be formed.

In conclusion, the critical parameters of nuclear

magnon BEC in the systems with the dynamical fre-

quency shift were estimated. We believe that our the-

oretical results can be used for optimal choice of the

experimental parameters such as temperature and mag-

netic field and will stimulate further experimental stud-

ies of BEC of nuclear magnons (and related phenomena)

in CsMnF3, MnCO3, and other objects.
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